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Abstract: The free boundary problem considered in this paper arises in the math-

ematical theory of combustion. It consists in finding two functions p±(x, t) defined

in their respective domains Π±T =
⋃

0<t<T Π±(t), with Π−(t) = {−1 < x < R(t)} and

Π+(t) = {R(t) < x < 1}, that are separated by the free boundary ΓT = {x = R(t),

t ∈ (0, T )}. In Π±T , the functions satisfy heat equations with different heat capacities,

and on the free boundary they obey the conjugation conditions

p+(x, t) = p−(x, t) = 0 ,
∂p+(x, t)

∂x
−
∂p−(x, t)

∂x
= β , x = R(t) .

Typically, the free boundary can be viewed as a model of the flame front separating the

burnt and unburned domains, and p± are temperatures in these domains.

The article is dedicated to the study of the problem of existence of global-in-time

classical solutions, the large-time asymptotic behavior of such solutions, and the com-

parison principle.

It includes some remarks on the modification of the above problem where the conju-

gation conditions on the free boundary specify not the jump of the temperature gradient,

but the jump of its square.
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1 – Introduction

The one-dimensional free boundary problem considered in this paper arises

in the mathematical theory of combustion. The model problem is that of finding

the free boundary ΓT = {x = R(t), t ∈ (0, T )} that separates the domains

Π±T =
⋃

0<t<T

Π±(t) ,

Π−(t) =
{
−1 < x < R(t)

}
,

Π+(t) =
{
R(t) < x < 1

}
,

and the functions p±(x, t) defined in the respective domains Π±. These functions

satisfy the equations

L±p± ≡ c±
∂p±

∂t
−

∂2p±

∂2x
= 0 in Π±T ,(1.1)

p+(x, t) = p−(x, t) = 0 on ΓT =
{
x = R(t), t ∈ (0, T )

}
,(1.2)

∂p+(x, t)

∂x
−

∂p−(x, t)

∂x
= β on ΓT =

{
x = R(t), t ∈ (0, T )

}
,(1.3)

p±(±1, t) = ±α± , t ∈ (0, T ) ,(1.4)

p±(x, 0) = p±0 (x) , x ∈ (−1, 1), R(0) = R0 ,(1.5)

where R0 ∈ (−1, 1) and c±, β, ±α, are some positive constants.

In the above, p(x, t) is interpreted as scaled temperature, and the free bound-

ary ΓT is its smooth level line p(x, t) = 0, (±p±(x, t) > 0, (x, t) ∈ Π±T ), corre-

sponding to the flame front that separates the burnt region from the unburned

one.

Condition (1.3) takes into account the heat released by the combustion pro-

cess: essentially, it states that the amount of heat released locally is proportional

to the area of the flame front. For more information on the physical background

of the above models and recent results, we refer the reader to [ANT92, BL91,

L91, BH1, BH2, BLS92, CLW97, LW97, VA96, LVW97, LVW00].

Below, we investigate the global-in-time existence of classical solutions, the

large-time asymptotic behavior of the solutions, and the comparison principle for

the problem (1.1)–(1.5). These considerations constitute the body of the article.
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Another version of problem (1.1)–(1.5) that can be studied in a similar manner

is one with condition (1.3) replaced by

(
∂p+(x, t)

∂x

)2
−

(
∂p−(x, t)

∂x

)2
= β on ΓT =

{
x = R(t), t ∈ (0, T )

}
.(1.6)

The alterations that should be made in the arguments to treat the solutions to

equations (1.1), (1.2), (1.4), (1.5), and (1.6) instead of (1.3) are indicated in a

separate section.

2 – Main results

We assume that

p−0 (x) < 0 , p+0 (x) > 0 ,
dp±0 (x)

dx
≥ α0 > 0(2.1)

and for some λ > 0

p±0 (x) ∈ H2+λ(Π±(0)) , ‖p±0 ‖H2+λ(Π±(0)) ≤ α1 .(2.2)

We also assume that the standard compatibility conditions are satisfied:

p±0 = 0,
dp+0
dx

−
dp−0
dx

= β on x = R(0) ,

(2.3)
d2p±0 (±1, t)

d2x
= 0 ,

p+0xx
c+ p+0x

=
p−0xx
c− p−0x

on x = R(0) .(2.4)

