PORTUGALIAE MATHEMATICA Vol. 58, No. 2, pp. 159-170 (2001) |
|
Global Existence for The Conserved Phase Field Model with Memory and Quadratic NonlinearityP. Colli, G. Gilardi, M. Grasselli and G. SchimpernaDipartimento di Matematica, Università di Pavia,Via Ferrata 1, 27100 Pavia -- ITALY E-mail: pier@dragon.ian.pv.cnr.it Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, 27100 Pavia -- ITALY E-mail: gilardi@dimat.unipv.it Dipartimento di Matematica, Politecnico di Milano, Via Bonardi 9, 20133 Milano -- ITALY E-mail: maugra@mate.polimi.it Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, 27100 Pavia -- ITALY E-mail: schimper@dragon.ian.pv.cnr.it Abstract: A nonlinear system for the heat diffusion inside a material subject to phase changes is considered. A thermal memory effect is assumed in the heat conduction law; moreover, on account of thermodynamical considerations, a linear growth is allowed for the latent heat density. The resulting problem couples a second order integrodifferential equation, derived from the balance of energy, with a fourth order parabolic inclusion which rules the evolution of an order parameter $\chi$. Homogeneous Neumann boundary conditions guarantee that the space average of $\chi$ is conserved in time. Global existence of solutions is proved in a variational setting. Keywords: Conserved phase-field model; Integrodifferential evolution system; Heat transfer with memory; Maximal monotone graph; Bootstrap argument. Classification (MSC2000): 35R99, 45K05, 80A22. Full text of the article:
Electronic version published on: 9 Feb 2006. This page was last modified: 27 Nov 2007.
© 2001 Sociedade Portuguesa de Matemática
|