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TOPOLOGICAL PROPERTIES OF SOLUTION SETS
FOR FUNCTIONAL DIFFERENTIAL INCLUSIONS
GOVERNED BY A FAMILY OF OPERATORS

A.G. IBRAHIM

Abstract: Let r > 0 be a finite delay and C([—r,t], E) be the Banach space of
continuous functions from [—r,0] to the Banach space E. In this paper we prove an
existence theorem for functional differential inclusions of the form: u(t) € A(t)u(t) +
F(t,7(t)u) a.e. on [0,T] and v = ¢ on [—r,0], where {A(t): t € [0,7T]} is a family of
linear operators generating a continuous evolution operator K (t, s), F' is a multifunction
such that F'(¢,-) is weakly sequentially hemi-continuous and 7(¢) u(s) = u(t + s), for all
t € [0,7] and all s € [—r,0]. Also, we are concerned with the topological properties of

solution sets.

1 — Introduction

The existence of solutions for functional differential inclusions (FDI) and the
topological properties of solution sets are studied extensively (see, for example,
[1], [2], [9], [10], [11], [12], [13]). However, not much study has been done for func-
tional differential inclusions governed by operators. Mainly, recently, Castaing—
Marques [3] considered a functional differential inclusions governed by sweeping
process while Castaing—Faik—Salvadori [5] considered a functional differential in-
clusion governed by m-accretive operators which are independent of the time.
That is, they proved the existence of integral solutions for the following FDI:

{u(t) € A(u(t)) + F(t,7(t)u), a.e.on [0,7T],
u=1 on [-r,0],
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where r > 0 is a finite delay, A is m-accretive operator on a separable Banach
space E, F' is a multifunction, 1 is a continuous function from [—r,0] to E and
for each t€[0,7] 7(t)u is a continuous on [—r,0] such that for each s € [—r,0],
(T(t)uw)(s) = u(t + s).

The purpose of this paper is to obtain conditions on the data that guaran-
teed the existence of integral solutions and to characterize topological properties
of solution sets for a functional differential inclusion (differential inclusion with
delay) of the form:

P u(t) € A(u(t)) + F(t,7(t)u), a.e. on [0,T],

(P) {u:w on [—r,0],
where {A(t): t € [0,T]} is a family of densely defined, closed, linear operators
on a separable Banach space E. Also, we obtain a continuous dependence result
that examines the change in the solution set as we vary the initial function.

Our results generalize many previous theorems. In the important case A(t) =0,
Vt € I, we have that K (t,s) = Id and an integral solution, in fact, a strong solu-
tion. Then, as special case, we obtain a generalization of the results of Deimling
[7], Kisielewicz [14] and Papageorgiou [16], [17]. In addition, if A(t) # 0 then
many results of this kind are generalized too. For example, Cichon [6], Frankwska
[8] and Papageorgiou [18] considered the problem (P) without delay. Moreover,
Castaing, Faik and Salvadori [5] investigated the problem (P) in the case when

A is an m-accretive multivalued operator and dependent of t. Finally Castaing

and Ibrahim [2] considered the problem (P) when A(t) =0, Vt € I.

2 — Definitions, notations and preliminaries

We will use the following definitions and notations.

— F is a separable Banach space, E’ the topological dual of E and E,, is the
vector space E equipped with the o(FE, E’) topology.

— ¢(FE) (resp. ck(E)) is the family of nonempty convex closed (resp. nonempty
convex compact) subsets of E.

— If Z is a subset of E, 6*(-, Z) is the support function of Z and |Z| = {||#||:
z € Z}.

- r>0,7T>0and [ =][0,T].

— LY(I,E) is the Banach space of Lebesque-Bochner integrable functions

f: I — E endowed with the usual norm and £(F) is the Banach space of
all linear continuous operators on E.
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— C(I,FE) is the Banach space of continuous functions f: I — E with the
norm of uniform convergence, Cy = C([—r,0], E), ¢ € Cp.

— For any ¢t >0 we denote by 7(t) the mapping from C([-r,T],E) to
Co = C([-r,0], E) defined by 7(t)u(s) = u(s +1t), Vs € [-r,0], Vu €
C([_T7T]aE)'

— A multifunction G : E — 2F — {()} with closed values is upper semicon-
tinuous (u.s.c) if and only if G7(Z) = {x € E: G(x) N Z # 0} is closed
whenever Z C FE is closed. Taking on F its weak topology, o(E, E'), we
obtain in a similar way a notion of w — w upper semicontinuous (w — w
u.s.c) that is, upper semicontinuous from E,, to E,. If the set G7(Z) is
weakly sequentially closed whenever Z is weakly closed, we shall say that
G is w — w sequentially u.s.c.