It is easy to verify that the function

p±∞(x) = α±
x−R∞
1±R∞

.(2.5)

is the unique solution of the corresponding stationary problem (1.1)–(1.4). Here

the number R∞ is determined uniquely from the equation

g(R∞) ≡
α+

1−R∞
−

α−

1 +R∞
− β = 0 ,(2.6)

and it is easy to see that

g′(τ) ≡
α+

(1− τ)2
+

α−

(1 + τ)2
> 0 , τ ∈ (−1, 1), g(±) = ±∞ .
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Theorem 2.1. Assume that conditions (2.1)–(2.4) are satisfied. Then the

problem (1.1)–(1.5) has a classical solution p±(x, t), defined for all t > 0, which

is unique and has the following properties:

p±(x, t) ∈ H2+λ, 2+λ
2 (Π

±
∞) , R(t) ∈ H1+λ(0,∞) ,(2.7)

and there exist positive constants C0, λ0 such that
∣∣∣∣ ln

∂p±

∂x
(x, t)

∣∣∣∣ ≤ C0 , 0 ≤
∂p±

∂x
(x, t) .(2.8)

|R(t)−R∞|+ |p
±(x, t)− p±∞(x)| ≤ C0 e

−λ0t .(2.9)

The proof of the theorem includes two preparatory steps.

At the first step, we introduce, following [MEI92, MPS97], the von Mises

variables and reduce the original initial problem with free boundary to one where

the boundary of the domain is known. To justify this transformation, we use the

properties of the solution specified in (2.8).

At the second step, we prove some comparison principles and a priori estimates

for the solution which are valid for any finite time t.

The proof of the theorem, which establishes that the solution exists glob-

ally in time, is based on these estimates and the local existence results of the

paper [AG94].

3 – Behavior of solutions and comparison principles

3.1. Equivalent problem in von Mises variables

For the classical solutions of problem (1.1)–(1.5), the maximum principle is

valid in its strict form:

• the function p−(x, t) attains its minimum on the boundary x = −1, and its

derivative is positive there, (∂/∂x) p−(−1, t) > 0;

• p−(x, t) attains its maximum at the boundary x = R(t) and (∂/∂x) ·

· p−(R(t), t) > 0 at this point.

It follows, after (2.1) is taken into consideration, that

∂p−

∂x
(x, t) > 0 in Π+T .

A similar argument holds true for p+(x, t) in Π+T .
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Thus, in the domains where (∂/∂x) p± > 0 it is possible to change the variables

to

t = t , y = p±(x, t), x ∈ Π±T .(3.1)

In the new variables, the images of Π±T are the known domains

Ω±T = Ω
± × (0, T )

with Ω−=(−α−, 0) and Ω+=(0, α+). The unknown boundary x = R(t) is

transformed into the straight line y = 0.

The new unknown functions are

u±(y, t) = x , (y, t) ∈ Ω±T .(3.2)

for which

∂p±

∂x
=
1

u±y
,

∂p±

∂t
= −

u±t
u±y

.(3.3)

These functions satisfy the equations

c±
∂u±

∂t
+

∂

∂y

(
1

u±y

)
= 0 for (y, t) ∈ Ω±T ,(3.4)

and on the image of the free boundary the equations

u+ = u− ,

(
∂u+

∂y

)−1
−

(
∂u−

∂y

)−1
= β for y = 0 .(3.5)

The boundary conditions for the new unknown functions are

u±(±α±, t) = ±β± ,(3.6)

and the initial conditions

u±(y, 0) = u±0 (y) , y ∈ Ω± .(3.7)

In the formulas above, β± = 1 if the original problem is considered in the domain

Π = (−1, 1). In the general case, the values of β± should satisfy the inequality

−β−< β+, being otherwise arbitrary.
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3.2. A priori estimates

Assume that the positive functions

w±(y, t) =
1

u±y
> 0(3.8)

are regular in the respective domains Ω±T where they satisfy the equation

c±
∂w±

∂t
= (w±)2

∂2w±

∂y2
, (y, t) ∈ Ω±T .(3.9)

On the boundary y = 0, they obey equation (1.3) in the form

w+ − w− = β , y = 0 ,(3.10)

and the equation
1

c+
∂w+

∂y
−
1

c−
∂w−

∂y
= 0 , y = 0 ,(3.11)

which follows from equation (3.4) and condition (3.5) after this latter is differen-

tiated in the time variable.

