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Abstract: We propose a general framework to establish the strong convergence

of approximate solutions to multi-dimensional conservation laws in a bounded domain,

provided uniform bounds on their Lp norm and their entropy dissipation measures are

available. To this end, existence, uniqueness, and compactness results are proven in a

class of entropy measure-valued solutions, following DiPerna and Szepessy. The new

features lie in the treatment of the boundary condition, which we are able to formulate

by relying only on an Lp uniform bound. This framework is applied here to prove the

strong convergence of diffusive approximations of hyperbolic conservation laws.

Introduction

In this paper, we are interested in the boundary and initial value problem for

a hyperbolic conservation law in several space dimensions:

(1.1) ∂tu+ div f(u) = 0 , u(x, t) ∈ R, x ∈ Ω, t > 0 ,

(1.2) u(x, 0) = u0(x) , x ∈ Ω ,

where Ω is an open and bounded subset of Rd with a smooth boundary ∂Ω.

Here we have set x = (x1, x2, ..., xd), div f(u) :=
∑d

j=1 ∂jfj(u), and ∂j := ∂xj for
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j = 1, ..., d. The flux-function f = (f1, f2, ..., fd) : R → Rd is a given continuous

mapping and the initial datum u0 belongs to the space Lp(Ω) for some p ∈ (1,∞].

Furthermore along the boundary we impose a boundary datum uB : ∂Ω×R+ →

Rd,

(1.3) u(x, t) = uB(x, t) , x ∈ ∂Ω, t > 0 ,

however expressed in the weak sense of Bardos, Leroux, and Nedelec [1]. Con-

cerning the boundary conditions for hyperbolic conservation laws, we refer the

reader to LeFloch [10], Dubois and LeFloch [6], Szepessy [16], Cockburn, Coquel,

and LeFloch [3], Joseph and LeFloch [8], Otto (see [12]), Chen and Frid [2], and

the references therein.

In the present paper, in Sections 2 and 3, we develop a general framework

aimed at proving the convergence of a sequence of approximate solutions uε to-

ward a solution of (1.1)–(1.3). The notion of entropy measure-valued solution

introduced by DiPerna [5] plays here a central role. These are Young measures

(Tartar [18]) satisfying the equation and the entropy inequalities in a weak sense.

Under some natural assumption, a sequence of approximate solutions always gen-

erates an entropy measure-valued solution.

The key is given by a suitable generalization of Kruzkov’s L1 contraction prop-

erty [9] discovered by DiPerna [5] and extended by Szepessy [15, 16], to include

on one hand the boundary conditions and, on the other hand, measure-valued

solutions in Lp. Our approach in the present paper covers both approximate so-

lutions in Lp and a bounded domain. Recall that Lp Young measures associated

with hyperbolic conservation laws were first studied by Schonbek [14]. Recall

also that DiPerna’s strategy was applied to proving the convergence of numerical

schemes by Szepessy [17], Coquel and LeFloch [4], and Cockburn, Coquel, and

LeFloch [3].

Section 4 contains the application of the above compactness framework to the

vanishing diffusion problem with boundary condition.

2 – Measure-valued solutions

We aim at developing a general framework to study multi-dimensional con-

servation laws in a bounded domain, encompassing all of the fundamental issues

of existence, uniqueness, regularity and compactness of entropy solutions. First

we observe that, for the problem (1.1)–(1.3), it is easy to construct sequences

of approximate solutions uh : Ω× R+ → R satisfying certain natural uniform
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bounds; see (2.3)–(2.5) below. In particular, uh satisfies “approximate” entropy

inequalities of the form

∂tU(uh) + divF (uh) ≤ Rh
U −→ 0

in the sense of distributions. Such approximate solutions indeed will be con-

structed explicitly in Section 4.

The main difficulty is proving that these approximations converge in a strong

topology and that the limit is an entropy solution of (1.1)–(1.2), satisfying a

relaxed version of (1.3). To this end, following DiPerna [5], we introduce the

notion of entropy measure-valued solution, designed to handle weak limits of the

sequence uh. The key result to be proven concerns the regularity and uniqueness

of the measure-valued solution which, in fact, will coincide with a weak solution in

the standard sense. This approach relies heavily on the entropy inequalities and

on the L1 contraction property of the solution-operator. The classical approach

uses a compactness embedding (Helly’s theorem) instead. Another characteristic

of the present strategy is that it provides at once the strong convergence of the

sequence uh and a characterization of its limit.

Consider the problem (1.1)–(1.3) where the initial data u0 belongs to Lp(Ω)

with 1 < p ≤ ∞ and the boundary datum uB : ∂Ω× R+ 7→ R is a smooth and

bounded function. We make the following assumptions on the flux-function f :

(1) f is continuous on R.

(2) When p <∞, f satisfies the growth condition at infinity

(2.1) f(u) = O
(

1 + |u|r
)

for some r ∈ [1, p).

We also define q := p/r. The following terminology will be used.

Definition 2.1. A continuous function satisfying (2.1) (when p < ∞) will

be called admissible. When p =∞, no growth condition is imposed.

More generally, a function g = g(u, x, t) is called admissible if it continuous

in u ∈ R and Lebesgue measurable in x ∈ Ω and t ∈ R+ with

|g(u, x, t)| ≤ g1(u) + g2(x, t) ,

where the function g1 ≥ 0 satisfies (2.1) and g2 ≥ 0 belongs to L∞(R+, L
q(Ω)).

A pair of smooth functions (U,F ) : R → R×Rd is called a tame entropy pair

if ∇F = U ′∇f and the function U is affine outside a compact set. It is said to

be convex if U is convex.
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Note that, when p =∞, the behavior at infinity is irrelevant. A truly remark-

able property of the scalar conservation laws is the existence of a special family of

one-parameter, symmetric and convex entropies, the so-called Kruzkov entropies

[9],

(2.2) Ũ(u, v) := |u− v| , F̃ (u, v) := sgn(u− v)
(

f(u)− f(v)
)

,

which play an important role in the theory of conservation laws.