— A multifunction G: E — 2F — {()} with closed values is called upper hemi-
continuous (u.h.c) [weakly upper hemicontinuous, w-u.h.c| if and only if
for each z* € E’ and for each \ € R the set {z € E: §*(2*, G(z)) < A} is
open in E (in E).

— A multifunction G: E — 2F — {()} with closed values is called weakly se-
quentially upper hemicontinuous (w-seq uhc) if and only if for each 2* € E’,
0 (z*,G(-)): E — R is sequentially upper semicontinuous from FE,, to R,
see ([6], [14]).
If G: I — 25— {0} is measurable and integrably bounded with weakly com-
pact values, then, the set of all integrable selections of G, Sé, is weakly
compact in L'(I, F), see [4].

— u is either the Kuratowski or the Hausdorff measure of noncompactness on
E.

Let {A(t): t € I=[0,T]} be a family of densely defined, closed, linear opera-
tors on E. Suppose that for every s € I and every x € E the initial value problem
problem

) {u(t) € A(tu(t), tesT]

u(s) ==

has a unique strong solution. Then an operator K(-,-) can be defined from
A={(t,s): 0<s<t<T}toE by K(t,s)r = u(t) where u is the unique solu-
tion of (x). The operator K (-,-) is called a fundamental solution of () or we say
the family {A(t): ¢t € I} is a generator of a fundamental solutions K(-,-) (see
[19]). A continuous function u: [—r,T] — E is called an integral solution of the
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problem (P) if u =1 on [—r,0] and for every t € I,

t
u(t) = K(t.0)0(0) + [ K(t5) f(s) ds

where f € L'(I, E) and f(s) € F(s,7(s)u) a.e..
The following lemmas will be crucial in the proof of our results.
Lemma 2.1 (Lemma 1, [6]). Let Y be a Banach space. Assume:
1) G: E — ¢(Y) be w-seq uhc;
2) |G(z)|| < a(t) a.e. on I, for every x € E, where a € L'(I,R);

)

3) z, € C(I,E), x,(t) — xo(t) (weakly) a.e. on I;
)
)

~~ o~ o~~~

4) yn — yo (weakly), yn,yo € L'(I, E);
(5) yn(t) € G(zn(t)) a.e. on I.
Thus yo(t) € G(xo(t)) a.e. on I.
Lemma 2.2 (Theorem 1, [6]). Let {A(t): t € I} be a family of densely de-

fined, closed, linear operators on E and is a generators of a fundamental solution
K(,): A={(ts): 0<s<t<T}— L(E) such that

(A1) K(s,s)=1Id, se€l and K(r,s)K(s,t)=K(rt), r<s<t;
(Ag) K:A — L(E) is strongly continuous;

(Az) K@ s)ll <M, V(ts)eA;

(Ay) K(-s): I — L(E) is uniformly continuous.

Let S: IXE — ¢(F) such that

(S1) Foreach xz € E, S(-,z) has a measurable selection;

(S2) Foreachtel, S(t,-) is w-seq. u.h.c.;

(S3) There exists a € L'(I,R) such that for each z € E,

IS¢ < at) (1+]2l])  ae

(S4) For each bounded B C E

%inau(S(It,g X B)) < w(t,u(B)) ae on I
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where I 5 = [t—0,t] N I and w is a Kamke function. Then for each
xo € FE there exists at least an integral solution for the problem:

{ u(t) € A(t)u(t) + S(t,u(t)), a.e on I
u(0) =z .

Moreover, for each x¢ € E the set S(xz¢) of all integral solutions is com-

pact.

3 — Existence theorem for (P)

In this section we give an existence theorem for (P).

Theorem 3.1. Let {A(t): t € I} be a family of densely defined, closed, linear
operators on E and is a generator of a fundamental solution K(-,-) satisfying
conditions (A1)—(A4). Let F: I x C([-r,0],E) — ¢(E) be a multifunction such
that

(F1) For each g € C([-r,0], E), F(-,g) has a measurable selection;
(F2) Foreachte I, F(t,-) is w-seq. uhc;
(F3) There exists a € L'(I,R) such that for every g € C([-r,0], E),

IF(t 9 < at) (1+1lgO)])  ae

(F4) There exists v € L*(I,RT) such that for each bounded subset Z of
C([-r,0], ),

p(F(tx Z)) < () u(Z(0)), ae.