Finally, for y = ±α± equations (3.4) and (1.4) imply that

∂w±

∂y
= 0 , y = ±α± ,(3.12)

and the initial condition is transformed into

w±(y, 0) = w±0 (y) , y ∈ Ω± .(3.13)

The function w± cannot attain its maximum or minimum at the boundaries

y = ±α± by condition (3.12).

If the functions w+ and w− attain their maximal values at y = 0, then by

(3.10) they would attain maximum simultaneously.

Let us assume that both functions ω± attain absolute maximum at a point

(0, t∗). Then
∂ω+

∂y
(0, t∗) > 0 and

∂ω−

∂y
(0, t∗) < 0 ,

which is impossible because of condition (3.12).

For this reason, we can conclude that w± cannot attain maximum for y = 0

later than at the initial moment.



A ONE-DIMENSIONAL FREE BOUNDARY PROBLEM 323

Consequently, the positive maximum of w+ or w− is attained at a point

with t = 0, where both functions are bounded from the above by a constant

because of condition (2.1); the above-mentioned constant depends on the initial

data only.

Thus, there exists a positive constant C1 such that

w±(y, t) ≤ C1 .(3.14)

The minimum of the function w+(y, t) is easy to estimate because on the

boundary y = 0 there is inequality w+(0, t) ≥ β > 0.

In the general case, it is impossible to estimate the minimum of w−(y, t)

because if

minw+(y, 0) < β ,

then w−(y, t) can attain its maximal value for y = 0, where (∂/∂y)w−< 0. This

does not contradict condition (3.11) because at this point w+(y, t) does not attain

its minimal value (at this point w+ > β).

The above shows that an additional argument is needed to estimate w−(y, t)

from below.

We show first that |u±t | is bounded.

Lemma 3.1. For all solutions of the problem (1.1)–(1.5) which satisfy (2.1),

the following estimate holds true: if u±(y, t) ∈ H2+λ, 2+λ
2 (Ω

±
T ), then

∣∣∣∣
∂u±(y, t)

∂t

∣∣∣∣ =
∣∣∣∣

u±yy

(u±y )2

∣∣∣∣ ≤ C2 = max

(
max
y∈Ω+

u+0yy

(u+0y)
2
, max

y∈Ω−

u−0yy

(u−0y)
2

)
.(3.15)

Proof: We introduce the functions

q±h =
u±(y, t+ h)− u±(y, t)

h

which satisfy the equations

c±
∂q±h
∂t

−
∂

∂y

(
a±

∂q±h
∂y

)
= 0 in Ω±T ,(3.16)

q+h = q−h , a+
∂q+h
∂y

= a−
∂q−h
∂y

on y = 0 ,(3.17)

q+h (±α±, t) = 0 , q±h (y, 0) = q±0,h(y, 0) .(3.18)
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We multiply equation (3.16) by (q±h )
2k−1, k = 1, 2, .., and integrate by parts.

We take into account (3.17) and (3.18), and arrive at the identity

1

2k

d

dt

(
c−
∫

Ω−
(q−h )

2k dy + c+
∫

Ω+

(q+h )
2k dy

)
+(3.19)

+ (2 k− 1)

(∫

Ω−
a−(q−h )

2k−2
(
∂q−h
∂y

)2
dy +

∫

Ω−
a+(q+h )

2k−2
(
∂q+h
∂y

)2
dy

)
= 0 ,

which implies that for k = 1, 2, ...

Yk(t) ≡

(
c−
∫

Ω−
(q−h )

2k dy + c+
∫

Ω+

(q+h )
2k dy

)1/2k
≤ Yk(0) ,

and, after the passage to the limit as k →∞,

sup
(y,t,h)

∣∣∣∣
u(y, t+ h)− u(y, t)

h

∣∣∣∣ ≤ Y∞(t) ≤ Y∞(0) ≤ C2 .

This estimate proves (3.15).

Remark 3.1. Assume that u±t ∈ H2+λ, 2+λ
2 (Π±T ). In this case, inequality

(3.15) can be obtained using the maximum principle for the function u±t .