For h ∈ (0, 1), let uh : Ω× R+→ R be a sequence of piecewise smooth func-

tions with the following properties:

(i) The uniform bound

(2.3) ‖uh(t)‖Lp(Ω) ≤ C(T ) , t ∈ (0, T ) ,

holds for a constant C(T ) > 0 independent of h and for each time T > 0.

(ii) The entropy inequalities (Hd−1 being the (d−1)-dimensional Haussdorf

measure)

(2.4a)

∫ ∫

Ω×R+

(

U(uh) ∂tθ + F (uh) · grad θ
)

dx dt +

∫

Ω
U(uh(0)) θ(x, 0) dx

−
∫ ∫

∂Ω×R+
Bh
U (x, t) θ(x, t) dHd−1(x) dt ≥

∫ ∫

Ω×R+
Rh
U (θ) dx dt

hold for every convex and tame entropy-pair (U,F ) and every test-

function θ = θ(x, t) ≥ 0 in C1c (Ω × (0,∞)). We are assuming here that

there exists a (smooth) approximate boundary flux bh and an element

b ∈W−1,∞([0, T ),W−1/q,q(∂Ω)) (for all T > 0 with 1/q+1/q′ = 1) such

that

(2.4b) bh → b in the sense of distributions .

We have set also

Bh
U = F (uB) ·N + U ′(uB)

(

bh − f(uB) ·N
)

,

where N is the outside unit normal along ∂Ω. Moreover, in (2.4a),

Rh
U : Ω× R+→ R are piecewise smooth functions, possibly depending

on U and converging to zero

(2.4c)

∫ ∫

Ω×R+
Rh
U (θ) dx dt −→ 0 , h→ 0 .
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(iii) The initial traces uh(0) approach the initial datum u0 when h → 0, in

the following weak sense

(2.5) lim sup
h→0

∫

Ω
U(uh(0)) θ dx ≤

∫

Ω
U(u0) θ dx

for all arbitrary θ = θ(x) ≥ 0 in C(Ω) and for all convex tame entropy U .

In particular (choosing U(u) = ±u), (2.5) implies the weak convergence

property

lim
h→0

∫

Ω
uh(0) θ dx =

∫

Ω
u0 θ dx .

For instance, (2.5) holds whenever uh(0) tends to u0 in L1 strongly.

It is well-known that, from a sequence uh satisfying the uniform bound (2.3),

one can extract a subsequence converging in the weak topology, but not necessar-

ily converging in the strong topology. More generally, for any admissible function

g = g(u, x, t) we have

‖g(uh, ·, ·)‖L∞(R+,Lq(Ω)) ≤ C(T )

for some uniform constant C(T ) > 0 depending on g. By a weak compactness

theorem, there exists a limit ḡ ∈ L∞((0, T ), Lq) (for each T > 0) and a subse-

quence still labelled uh and possibly depending on g such that g(uh)⇀ ḡ weakly,

i.e. for every θ = θ(x, t) in Cc(Ω× [0,∞))

(2.6)

∫ ∫

Ω×R+
g
(

uh(x, t), x, t
)

θ(x, t) dx dt −→
∫ ∫

Ω×R+
ḡ(x, t) θ(x, t) dx dt .

A fundamental difficulty must be overcome. Given a nonlinear function g =

g(u), the weak limit of the composite function g(uh) of uh need not coincide

with the composite function of the weak limit (say ū) of uh. In other words

ḡ 6= g(ū). In this juncture, the Young measure provides us with a powerful tool

to express the weak limit ḡ in (2.6) from the function g. To each (x, t) ∈ Ω× R+,

it associates a probability measure νx,t on R, i.e., an element of the space of all

positive measures with unit mass, such that ḡ(x, t) be the expected value of g

with respect to the measure νx,t. This means that

ḡ(x, t) = 〈νx,t, g〉 :=
∫

R
g(ū) dνx,t(ū) for a.e. (x, t) .

Recall that a measure is a linear mapping µ from the linear space C(R) of all

continuous functions g (or a subset of them) such that for some C > 0

|〈µ, g〉| :=

∣

∣

∣

∣

∫

R
g(ū) dµ(ū)

∣

∣

∣

∣

≤ C ‖g‖C(R) ,
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the mass of µ being then

|µ| := sup
g∈C(R)

‖g‖C(R)=1

〈µ, g〉 .

Recall also that µ is said to be positive iff 〈µ, g〉 ≥ 0 for all functions g ≥ 0.

Theorem 2.2 (Tartar [18], Schonbek [14]). Given a sequence uh satisfying

(2.3) for some p ∈ (1,∞], there exists a subsequence of uh and a family of

probability measures {νx,t}(x,t)∈Ω×R+ with the following property. For all ad-

missible functions g = g(u, x, t), the function (x, t) 7→ 〈νx,t, g(·, x, t)〉 belongs to

L∞(R+, L
q(Ω)) and we have

(2.7) g(uh, x, t)⇀ 〈νx,t, g(·, x, t)〉 in the weak sense .

Let ū be the weak limit of uh. Then

uh → ū strongly

iff

νx,t = δū(x,t) for a.e. (x, t) ∈ Ω× R+ ,

where δū(x,t) denotes the Dirac measure at the point ū(x, t).

The mapping ν constructed in Theorem 2.2 is called a Young measure associ-

ated with the sequence {uh}h>0. The concept of a Young measure is now applied

to the conservation law (1.1).

Definition 2.3. A Young measure νx,t is an entropy measure-valued solution

of the problem (1.1)–(1.3) iff there exists an element b∈W−1,∞([0,T ),W−1/q,q(∂Ω))

(for all T > 0 with 1/q + 1/q′ = 1) such that for every convex and tame entropy

pair (U,F ), every smooth function θ = θ(x, t) ≥ 0 and every T > 0 we have

(2.8)

∫ T

0

∫

Ω

(

〈ν, U〉 ∂tθ + 〈ν, F 〉 · grad θ
)

dx dt +

∫

Ω
U(u0) θ(x, 0) dx

−
∫ T

0

∫

∂Ω

(

F (uB) ·N + U ′(uB)
(

b− f(uB) ·N
)

)

θ dHd−1 dt ≥ 0 .