Then for each i» € C([—r,0], E) the problem (P) has an integral solu-

tion.

Proof: We construct, by induction, a sequence (u,) in C([—r,T], E) such
that it has a subsequence converges uniformly to a function v € C([-r,T], E)
which is an integral solution of (P). For notional convenience we assume without

any loss of generality that T = 1.

Step 1. Let n > 1. Set w, = ¥ on [—r,0]. Consider the partition of I
by the points ¢, = m =0,1,2,...,n. We define a step function 60,,: I — I
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by 6,(0) =0, 0,(t) =ty for t € (t},,t7,1]. Now we construct two functions

up € C([-r,T)], E) and g, € L'(I, E) such that for all ¢ € [0, 7],

1 ualt) = K(0,0)0(0) + [ K(t,9) gus) ds
(2) gn(t) € F(t; 7(0n(D) fapuo—1 (s un(t))  ae.on T,
where for every m = {0,1,2,...,n — 1}, fp : [-7,t] 1] x E — E, defined by
U () if te[—rth]
fm(t,z) =
{ un(ty,) +n(t —th) (x —un()) if £ € [th, th ] -

Let fo: [-r,t}]xE — E be defined by

W(t) if t € [—r,0]
fo(t,:L‘) = { .
Y(0) +nt(zx—1(0) if t €[0,t7]

and Fy: [0,t}]xE — ¢(F) be defined by

Fo(t,z) = F(t 7(81) fo( 7)) -

We want to show that Fj satisfies conditions (S1)—(S4) of Lemma 2.2. Clearly
Condition (57) is verified. Next, to show that F{ satisfies condition (S2) is suffices
to prove that if x5 — x weakly in E then 7(t7) fo(-, xx) — 7(t}) fo(-, x) weakly
in C([-7,0], E). So, let v be a bounded regular measure from [—r,0] to E’ and
is of bounded variation. We have

0

Jim [ (r) fol ) = () fol2) ) (1) dr(e) =
= i [ (Rt 880 — folt + 15,2)) (1)
= Jim [ fo(s, an — fols, @) da(s)

But, for every z* € E’ and every s € [0, ¢}],

lim (a:*, fo(s,z) — fo(s,:c)> = lim ns(z*,zpy—x) = lim (z*,2p—x) = 0.
k—o0 k—o0 k—o0
Thus,
0

lim [ (7(80) folcs k) = 7() fol,2)) (1) () = 0.

k—oo J_p
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This show that Fy satisfies condition (S3) of Lemma 2.2. Furthermore, for every
(t,x) € [0,t}]xE,

[1Fo(t, )| = [[F(t, 7(¢7) fo (-, 2))
a(t) (1+ lfo(t7, 2)]])
= a(t) (1+ =) -

Then Fy satisfies condition (S3) of Lemma 2.2. Now let B be a bounded subset
of E. Set Z = {7(t}) fo(-,z): = € B}. We have,

u(Fo(t, B)) = p(F(t, 2))
< 5(t) n2(0)
— 3(t) u(B) .

Applying Lemma 2.2 we get a continuous function vg: [0,¢}] — E such that

IN

vol(t) = K(t,0) (0) + /0 "K(t, ) o0(s) ds

oo(s) € F(s, 7(t}) fo(-,v0(s))) a.e.on [0,t}]. Now, we define u,, = vy and g, = o
on [0, ¢7]. Then, for all ¢ € [0, ¢7]

unlt) = K(1,0)0(0) + [ K(t5) guls) ds

gn(8) € F(8,7(0n(5)) fro,(s)—1(-; un(s))) a.e. on [0,¢7]. Thus u, and g, are well
defined on [0, ¢7] and satisfy the properties (1) and (2).

Suppose u, and g, are well defined on [0, ¢} ] such that the properties (1) and
(2) are satisfied on [0,¢7]. Let

fi: [=rit] = B

U (t it t e [—rt},
fm(t,x)—{ (t) €l ]

up(th) +n(t—tn) (@ —uy,) if teth, th . ] .