Indeed, it is easily seen that the function v±(y, t) = u±t solves the following

problem:

c±
∂v±

∂t
=

v±yy

(u±y )2
−
2u±yy

(u±y )3
v±y =

∂

∂y

(
v±y

(u±y )2

)
, (y, t) ∈ Ω±T ,(3.20)

v+ = v− ,
v+y

(u+y )2
=

v−y

(u−y )2
on y = 0 ,(3.21)

v±(±α±, t) = 0 ,(3.22)

v±(y, 0) = v±0 (y, 0) , y ∈ Ω± .(3.23)

Because of condition (3.21), the function v± cannot attain its absolute extremum

for y = 0. Consequently

|v±(y, t)| ≤ max
y∈Ω±

|v±(y, 0)| .
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Lemma 3.2. Let u±1 (y, t) and u±2 (y, t) be two solutions of problem (3.4)–(3.6)

such that

u±1 (y, t) ≤ u±2 (y, t) if y = ±α± and t = 0 .

Then

u±1 (y, t) ≤ u±2 (y, t) , ∀ (y, t) ∈ Ω±T .(3.24)

Proof: To prove the lemma, it suffices to consider the difference

U±(y, t) = u±1 − u±2 .

This difference satisfies a homogeneous parabolic equation in Π±T ,

LU± ≡ c±
∂U±

∂t
−A±

∂2U±

∂y2
−

∂A±

∂y

∂U±

∂y
= 0 ,

with

A± =
1

u±1y u
±
2y

> 0 ,

and it is non-negative for y = ±α± and t = 0. On the boundary y = 0 it satisfies

the conditions

U+= U− ,
1

u+1y u
+
2y

∂U+

∂y
=

1

u−1y u
−
2y

∂U−

∂y
.(3.25)

It follows from the above conditions that neither U+(y, t) nor U−(y, t) can

attain a negative minimum at a point with y = 0. Consequently, for all (y, t) ∈ Π±T

U±(y, t) ≥ 0 .

Remark 3.2. We can derive an estimate for R(t) as follows.

Choose u±2 (y, t) as the solution of problem (3.4)–(3.8), and choose u±1 (y) as

the stationary solution of problem (3.4)–(3.5) such that

u−1 (−α−) = −1 , u−1y(y) = a > 0 ,

where the number a is small enough. In this case,

u−1 = 1 + a (y + α−) , u+1 (y) = −1 + a

(
α− +

y

1 + a β

)
.(3.26)

It is easily seen that if a is chosen small enough

u−1 (y) < u−0 (y) ,
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and if in addition

u+1 (α
+) < u0(0) ,

then it follows from the monotonicity of the functions u+0 (y) and u±1 (y) that

u+0 (y) > u0(0) , u+1 (y) < u+1 (α
+) , u+0 (y) > u+1 (y) .

Thus,

u±1 (y, t) < u±(y, t) .

In particular, for some δ > 0

−1 < −1 + δ ≤ R−∞ = u−1 (0) < u−(0, t) = R(t) ≤ 1− δ < 1 .

The upper bound is derived in a completely analogous way:

u+(0, t) = R(t) < u+2 (0) = R2∞ < 1 .

We now apply the above considerations in the case when u±1 is the stationary

solution of problem (1.3)–(1.5), so that u−1 (−α−) = −1 and u+1 (α
+) = u0(0).

We conclude that

− 1 < R1∞ = u−1 (0) = u+1 (0) ≤ u−(0, t) = u+(0, t) = R(t) .(3.27)

Let us now choose u±2 as the stationary solution to problem (1.3)–(1.6). This

function satisfies the conditions u−2 (−α−) = u0(0) and u+2 (α
+) = 1. The result

is that

R(t) = u+(0, t) = u−(0, t) ≤ u+2 (0) = u−2 (0) = R2∞ < 1 .(3.28)

Thus,

− 1 < −1 + δ ≤ R(t) ≤ 1− δ < 1 , t ∈ [0,∞) .(3.29)

3.3. The lower bound for px(x, t) = w− = 1/u−y

To estimate w−(y, t) from below, it is more convenient to return to the original

variables (x, t). In these variables, the unknown boundary x = R(t) satisfies

inequalities (3.29). The estimate of (3.15) with y = 0 yields the inequality

∣∣∣∣
dR

dt

∣∣∣∣ = |Ṙ(t)| =
∣∣∣∣
∂u±

∂t

∣∣∣∣ ≤ C2 .(3.30)
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Using (3.29) and the simplest barrier function, it is easy to show that