A function u ∈ L∞((0, T ), Lp(Ω)) for all T > 0 is called an entropy weak

solution of the problem (1.1)–(1.3) iff the Young measure (x, t) 7→ δu(x,t) is an

entropy measure-valued solution.

In particular, (2.8) implies that the inequality

(2.9) ∂t〈ν, U〉+ div 〈ν, F 〉 ≤ 0

holds in the sense of distributions.
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Definition 2.3 is directly motivated by the following observation, which is

easily deduced from the property (2.7) of the Young measure and the assumptions

(2.4) and (2.5): A Young measure associated with a sequence satisfying (2.3)–

(2.5) is an entropy measure-valued solution of (1.1)–(1.2).

We discuss now the regularity of the measure-valued solutions. We show that

the initial data u0 is assumed in a strong sense, and we investigate in what sense

ν satisfies the boundary condition (1.3) along ∂Ω.

Theorem 2.4. Let ν = νx,t be an entropy measure-valued solution of (1.1)–

(1.3).

(a) For every convex and tame entropy U = U(u) and for every smooth

function θ = θ(x) with compact support in Ω, the function

(2.10) t 7−→
∫

Ω
〈νx,t, U〉 θ dx

has locally bounded total variation and admits a trace as t→ 0+.

(b) For every function U = U(u, x), that is convex in u and measurable in x

and such that |U(u, x)| ≤ c |u|+ |Ũ(x)| where Ũ ∈ L1(Ω) and c ≥ 0, we

have

(2.11) lim sup
t→0+

∫

Ω
〈νx,t, U(·, x)〉 dx ≤

∫

Ω
U(u0(x), x) dx .

(c) In particular, the Young measure assumes its initial datum u0 in the

following strong sense:

(2.12) lim sup
t→0+

∫

Ω

〈

νx,t, |id− u0(x)|
〉

dx = 0 .

Proof: Using in the weak formulation (2.8) a function θ(x, t) = θ1(x) θ2(t),

compactly supported in Ω× [0,∞) and having θ1, θ2 ≥ 0, we obtain

∫ ∞

0

dθ2
dt

∫

Ω
〈ν, U〉 θ1 dx dt + θ2(0)

∫

Ω
U(u0) θ1 dx ≥ −

∫ ∞

0
θ2

∫

Ω
grad θ1 ·〈ν, F 〉 dx dt

≥ −C1

∫ ∞

0
θ2 dt ,

for some constant C1 > 0 depending on θ1. Thus the function

V1(t) := −C1 t +

∫

Ω
〈νx,t, U〉 θ1 dx
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satisfies the inequality

(2.13) −
∫ ∞

0
V1(t)

dθ2
dt

dt ≤ θ2(0)

∫

Ω
U(u0) θ1 dx .

Using in (2.13) a test-function θ2 ≥ 0 compactly supported in (0,∞), we find

−
∫ ∞

0
V1(t)

dθ2
dt

dt ≤ 0

that is (in the sense of distributions) the function V1(t) is decreasing and, there-

fore, has locally bounded total variation. Since it is uniformly bounded, V1(t)

has a limit as t→ 0+. This proves (a).

To establish the item (b), we fix a time t0 > 0 and consider the sequence of

continuous functions

θε2(t) =











1 for t ∈ [0, t0],

(t0 + ε− t)/ε for t ∈ [t0, t0 + ε],

0 for t ≥ t0 + ε .

Relying on the regularity property (a) above, we see easily that

−
∫ ∞

0
V1(t)

dθε2
dt

dt −→ V1(t0+) .

Since θε2(0) = 1 and t0 is arbitrary, (2.13) yields

V1(t0) = −C1 t0 +

∫

Ω
〈νx,t0 , U〉 θ1 dx ≤

∫

Ω
U(u0) θ1 dx

for all t0 > 0 and, in particular,

(2.14) lim
t→0+

∫

Ω
〈νx,t, U〉 θ1 dx ≤

∫

Ω
U(u0) θ1 dx for all θ1 = θ1(x) ≥ 0 .

Note that the left-hand limit exists, in view of (a).

Consider the set of all linear, convex and finite combinations of the form
∑

j αj θ1,j(x)Uj(u), where αj ≥ 0,
∑

j αj = 1, the functions Uj are smooth and

convex in u and the functions θ1,j(x) ≥ 0 are smooth and compactly support,

with moreover

|Uj(u) θ1,j(x)| ≤ c |u|+ |Ũj(x)|

with c ≥ 0 and Ũj ∈ L
1(Ω). This set is dense (for the uniform topology in u and

the L1 topology in x) in the set of all functions U = U(u, x) that are convex in

u and measurable in x and satisfy

|U(u, x)| ≤ c |u|+ |Ũ(x)|
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for some c > 0 and Ũ ∈ L1(Ω). Therefore by density we can deduce the statement

(b) from (2.14).

The statement (c) follows from (b) by choosing U(u, x) = |u− u0(x)|.

To identify some properties of the Young measure along the boundary, we will

need the following:

Lemma 2.5. Let V : Ω→ Rd be a function in Lq(Ω) (q > 1), satisfying

div V ≤ 0 in the sense of distributions .