As above we can show that if x, — x weakly in E then 7(t] 1) fm(, 2n) —
T(tm 1) fm (-, 2) weakly in C([—r,0], E]). Thus the multifunction

Fo: [t th IXE — ¢(E) ,

m> “m+1

defined by
F(t,@) = F(t, 7(t501) (7))
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satisfies conditions (S1)—(S4) of Lemma 2.2. Then, by Lemma 2.2, there exists a
continuous function vy, : [t} 5 1] — E such that

t
vn(t) = K(t3) un(th) + [ K(t9)o(s) ds. 1€ [ thn]

where oy, € LMN([th,, th, 1], B), om(s) € Fiu(s, vm(s)) =F (s, 7(th,41) fim (s, vm(s)))
a.e.. Set uy,(t) =wvy,(t) for all te [ty 17 1] and g,(t) =0, (t) for all te (¢, 1]
Then, for every t € [, 7 1]

nlt) = Kbt uati) + [ K(t,5) ) ds

9n(5) € F (s, 7(0n(5)) fapu(o)-1(un(9)))  ac.on [th,t01] -

This proves that g, satisfies relation (2) on [t} ¢ 1] We claim that u,, verifies
relation (1) on [t} ¢y 1], So, let t € [t ¢y, 1]. We have

un(tf) = K(2,0)6(0) + [ K (12, 5) gn(s) ds

0
Then
un(t) = K(t, fl)f( g +1/¢n (6,07) K (£, 5) gn(s) ds
+ K@Q%Uds
= K(,0)4(0) + Oﬂ%l((t,s)gn(s) ds + t;fz(t,s)gn(s) ds

:K@mwm+4}@@%@w&

This proves that u, and g, satisfy relations (1) and (2).

Step 2. We claim that:

(a) There exists a natural number N such that for all n > 1

() Nun(@®)|| <N foralltel and |gn(t)] <m(t)=a(t)(1+N) ae.

(b) (up) — w uniformly in C([—r,T], E), where u = ) on [—r,0] and g, — ¢
weakly in L!(I, E).
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So, let n > 1. For almost all ¢t € I,

lga(®)ll < [ (£, 700 () Fag -1 un ()
a(t) (14 fag, (-1 (0n(t), un(1)))
= a() (14 fun(®)]) -

Then, for all t € I,
lun ()] < [ 0)[ 1 (0)] +/(:\\K(t78)!! lgn(s)II ds
< M (o) + M /O a(s) (14 lun(s)1) ds
< M(|[(O)|| + flall) + /0 M a(s) [un(s)] ds
By Gronwall’s Lemma, we get
lun®l < M (10O + llall) exp(M fal)
Denote the right side of the above inequality by N and put m(t) = a(t) (1 + N),

Vt € I. To prove the property (b) let t1,t2 € I, (t1 < t2) and let n be a fixed
natural number.

IN

| K (02.0) — K (11, 0) H ol

t1
v,

+/tl 1K (t2, 9)|| | gn ()| ds

O

K(ts,5) = K(t1,5)|| lgn(s)I| ds

IN

| K (2.0) — K (12,0) H ol
+/ HK (2, 5) — K(t1,5)|| Im(s)| ds

+ M | (s)| ds .
t1

Since for each s € I, K(-,s) is uniformly continuous and w, =1 on [—r,0], the
sequence (uy,) is equicontinuous in C([—r,T], E). Next, for each t € I, put

Z(t) = {un(t): n =1}, p(t) = p(Z(t)) .
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From the properties of © and Proposition 1.6 of Monch [15] we get

plt) = n{ [ Kt9) guls) dsi =1}
M/Ot,u({gn(s): n > 1}) ds .

IN

But u({gn(s): n>1}) < uF(s,H(s)) a.e., where

H(s) = {7(0n(5)) fapo(e)1 (- un(s)): n > 1} .

Thus, By condition (Fy) we obtain,

IN

plt) < M [ () u(H(:)(0)) ds
= M [6) nfunls): = 1) ds
= M [(5)pls) ds
Since p(0) = 0, Gronwall’s Lemma tells us p = 0. So by Ascoli’s theorem we may

assume that u, converges uniformly to v € C([-r,T], E). Obviously u = ¢ on
[—7,0]. Now, let ¢ € I such that Condition (Fy) is satisfied. Then,

iloa®): = 1) < n({F (8 0a(6) fuo, 0o un(®) 5 = 1})

310 1({60(0) a0 (s 0n () 05 2 1})
= 5(t) pun (1)}

IN

Then p({gn(t): n > 1}) =0 a.e.. By redefining (if necessary) a multifunction H
such that its values are in ¢(E) and H(t) = conv{g,(t): n > 1} a.e.. Thus Sk
is nonempty, convex and weakly compact in L'(I, E). By the Eberlein-Smulian
Theorem we may assume g, — g € L'(I, E) weakly.