∂p−

∂x
(−1, t) = w−(−α−, t) ≥ C3 > 0 ,

where the constant C3 depends only on the data of the problem. To estimate

(∂/∂x) p− from below on the unknown boundary x = R(t), we use the variables

t = t , z =
x+ 1

R+ 1

which reduce the equation for the new unknown function

h(z, t) = p−(x, t)

to the form

c−
∂h

∂t
−

1

(1+R)2
∂2h

∂z2
−

z

(1+R)
Ṙ

∂h

∂z
= 0 , 0<z<1, 0<t<T .(3.31)

The boundary conditions and the initial condition in these new variables are

as follows:

h(0, t) = −α−, h(1, t) = 0 , 0<t<T ,(3.32)

h(z, 0) = h0(z) , 0<z<1 ,(3.33)

where

dh0
dz

= h
′

0(z) ≥ (1+R0)α0 > 0 , h0

(
1 + x

1 +R0

)
= p−0 (x) .

Consider the function

Φ(z) =
A

2C2

(
e−2C2 − e−2C2z

)
.

For a sufficiently small positive number A, it satisfies the inequalities

Φ(0) > h(0, t) = −α− , Φ(z) ≥ h0(z) .

Since Φ(1) = 0, the estimate

h(z, t) ≤ Φ(z)
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follows from the maximum principle and the inequality

L(h− Φ) ≡

(
∂

∂t
−

1

(1+R)2
∂2

∂z2
−

z

(1+R)
Ṙ

∂

∂z

)
(h− Φ) < 0 ,(3.34)

which is valid for all z ∈ (0, 1) and t ∈ (0, T ). In combination with the condition

h(1, t) = Φ(1) = 0, the above estimate signifies that

1

(1 +R)

∂p−

∂x
(R, t) =

∂h

∂z
(1, t) ≥ Φ′(1) = Ae−C2 .

Thus, if (3.34) is satisfied, then

∂p−

∂x
(R, t) ≥ (1 +R)Ae−C2 ≥ δ A e−C2 .(3.35)

The validity of inequality (3.34) is verified directly:

L(h− Φ) =
1

(1+R)2

(
Φ′′ + Ṙ z(1+R) Φ′

)
<

1

(1+R)2
(Φ′′ + 2C2Φ

′) = 0 .

We state the result obtained as a lemma.

Lemma 3.3. Assume that

u±(y, t) ∈ H2+λ, 2+λ
2 (Π)±T

is the classical solution of problem (3.4)–(3.7) (or that stated in (A.3), (3.4)–(3.6),

and (A.3)). Then
1

C1
≤ u±y (y, t) =

1

p±x
≤ C1 < ∞(3.36)

and

|Ṙ| , |u±t | =

∣∣∣∣
p±t
p±x

∣∣∣∣ , |u±yy| =

∣∣∣∣
p±xx
(p±x )3

∣∣∣∣ , |p+xx| ≤ C2 ,(3.37)

with constants C1 and C2 which depend only on α0 and α1 from conditions (2.1),

(2.2).

Remark 3.3. It is easy to see that estimates (3.37) imply the inequalities
∣∣∣u±(y, t+ τ)− u±(y, t)

∣∣∣ ≤ C2 |τ | , (y, t) ∈ Ω
±
T ,

∣∣∣u±y (y + h, t)− u±y (y, t)
∣∣∣ ≤ C2 |h| , (y, t) ∈ Ω

±
T .

Hence u±y ∈ Cα(Ω
±
T ) according to [LSU88, Lemma 3.1, Ch.II, §2].
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As the next step, we prove the estimate

‖u±‖
H2+λ, 2+λ

2 (Π
±
T )
≤ C3(α1, α2, T )(3.38)

for any finite T .

To this end, we introduce the new variables

t = t , ξ = c± y if ± y > 0 .