Then the function V admits a normal trace along the boundary of Ω, in the

following sense. Consider the change of coordinate x = χ(x̄, y) = x̄ + y N(x̄),

where (x̄, y) ∈ ∂Ω×(0, ε) for some ε > 0 sufficiently small. Call J = J(x̄, y) =

| ∂χ
∂(x̄,y) | is the Jacobian of this transformation. Then for each test-function θ of

the single variable y ∈ (0, ε) given by

A(y) =

∫

∂Ω
V (x̄, y)·N(x̄) θ(x̄)J(x̄, y) dHd−1(x̄)

is a monotone increasing function and so admits a limit, say A0, in [−∞,∞) as

y → 0+ with

(2.15) A0 ≤ C ‖V ‖Lq(Ω) ‖θ‖W 1,q′ (∂Ω) ,

Proof: The change of coordinates x 7→ (x̄, y) is well defined in a neighbor-

hood of ∂Ω, for (x̄, y) ∈ ∂Ω×(0, ε). Given θ ∈ C(∂Ω), consider the associated

function A. For any test function ψ(x) = θ(x̄)ϕ(y) with θ ∈ C∞(∂Ω), and

ϕ ∈ C∞c ((0, ε)), we have

∇x(θ ϕ) = ϕ(y)∇xθ + θ ϕ′(y) ∂xy ,

with ∂xy = −N(x̄). On the other hand from the inequality satisfied by V we

deduce that
∫

Ω
∇x(θ ϕ) · V dx ≥ 0 ,

i.e. using the change of variables x 7→ (x̄, y)

∫ ε

0
ϕ(y)

∫

∂Ω
V (x̄, y) · ∇xθ(x̄) J(x̄, y) dHd−1(x̄) dy

−
∫ ε

0
ϕ′(y)

∫

∂Ω
V (x̄, y) ·N(x̄) θ(x̄) J(x̄, y) dHd−1(x̄) dy ≥ 0 .
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Setting

B(y) :=

∫

∂Ω
V (x̄, y) · ∇xθ(x̄) J(x̄, y) dHd−1(x̄) ,

we obtain

(2.16) A′(y) +B(y) ≥ 0

in the sense of distributions on (0, ε). Observe that both A and B are Lebesgue

measurable functions. Now (2.16) implies that A′ + B is a non-negative locally

bounded Borel measure on (0, ε). Hence A(y) +
∫ y
0 B(y′) dy′ has a pointwise

limit as y → 0+, which belongs to [−∞,∞). By assumption b ∈ Lq(∂Ω) so
∫ y
0 B(y′) dy′ → 0 as y → 0+. This establishes that A(y) admits a limit A0 when

y → 0+.

On the other hand, from (2.16) we deduce that for

A(y)−A0 +

∫ y

0
B(y′) dy′ ≥ 0 ,

so

A0 ≤
1

ε

∫ ε

0
|A(y)| dy +

1

ε

∫ ε

0

∫ y

0
|B(y′)| dy′ dy

≤
C

ε
‖V ‖Lq(Ω) ‖θ‖Lq′ (∂Ω) +

C

ε
‖V ‖Lq(Ω) ‖∇θ‖Lq′ (∂Ω) ,

which gives (2.15). This completes the proof of Lemma 2.5.

Theorem 2.6. Let ν = νx,t an entropy measure-valued solution. There exists

a Young measure νBx,t defined along the boundary, for (x, t) ∈ ∂Ω×R+ such that

for each continuous function F : R → Rd satisfying the growth condition (2.1),

〈νBx,t, F ·N(x)〉 belongs to the distribution space W−1,∞([0, T ),W−1/q,q(∂Ω)) for

all T > 0 (with 1/q + 1/q′ = 1). This Young measure represents the trace of

〈νx,t, F ·N(x)〉 along the boundary, in the following sense (using the notation of

Lemma 2.5), as y → 0,

A(y) :=

∫

R+

∫

∂Ω
〈νx̄,y,t, F ·N(x)〉 θ1(x̄) θ2(t) J(x̄, y) dHd−1(x̄) dt

−→
∫

R+

∫

∂Ω
〈νBx̄,t, F ·N(x̄)〉 θ1(x̄) θ2(t) dHd−1(x̄) dt

for every test-functions θ1 and θ2.

Moreover, the following boundary entropy inequality

(2.17)

〈

νB, N ·
(

F (·)− F (uB)− U
′(uB)

(

f(·)− f(uB)
))

〉

≥ 0

on the boundary ∂Ω× R+
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in the sense of distributions, and

(2.18) b = 〈νB, f ·N〉 on the boundary ∂Ω× R+ .

Proof: Use the weak formulation (2.8) with a function θ(x, t) = θ1(x) θ2(t),

compactly supported in Ω× [0,∞) and having θ1, θ2 ≥ 0:

∫

Ω
grad θ1 ·

∫ ∞

0
〈ν, F 〉 θ2 dx dt + θ2(0)

∫

Ω
U(u0) θ1 dx

−
∫

∂Ω

∫ ∞

0

(

F (uB) ·N + U ′(uB)
(

b− f(uB) ·N
))

θ1θ2 dt dHd−1

≥ −
∫

Ω
θ1

∫ ∞

0
〈ν, U〉

dθ2
dt

dt dx

≥ − C2(θ2)

∫

Ω
θ1

∫ T

0
|〈ν, U〉| dt dx

= C2(θ2)

∫

Ω
∇θ1 ·X dx ,

where

C2(θ2) =

∥

∥

∥

∥

dθ2
dt

∥

∥

∥

∥

L∞(R+)

and X is a solution of (see [7])

divX =

∫ T

0
|〈ν, U〉| dt , X ∈W 1,p

0 (Ω) .

Thus the vector-valued function

V2(x) =

∫ ∞

0
〈νx,t, F 〉 θ2(t) dt − C2(θ2)X

satisfies the inequality

(2.19)

−
∫

Ω
V2 · grad θ1 dx

≤ −
∫

∂Ω
θ1

∫ ∞

0

(

F (uB) ·N + U ′(uB)
(

b− f(uB) ·N
))

θ2 dt dHd−1

+ θ2(0)

∫

Ω
U(u0) θ1 dx .

Using in (2.19) a test-function θ1 ≥ 0 compactly supported in Ω, and θ2 such

that θ2(0) = 0 we find

−
∫

Ω
V2 · grad θ1 dx ≤ 0 ,
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that is div V2 ≤ 0 in the sense of distributions, with V2 ∈ Lq(Ω). Applying

Lemma 2.5 we see that the normal trace V2 exists along the boundary. We thus

define

G(F ·N ; θ1, θ2) := lim
y→0+

∫

∂Ω
V2(x̄, y) ·N(x̄) θ1(x̄) J(x̄, y) dHd−1(x̄) .