Step 3. We claim that the function u obtained in the previous step is the
desired solution. That is we claim that

(4) u(t) = K(t,0)9(0) + /0 "K(t$)g(s) ds, Viel,

(5) g(t) € F(t,7(t)u), a.e.
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since g,— g weakly in L!(I, E), u,, tends weakly to K (t,0) ¢ (0)+ [y K (t,s) g(s) ds.
Hence we get relation (4). Moreover, from Lemma 2.2 and relation (2), relation
(5) will be true if we show

(6) i | 7(0(8) = fug,-1(un(®)| =0, VEel.

n—oo

Let t € I and n > L. Let m € {0,1,...,n — 1} such that ¢ € [t ¢ 4].

m> “m+1

600 fu01C10l0) — 701 0] <

< sup ‘fm<m—+1+s, un(t)>—u<m+1 s)‘
se[fr,f%] n
e (5 () (=) (0 )]
=] " "

u(t) — u(m; ! —|—s>

-+

m+1
+ sup < u( —|—s> —u(s~|—t)H> .
86[—%70} n

Since u, converges uniformly to u on each compact subset of [—r,T], u is uni-
formly continuous on [—r, 0] and each wu, is continuous on [—r, T, relation (6) is
true. m

4 — Some topological properties of solution sets

In the previous section, we obtained conditions on the data that guaranteed
that for every ¢ € C([—r,0], E') the solution set of ¥, S(¢), is nonempty. In this
section we examine the topological properties of this solution set.

Theorem 4.1. If the hypotheses of Theorem 3.1 hold, then for every ¢ €
C([-r,0], E), S() is compact in C([—r,T], E).

Proof: Arguing in the proof of Theorem 3.1 we can show that S(¢) is
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equicontinuous. Furthermore let (u,) be a sequence in S(¢) and ¢ € I. Then
t
,u({un(t)f n > 1}) < 'u({/o K(t,s)gn(s)ds: n> 1}), gn € S};(.J(_)un)
t
< M/ ,u({gn(s): n > 1}) ds
0
t o0
< M/,u(F(s, U T(s)un)) ds
0 n=1
t
< M/ ~(s) ,u {(r(s)up)(0): n > 1}) ds

:M/fy {un :nzl})ds.

Since pu({un(0): n>1})=0, by Gronwall’s Lemma we get p({un(t): n> 1}) 0.
For all t € I. Thus (u,) has a convergent subsequence in C([—r,T], E).

Theorem 4.2. The multifunction S : C([-r,0], E) — C([-r,T], E) is upper
semicontinuous.

Proof: Let B be a closed set in C([-r,T],FE) and Z = {¢ € C([-r,0], E):
S(y) N B # 0}. We shall show that Z is closed. So, let v, € Z, ¢, — 1 in
C([-r,0], E). For each n > 1, let u,, € S(¢,)NZ. Then, for every n > 1, u, = 1,

n [—r,0] and for all ¢t € I,

t
unlt) = K(6,0)6n(0) + [ K(t.5)9a(s) s, 0 € Shi.ru -

Then, for every t € I,

p({n®): 02 13) < Ma({n): n> 1)+ Mu({ [ gu)as n=1})

since 1, (0) — 1(0) as n — oo, we get

,u({un(t): n > 1}) < Mu(/otgn(s)ds: n > 1) .

As in the proof of Theorem 4.1 we can claim that p({un,(t): n>1})=0.
Invoking the Arzela—Ascoli theorem there exists a subsequence u,, — u € Z
in C([-r,T], E). Clearly u = on [—r,0]. Now

p({gnk(t): n > 1}) < ,u({F(t,T(t) Uny )t T > 1)}); tel

<A p({r@a)©0): n>1}); tel
0.
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As in the proof of Theorem 3.1, g,, — g weakly in LY(I,E). Invoking Lemma 2.1,
g(t) € F(t,7(t)u) a.e.. Thus

t
u(t) = K(t,0)(0) —i—/o K(t,s)g(s)ds, g€ S},(,’T(_)u) .
This prove that Z is closed and hence ¥ — S(v) is upper semicontinuous. m

Corollary 4.1. For every ¢ € C(|—r,0], E) and every t € I the attainable
set P(v) = {u(t): uw € S(¢)} is compact, the multifunction (¢,t) — Py(v) is
jointely upper semicontinuous.