Put, moreover,

a(v, ξ) = c−(v − β)2
(
1−H(ξ)

)
+ c+ v2H(ξ) ,

where

H(ξ) =
1

2

(
1 +

ξ

|ξ|

)
, ξ−0 < ξ < ξ+0 ,

ξ−0 = −α−c− , ξ+0 = α+c+ ,

and

v(ξ, t) =

{
w−(y, t) + β if y < 0,

w+(y, t) if y > 0 .
(3.39)

According to conditions (3.10) and (3.11), the function v(ξ, t) and its deriva-

tive (∂/∂ξ) v(ξ, t) are continuous in the domain

QT = Q×(0, T ) , Q =
{
ξ : ξ−0 < ξ < ξ+0

}
.

In the domain QT , they satisfy, in the usual sense, the equation

∂v

∂t
= a(v, ξ)

∂2v

∂ξ2
, (ξ, t) ∈ QT , ξ 6= 0 ,(3.40)

at all points not belonging to the line ξ = 0, where the coefficient a(v, ξ) has a

jump. Note in this connection that according to the definition of the function

a(v, ξ) and the estimate (3.36) there exists a constant C4= C4(c
±, α±, β, C2) such

that
1

C4
≤ a(v, ξ) ≤ C4 .(3.41)
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The function v(ξ, t) satisfies also the following boundary and initial conditions:

v(ξ±0 , t) = 0 , t ∈ (0, T ) ,(3.42)

v(ξ, 0) = v0(ξ) , ξ ∈ Q .(3.43)

Here, condition (3.42) results from (3.12).

The given function v0(ξ) ∈W 1
2 (Q) is supposed to admit the estimate

‖v0‖
1
2,Q ≤ C0 .

According to [LSU88], the problem (3.40), (3.42), (3.43) has a solution v(ξ, t)

in the class W 2,1
2 (QT ); it is easy to prove the energy relation

∫

Q
v2ξ (ξ, t) dξ +

∫ T

0

∫

Q

(
a v2ξξ +

1

a
v2t

)
dξ dt =

∫

Q
v2ξ (ξ, 0) dξ .(3.44)

Note in this connection that the derivative r(ξ, t) = vξ(ξ, t) resolves the prob-

lem

∂r

∂t
=

∂

∂ξ

(
a
∂r

∂ξ

)
, (ξ, t) ∈ QT ,(3.45)

r(ξ±0 , t) = 0 , t ∈ (0, T ) ,(3.46)

r(ξ, 0) = r0(ξ) = v0ξ(ξ) , ξ ∈ Q .(3.47)

According to [LSU88], the problem (3.45)–(3.47), has a solution r(ξ, t) from

the space W 1,0
2 (QT ) ∩Hλ,λ

2 (QT ) such that

‖r‖
Hλ, λ

2 (QT )
≤ C5

(
C4, ‖r0‖

Hλ, λ
2 (Q)

)
.(3.48)

Using Lemma 3.1, formulae (3.4), (3.8), (3.39), and the relation

r±(ξ, t) = v±ξ = −
u±yy

u±y c±
,(3.49)

we establish that
(
‖u±t ‖Hλ, λ

2 (Ω
±
T )
; ‖u±‖

H2+λ, 2+λ
2 (Ω

±
T )

)
≤ C6

(
C2, C4, ‖u

±
0 ‖H2+λ(Ω(0)), T

)
.(3.50)

Using formula (3.3) and returning to the functions p±(x, t), we come to the esti-

mate
(
‖R‖H1+λ/2([0,T ]); ‖p

±‖
H2+λ, 1+λ

2 (Π
±
T )

)
≤ C7

(
C6, ‖p

±
0 ‖H2+λ(Π(0)), T

)
.(3.51)
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We state the result obtained as a lemma.

Lemma 3.4. Assume that p±(x, t) (or, in another form, u±(y, t)) are the

classical solutions of problem (1.1)–(1.5), (or, respectively, (3.4)–(3.7)). Then the

estimates (3.50) and (3.51) hold true.

Next, we prove the existence of solution to the problem (1.1)–(1.5), (or, re-

spectively, (3.4)–(3.7)). According to the paper [AG94], the problem (3.4)–(3.7))

has a classical solution up to a small time t1> 0 (t1 is determined by ‖u
±(y, 0)‖).

Using estimate (3.50), the solution u± can be continued to any finite interval

t ∈ (0, T ).