We now return to the general inequality (2.19), and we let the test-function

θ1 tend to a zero in the interior of Ω. We find for all θ2 ≥ 0 and θ1 : ∂Ω→ R+

−G(F ·N ; θ1, θ2)(2.19)

≤ −
∫

R+

∫

∂Ω

(

F (uB)·N + U ′(uB)
(

b− f(uB)·N
))

θ1(x̄) θ2(t) dt dHd−1(x̄) .

In view of (2.15) and with the regularity available on b and uB, we see that the

mapping G satisfies the following estimate:

|G(F ·N ; θ1, θ2)| ≤ C ‖θ1 θ2‖W 1,1([0,T ),W 1,q′ (∂Ω)) .

This gives us the desired regularity of G.

Finally, rewritting G via a Young measure νB we obtain

G(F ·N ; θ1, θ2) =

∫

R+

∫

∂Ω
〈νBx̄,t, F ·N(x̄)〉 θ1(x̄) θ2(t) dHd−1(x̄) dt

Using similar estimates as above but with U(u) = ±u we actually have the

equality

∫

R+

∫

∂Ω
〈νBx̄,t, f〉 θ1(x̄) θ2(t) dHd−1(x̄) dt

=

∫

R+

∫

∂Ω

(

f(uB) ·N + b− f(uB) ·N
)

θ1(x̄) θ2(t) dHd−1(x̄) dt ,

so that (2.18) holds. This completes the proof of Theorem 2.6.

3 – Existence, uniqueness, and compactness

Continuing the investigation of the properties of the measure-valued solu-

tions, we now arrive at a general theory of existence and uniqueness for the

problem (1.1)–(1.3), based on extending to measure-valued solutions the stan-

dard Kruzkov’s contraction property [9].
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Theorem 3.1. Let ν1 and ν2 be two entropy measure-valued solutions.

Then, in the sense of distributions we have

(3.1) ∂t〈ν1 ⊗ ν2, Ũ〉+ div 〈ν1 ⊗ ν2, F̃ 〉 ≤ 0 ,

where (Ũ , F̃ ) is the Kruzkov parametrized entropy pair (see (2.2)), and the tensor

product of measures is defined by

〈ν1 ⊗ ν2, Ũ〉 :=

∫ ∫

Ũ(u1, u2) dν1(u1) dν2(u2) .

Proof: Formally we have

∂t〈ν1 ⊗ ν2, Ũ〉+ div 〈ν1 ⊗ ν2, F̃ 〉

=
〈

ν1
(

∂t〈ν2, Ũ〉+ div 〈ν2, F̃ 〉
)〉

+
〈

ν2
(

∂t〈ν1, Ũ〉+ div 〈ν1, F̃ 〉
)〉

≤ 0 ,

where we used (2.9) and the positivity of the measures ν1 and ν2. The proof can

be made rigorous by regularization in the (x, t)-variable.

Theorem 3.2. Let ν1 and ν2 be two entropy measure-valued solutions

satisfying the same initial datum u0 ∈ L
p(Ω). Then there exists a function u ∈

L∞(R+, L
p(Ω)) such that

(3.4) ν1,(x,t) = ν2,(x,t) = δu(x,t) for almost every (x, t) .

In particular, the problem (1.1)–(1.3) has exactly one entropy solution in

L∞(R+, L
p(Ω)), which moreover satisfies its initial data in the sense

(3.5) lim sup
t→0+

∫

Ω
|u(x, t)− u0(x)| dx = 0 .

Furthermore, given two such solutions u1 and u2 associated with the boundary

data uB, we have for all t ≥ s ≥ 0

(3.6)

∫

Ω
|u1(x, t)− u2(x, t)| dx ≤

∫

Ω
|u1(x, s)− u2(x, s)| dx .

The existence part in Theorem 3.2 is based on the assumption that a family

of approximate solutions satisfying (2.3)–(2.5) does exist, in order to generate at

least one entropy measure-valued solution. Recall that Section 4 below will indeed

provide such approximate solutions. In the applications, in order to establish the
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strong convergence of a sequence of approximate solutions, we will appeal to the

following immediate consequence of Theorem 3.2 and Theorem 2.2.

Corollary 3.3. Let uh be a sequence of approximate solutions satisfying

the conditions (2.3)–(2.5). Then there exists a function u ∈ L∞(R+, L
p(Ω)) such

that

uh → u strongly ,

and u is the unique entropy solution to the problem (1.1)–(1.3). The entropy

solution u ∈ L∞(R+, L
p(Ω)) of (1.1)–(1.3) satisfies the additional regularity:

(3.7) t 7→
∫

Ω
U(u) θ dx has locally bounded variation

for all tame entropy U and all smooth θ ≥ 0 having compact support in Ω×R+.

To prove Theorem 3.2, we shall need:

Lemma 3.4. Let uB be given in R, together with some unit vector N ∈ Rd.

Let ν1 and ν2 be probability measures on R (acting on all admissible functions
and) satisfying the boundary entropy inequalities

(3.8a)

〈

ν1, N ·

(

F (·)− F (uB)− U
′(uB)

(

f(·)− f(uB)
)

)〉

≥ 0

and

(3.8b)

〈

ν2, N ·

(

F (·)− F (uB)− U
′(uB)

(

f(·)− f(uB)
)

)〉

≥ 0

for all convex and tame entropy pairs (U,F ). Then we have

(3.9) 〈ν1 ⊗ ν2, N ·F̃ 〉 ≤ 0 .

Proof: Using Kruzkov’s entropies, the conditions (3.8) and (3.9) are found

to be equivalent to: for each v2, v1 ∈ R

(3.10a)

〈

ν1,
(

sgn(u1 − v2)− sgn(uB − v2)
) (

f(u1)− f(v2)
)

·N

〉

≥ 0 ,

(3.10b)

〈

ν2,
(

sgn(u2 − v1)− sgn(uB − v1)
) (

f(u2)− f(v1)
)

·N

〉

≥ 0 .