Theorem 4.3. Let Z be a compact subset of C([—r,0], E) and let ¢: E — R
be lower semicontinuous then the problem

u(t) € A(t)u(t) + F(t,7(t)u), a.e. on [0,T]
u=vYes
minimise @(u(T))

has an optimal solution, that is, there exists 1y € Z and u € S(1g) such that

o(u(T)) = int{p(o(T)): v € S), we 2}

Proof: Consider the multifunction

Pr: Z —2F
Pr(y) ={v(T): ve S¥)}.

By Corollary 4.1, Pr is upper semicontinuous. Then the set Pr(Z) = Uyez Pr(¢)
is compact in E. Since ¢ is lower semicontinuous on F, there exists ¥g € Z such

that o (¢0(T)) = inf{e(v(T)): v € Upez S(¥)}. »

Theorem 4.4. Let E be a separable Hilbert space and G(t,-) is w-seq uhc
and G(-,g) has a measurable selection. Moreover, suppose that there exists a
sequence (Gy,): I x C([-r,0], E) — c(F) satisfying the following properties:

(1) For alln > 1, G, verifies conditions (F1), (Fz) and (Fy) of Theorem 3.1.
(2) For all (t,g) € I x C([-r,0], E) we have
(a) [|Gn(t,9)||< L, Yn > 1, for some constant L > 0;
(b) limp oo h(Gr(t,9),G(t,g)) = 0, where h is the Hausdorff distance;
(€) Gnialt,g) C Gult,g), Vn>1;
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(d) G(t.g) =ML Galt,9).
Then for each ¢ € C([—r,0], E), Sa(¥) = NnZ; Sa,, (V).

Proof: From the assumptions each GG,, satisfies all conditions of Theorem 3.1.
Thus S (¢) # 0. Also from condition (2)(d) we get Sg(¢) C Sq, (¢), Vn > 1.
Now let u € (7%, S, (1). Then for every n > 1, there exists g, € L'(I, E) such
that

u(t) = K(t,0)9(0) —i—/OtK(t,s) guls) ds, Vitel,

gn(t) € Gp(t,7(t)u) ae, Yn>1.

Thus, by condition 2(b), we obtain
gn(t) € G(t,7(t)u) + 6,(t) Bg ae.,

where, for all t € I, 0,(t) = limy, oo h(Gp(t,7(t) u), G(t,7(t)u)) — 0 and Bp is
the closed unit ball in E. Invoking condition (2)(a), the sequence (g,,) is uniformly
bounded. By extracting a subsequence, denoted again by g,,, we can passing to
convex combination of g,(t), denoted by g,(t), we have g,(t) — g(t) a.e. in E
and

gn(t) € " am(t) (Gt 7(t)u) + 6, () Br) ae.,

m>n

where > =1, aun(t) > 0. Since the values of G are convex, we get

m>n

gn(t) € G(t,7(t)u) + (sup om(t)) B -

m>n

Taking the limit as n — oo we obtain g(t) € G(¢,7(t) u) a.e.. Thus u € Sg(¢). u

5 — Remarks

1. Let for every t € I, A(t) be a bounded linear operator on E such that
the function t — A(t) is continuous in the uniform operator topology. Then for
every z € E and every s € [0, 7], the initial value problem

{u(t) c At)u(t), t€]0,T]

u(s) ==

has a unique strong solution. Thus the operator K (-, -) can be defined and satisfies
all conditions (A1)—(A4) (see, Ch.5 [19]). o
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2. If we replace condition (Fy) by the condition:

(F4)* There exists an integrably bounded multifunction I': I — ck(E) such
that

F(t,u) € (14 [u(O)) D), Y (tu) € Ix C([-r,00,E)

then the convergence of approximated solutions (u,) constructed in
the proof of Theorem 3.1 is directly ensured.

Indeed, for all m > 1 and all £ € I,
t
un(t) € K(t,0)4(0) +/0 K(t,s) F(t, 7(0n(5))) fno,(s)-1(- un(s)) ds

C K(t,0)0(0) + M/Ot<1+ lun(s)]1) T(s) ds -

since for each n > 1, ||uy(s)|| < N, Vt € I, Theorem v-15 of [4] implies that,
J3(1 4 |lun(s)[) T(s) ds is in ck(E). Thus for all t € T the set {u,(t): n > 1} is
relatively compact in E. o
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