Taking succesively v2 < uB, then v2 = uB, and finally v2 > uB, we obtain

(3.11i)

∫

u1<uB

N · F̃ (u1, u2) dν1(u1) ≥ 0 , v2 < uB ,
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(3.11ii)

∫

u1∈R
N · F̃ (u1, uB) dν1(u1) ≥ 0 ,

and

(3.11iii)

∫

u1>uB

N · F̃ (u1, u2) dν1(u1) ≥ 0 , v2 > uB .

Similarly we get

(3.12i)

∫

u2<uB

N · F̃ (u1, u2) dν2(u2) ≥ 0 , v1 < uB ,

(3.12ii)

∫

u2∈R
N · F̃ (u2, uB) dν2(u2) ≥ 0 ,

and

(3.12iii)

∫

u2>uB

N · F̃ (u1, u2) dν2(u2) ≥ 0 , v1 > uB .

These conditions (3.11)–(3.12) imply immediately that

(3.13)

∫ ∫

Q1∪Q3
N · F̃ (u2, uB) dν1(u1) dν2(u2) ≥ 0 ,

where Q1 := {u1 ≥ uB, u2 ≥ uB} and Q3 := {u1 ≤ uB, u2 ≤ uB}.

To estimate the sign in the region Q4 := {u1 > uB, u2 < uB}, we use (3.11iii)

which gives us
∫

u1>v2
N · f(u1) dν1(u1) ≥

∫

u1>v2
N · f(v2) dν1(u1) , v2 > uB .

We use also (3.12i) which gives
∫

u2<v1
N · f(u2) dν2(u2) ≤

∫

u2<v1
N · f(v1) dν2(u2) , v1 < uB .

Combining these two inequalities we arrive at
∫

u2<uB

∫

u1>v2
N ·f(u1) dν1(u1) dν2(u2) ≥

∫

u2<uB

∫

u1>v2
N ·f(v2) dν1(u1) dν2(u2)

−→
∫

u2<uB

∫

u1>uB

N ·f(uB) dν1(u1) dν2(u2) ,

as v2 → uB. We also have
∫

u1>uB

∫

u2<v1
N ·f(u2) dν1(u1) dν2(u2) ≥

∫

u1>uB

∫

u2<v1
N ·f(v1) dν1(u1) dν2(u2)

−→
∫

u1>uB

∫

u2<uB

N ·f(uB) dν1(u1) dν2(u2) ,
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as v1→ uB. This implies exactly

(3.14)

∫ ∫

Q4
N · F̃ (u2, uB) dν1(u1) dν2(u2) ≥ 0 .

A similar argument applies on Q2 := {u1 < uB, u2 > uB}

(3.15)

∫ ∫

Q2
N · F̃ (u2, uB) dν1(u1) dν2(u2) ≥ 0 .

This completes the proof of Lemma 3.4.

Proof of Theorem 3.2: Consider two solutions ν1 and ν2 associated with

a pair of data u01, uB and u02, uB, respectively. With the Green formula and

Theorem 3.1, together with the existence of the normal trace (Theorem 2.6), we

obtain immediately for test-functions θ1, θ2 ≥ 0

−
∫

R+

∫

Ω
〈ν1 ⊗ ν2, Ũ〉 θ1(x) θ

′
2(t) dx dt

−
∫

R+

∫

Ω
〈ν1 ⊗ ν2, N · F̃ 〉 · ∇θ1(x) θ

′
2(t) dx dt ≤ 0 ,

and so

(3.17)

−
∫

R+

∫

Ω
〈ν1 ⊗ ν2, Ũ〉 θ1(x) θ

′
2(t) dx dt

+

∫

R+

∫

∂Ω
〈νB1 ⊗ ν

B
2 , N · F̃ 〉 θ1(x) θ

′
2(t) dHd−1(x) dt ≤ 0 .

In view of Lemma 3.4, we have

−B(t) ≤ 0 .

therefore we arrive at

(3.18)
dA

dt
(t) +B(t) ≤ 0 ,

where

A(t) :=

∫

Ω
〈ν1 ⊗ ν2, Ũ〉 θ1(x) dx .

We now turn to evaluate of A. Since Ũ(λ1, λ2) = |λ2 − λ1|, the term A(t) is

regarded as the L1 norm between the two solutions. On the other hand, from

(3.17)–(3.18) we deduce

(3.19) A(t)−A(s) ≤ 0 , 0 < s ≤ t .
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First of all, suppose that ν1 and ν2 assume the same boundary and initial

data uB and u0. Since the Young measures satisfy the initial condition in the

strong sense (2.12), we obtain for all t > 0

A(t) ≤
∫

Ω

〈

ν1 ⊗ ν2, |ū1 − u0|+ |ū2 − u0|
〉

dx

≤
∫

Ω
〈ν1, |ū1 − u0|〉 dx +

∫

Ω
〈ν2, |ū2 − u0|〉 dx ,

thus

lim sup
t→0+

A(t) = 0 .

Therefore letting s→ 0 in (3.19),

A(t) ≡ 0 , t ≥ 0

and thus
∫

Ω
〈ν1 ⊗ ν2, Ũ〉 dx = 0 .

Thus, for almost every (x, t), the measures ν1 = ν1,(x,t) and ν2 = ν2,(x,t) satisfy

(3.20)

∫ ∫

|ū2 − ū1| dν1(ū1) dν2(ū2) = 〈ν1 ⊗ ν2, Ũ〉 = 0 .

Fix (x, t) such that (3.20) holds. We claim that there exists some w ∈ R such

that

ν1 = ν2 = δw .

Otherwise there would exist w1 ∈ supp ν1 and w2 ∈ supp ν2 with w1 6= w2. By

definition of the support of a measure, there exist continuous functions ϕj ≥ 0

such that suppϕj ⊂ B(wj , ε) ⊂ Ω (the ball with center wj and radius ε) and

〈νj , ϕj〉 6=0. One can always assume that ε is so small that B(w1, ε)∩B(w2, ε)=∅.

To conclude, we observe that

0 <

∫ ∫

ϕ1ϕ2 dν1 ⊗ dν2 ≤

∥

∥

∥

∥

ϕ1 ϕ2

ū2 − ū1

∥

∥

∥

∥

∞

∫ ∫

|ū2 − ū1| dν1(ū1) dν2(ū2) = 0 ,

which is a contradiction. The proof of Theorem 3.2 is completed.

4 – Zero diffusion limit

The theory developed in Sections 2 and 3 is now applied to analyze a singular

limit problem. We treat a class of multi-dimensional conservation laws containing
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vanishing diffusion. Precisely, we consider the problem (1.1)–(1.3), where the

flux-function satisfies a growth condition like (2.1) with r = 1. Given a diffusion

parameter ε > 0 and a (uniformly in x) positive-definite matrix (bij(x))1≤i,j≤d
depending smoothly on x, we study the equation

(4.1) uεt + div f(uε) = ε
d
∑

i,j=1

∂i(bij ∂ju
ε) ,

together with

u(x, 0) = uε0(x) , x ∈ Ω ,(4.2)

u(x, t) = uεB(x, t) , x ∈ ∂Ω, t > 0 .(4.3)

Here uε0 and uεB are sufficiently smooth initial and boundary data. Standard

existence results show that for all ε > 0, the problem (4.1)–(4.3) admits a unique

smooth solution uε defined globally in time. The aim of this section is to prove

the convergence of uε toward the entropy solution of (1.1)–(1.3).

Theorem 4.1. Suppose that the flux f satisfies the growth condition

(4.4) f ′(u) = O(1)

and consider an initial datum u0 in L
2(Ω) and a sequence of smooth data uε0

satisfying the uniform bound

(4.5) ‖uε0‖L2(Ω) ≤ C

and a boundary data uB such that

(4.6) uB ∈ L∞loc

(

[0,∞), H1/2(∂Ω)
)

and ∂tuB ∈ L2
loc

(

[0,∞), L2(∂Ω)
)

.

Then for each T > 0 the solutions uε of (4.1)–(4.3) satisfy for

(4.7) ‖uε(t)‖L2(Ω) + ε1/2 ‖∇uε‖
L2((0,T ),L2(Ω)) ≤ C(T ) , t ∈ (0, T ) ,

for some constant C(T ) > 0, and converge strongly to the unique entropy solution

u ∈ L∞loc([0,∞), L2(Ω)) of the hyperbolic problem (1.1)–(1.3).

Proof: Let ũB : Ω × [0,∞) 7→ R be an extension of the function uB to the

whole domain. In view of (4.6) we can assume that ũB ∈ L
∞
loc([0,∞), H1(Ω)) and

∂tũB ∈ L
2
loc([0,∞), H1/2(Ω)). Define

F
(

uε(x, t), ũB(x, t)
)

=

∫ uε(x,t)

ũB(x,t)

(

v − ũB(x, t)
)

f ′(v) dv .
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We have

div
(

F
(

uε(x, t), ũB(x, t)
))

= (uε − ũB) f
′(uε)∇uε −

∫ uε

ũB

∇ũBf
′(v) dv

= (uε − ũB) f
′(uε)∇uε + ∇ũB

(

f(ũB)− f(u
ε)
)

.

Using this and (4.1) we obtain

d

dt

∫

Ω

1

2
(uε− ũB)

2 dx

=

∫

Ω
(uε− ũB)

(

− div f(uε) + ε
d
∑

i,j=1

∂i(bij ∂ju
ε)

)

dx −
∫

Ω
(uε− ũB) ∂tũB dx

=

∫

Ω

(

∇ũB ·
(

f(ũB)− f(u
ε)
)

− divF (uε, ũB)

)

dx

+ ε
d
∑

i,j=1

∫

Ω
(uε − ũB) ∂i

(

bij ∂j(u
ε − ũB)

)

dx

+ ε
d
∑

i,j=1

∫

Ω
(uε − ũB) ∂i

(

bij ∂j(ũB)
)

dx −
∫

Ω
(uε − ũB) ∂tũB dx .

By integration by parts using that F (ũB, ũB) = 0 we find

d

dt

∫

Ω

1

2
(uε − ũB)

2 dx

=

∫

Ω
∇ũB ·

(

f(ũB)− f(u
ε)
)

dx − ε
d
∑

i,j=1

∫

Ω
∂i(u

ε− ũB) bij ∂j(u
ε− ũB) dx

+

∫

Ω
(uε− ũB)

(

−∂tũB + ε
d
∑

i,j=1

∂i(bij ∂j ũB)

)

dx .

Since
∑d

i,j=1 αi bij αj ≥ c
∑d

i,j=1 α
2
i for some c > 0, and since f is Lipschitz

continuous by (4.4), we find with Cauchy–Schwarz inequality

d

dt

1

2
‖uε(t)− ũB(t)‖

2
L2(Ω)

≤ ‖∇ũB(t)‖L2(Ω) Lip(f) ‖u
ε(t)− ũB(t)‖L2(Ω)

− ε c ‖∇uε(t)− ũB(t)‖
2
L2(Ω) + C(ũB) ‖u

ε(t)− ũB(t)‖L2(Ω) ,

where C(ũB) is bounded by the conditions (4.6).

We find that for some constant C > 0 depending on uB and f

d

dt
‖uε(t)− ũB(t)‖

2
L2(Ω) + ε c ‖∇uε(t)−∇ũB(t)‖

2
L2(Ω) ≤ C + ‖uε(t)− ũB(t)‖

2
L2(Ω)
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Then, by Gronwall inequality, for any T > 0, there exists C(T ) > 0 such that for

all t ∈ [0, T ],

‖uε(t)− ũB(t)‖
2
L2(Ω) + ε

∫ T

0
‖∇u(t)−∇ũB(t)‖

2
L2(Ω) dt

≤ C(T )
(

1 + ‖u0 − ũB(0)‖
2
L2(Ω)

)

≤ C ′(T ) .

In view of (4.6) we thus have proved (4.7).

To apply the framework of Sections 3 and 4, we need to check several assump-

tions. First of all (for a subsequence at least) we claim that

∑

i,j=1,...,d

ε bij ∂ju
ε
|∂ΩNi converges in the sense of distributions

to some q ∈ H−1
(

(0, T ), H−1/2(∂Ω)
)

.

Namely, multiplying the equation (4.1) by a test function ϕ = ϕ(x, t) and

integrating on Ω× (0, T ), we obtain

(4.8)
d
∑

i,j=1

∫ T

0

∫

∂Ω
ε bij ϕ∂ju

εNi dHd−1 dt

=

∫

Ω
uε(x, T )ϕ(x, T ) dx −

∫

Ω
uε(x, 0)ϕ(x, 0) dx

−
∫ T

0

∫

Ω

(

uε ∂tϕ+ f(uε)·∇ϕ
)

dx dt +

∫ T

0

∫

∂Ω
ϕf(uB) ·N dHd−1 dt

+ ε
d
∑

i,j=1

∫ T

0

∫

∂Ω
bij ∂iϕ∂ju

ε dx dt .

Using the bounds (4.7) we estimate the boundary flux in the following way:

(4.9)

∣

∣

∣

∣

∣

d
∑

i,j=1

∫ T

0

∫

∂Ω
ε bij ϕ∂ju

εNi dHd−1 dt

∣

∣

∣

∣

∣

≤ C ‖ϕ(T )‖L2(Ω) + C ‖ϕ(0)‖L2(Ω)

+ C ‖∂tϕ‖L1((0,T ),L2(Ω)) + C ‖∇ϕ‖
L1((0,T ),L2(Ω))

+ C ‖ϕ‖
L1((0,T ),L1(∂Ω)) + ε1/2 C ‖∇ϕ‖

L2((0,T ),L2(Ω)) .

It follows that
∑d

i,j=1 ε bij ∂ju
ε
∂Ω
Nj is uniformly bounded in some distribution

space and, for a subsequence at least, admits a limit, say q, in the sense of
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distributions. Furthermore this limit satisfies the inequality

(4.10)

∣

∣

∣

∣

∣

∫ T

0

∫

∂Ω
q ϕ dHd−1 dt

∣

∣

∣

∣

∣

≤ C ‖ϕ(T )‖L2(Ω) + C ‖ϕ(0)‖L2(Ω) + C ‖∂tϕ‖L1((0,T ),L2(Ω))

+ C ‖∇ϕ‖
L1((0,T ),L2(Ω)) + C ‖ϕ‖

L1((0,T ),L1(∂Ω)) .

Restricting attention to test-functions compactly supported in time in [0, T ) we

have ϕ(T ) ≡ 0 and

‖ϕ(0)‖L2(Ω) ≤ ‖∂tϕ‖L1((0,T ),L2(Ω)) .

Therefore we arrive at

(4.11)

∣

∣

∣

∣

∣

∫ T

0

∫

∂Ω
q ϕ dHd−1 dt

∣

∣

∣

∣

∣

≤ C ‖∂tϕ‖L1((0,T ),L2(Ω)) + C ‖∇ϕ‖
L1((0,T ),L2(Ω)) + C ‖ϕ‖

L1((0,T ),L1(∂Ω)) .

On the other hand, as we are interested in the trace along the boundary only, we

can always pick up any ϕ on ∂Ω and extend it to the whole of Ω so that

‖∂tϕ‖L1((0,T ),L2(Ω)) + ‖∇ϕ‖
L1((0,T ),L2(Ω))

≤ C ‖∂tϕ‖L1((0,T ),H−1/2(∂Ω)) + C ‖ϕ‖
L1((0,T ),H1/2(∂Ω)) .

Finally we obtain

(4.12)

∣

∣

∣

∣

∣

∫ T

0

∫

∂Ω
q ϕ dHd−1 dt

∣

∣

∣

∣

∣

≤ C ‖∂tϕ‖L1((0,T ),H−1/2(∂Ω)) + C ‖ϕ‖
L1((0,T ),H1/2(∂Ω)) + C ‖ϕ‖

L1((0,T ),L1(∂Ω))

≤ C ‖ϕ‖
W 1,1((0,T ),H1/2(∂Ω)) .

This proves that the limiting trace q satisfies at least

(4.13) q ∈ W−1,∞
(

(0, T ), H−1/2(∂Ω)
)

.

It remains to check the conditions (2.4) of Section 2.

Multiplying the equation (4.1) by U ′(uε) θ with θ = θ(x, t) ≥ 0 in C1c (Ω ×

[0,∞)) and integrating over Ω× [0,∞), we obtain

(4.14)

∫ ∫

Ω×R+

(

U(uε) ∂tθ + F (uε) · grad θ
)

dx dt +

∫

Ω
U(uε0(0)) θ(x, 0) dx

−
∫ ∫

∂Ω×R+
Bε
U (x, t) θ(x, t) dHd−1(x) dt =

∫ ∫

Ω×R+
R̃ε
U dx dt ,
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where (U,F ) is an arbitrary convex and tame entropy-pair, and

Bε
U = F (uεB) ·N + U ′(uεB)

(

bε − f(uεB) ·N
)

,

bε = f(uεB) ·N −
d
∑

i,j=1

ε bij ∂ju
εNi ,

and

R̃ε
U =

d
∑

i,j=1

bij ε ∂i(U
′(uε) θ) ∂ju

ε .

Using (4.7) and U ′′ ≥ 0 we obtain

R̃ε
U = R̂ε

U +Rε
U

where R̂ε
U ≥ 0 and

Rε
U :=

d
∑

i,j=1

bij εU
′(uε) ∂iθ ∂ju

ε −→ 0 .

On the other hand b admits a limit in the sense of distributions

bε −→ f(uB)− q .

Therefore (4.14) leads us to the conditions (2.4). The framework developed in

Sections 2 and 3 applies and we conclude that the approximate solutions con-

structed by (4.1)–(4.3) converge strongly to the unique entropy solution.
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