3.4. Comparison principles

Lemma 3.5. If p±(x, t) and p±1 are two solutions of problem (1.1)–(1.5),

then the functions p(x, t), p1(x, t) (defined as p = p±, p1 = p±1 in Π±(t)) are the

generalized solutions, in the space W 1,0
2 (ΠT ), of the equation

∂c̃(p)

∂t
=

∂

∂x

(
∂p

∂x
− β H(p)

)
(3.52)

with the corresponding initial (1.5) and boundary conditions (1.4) on the lines

x = ±1; here

c̃(p) = c± p if ± p > 0 ,

H(p) =

{
0 if p < 0,

1 if p > 0 ,
and H(0) ∈ [0, 1] .

If on the boundaries x = ±1 and at the initial moment t = 0

p(x, t) ≤ p1(x, t) ,

then everywhere in ΠT

p(x, t) ≤ p1(x, t) .(3.53)

Proof: A simple calculation shows that each classical solution of problem

(3.52), (1.4), (1.5) is a generalized solution of equation (3.52) where p = p± if

±x > 0 and

c̃(p) =

{
c+p+ if p+ > 0,

c−p− if p− < 0 .
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This solution satisfies the boundary conditions (1.4) and the initial condition

(1.5).

The existence of the unique generalized solution of problem (3.52) is proved

by standard methods [MEI92]. It is convenient to state the problem for the new

unknown function

g(x, t) = c̃[p(x, t)] .

This function satisfies the equation

∂g

∂t
=

∂

∂x

(
κ(g)

∂g

∂x
− β H(g)

)
,(3.54)

as well as the boundary and initial conditions

g(±1, t) = ±β± , g(x, 0) = g0 ,(3.55)

where κ(g) = [c̃ ′(p)]−1 and

min

[
1

c−
,
1

c+

]
≤ κ(g) ≤ max

[
1

c−
,
1

c+

]
.

It is easy to verify that

g ∈ L2(0, T ;H
1(Π)) ,

∂g

∂t
∈ L2(0, T ;H

−1(Π)) ,

i.e., that the problem (3.54), (3.55) does indeed have a generalized solution in

the stipulated class; moreover,

p±(x, t) ≤ p±1 (x, t)

and

|p±|
(2+λ)

Π±T
≤ C .(3.56)

In terms of the original function p(x, t), the generalized solution to the problem

(1.4), (1.5), (3.52) is the limit of the solution pε(x, t) of the regularized equation

∂c̃ε(p
ε)

∂t
=

∂

∂x

(
∂pε

∂x
− β Hε(p

ε)

)
,(3.57)
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where c̃ε, Hε ∈ C∞ and

lim
ε→0

c̃ε(p) = c̃(p) , lim
ε→0

Hε(p) = H(p) .(3.58)

Assume that p1(x, t) is another generalized solution of the problem (1.4), (1.5),

(3.52), so that p(x, t)≤ p1(x, t) on the boundaries x = ±1 and at the initial time

t = 0. Then p1 is the limit of the solution pε1(x, t) of equation (3.57), so

pε(x, t) ≤ pε1(x, t)

on the boundaries x = ±1 and at time t = 0.

It is easily seen that the difference p̃ = pε1−p1 satisfies in ΠT the homogeneous

parabolic equation and is non-negative on the boundaries x = ±1 and at the

initial time t = 0. For this reason, by the maximum principle

pε(x, t) ≤ pε1(x, t) , ∀ (x, t) ∈ ΠT .

Passing to the limit as ε→ 0, we obtain the desired estimate (3.53). It is

obvious that this estimate guarantees the uniqueness both of the generalized and

classical solutions to the problem (1.1)–(1.5).

3.5. Asymptotic behavior

It is evident, after (3.3) and (3.36) are taken into account, that inequality

(2.9) would be proved if an analogous one were proved for the functions u±(y, t).

Consider the stationary solution of problem (3.4)–(3.6)

u±∞(y) = R∞ +
1 +R∞

α±
y ,

where the number R∞ is determined uniquely from equation (2.6).

For the difference

U±(y, t) = u±(y, t)− u±∞(y) ,
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we obtain the following problem:

c± U±t =
∂

∂y

(
A±

∂U±

∂y

)
, (y, t) ∈ Ω±∞ ,(3.59)

U+= U− , A+
∂U+

∂y
= A−

∂U−

∂y
on y = 0 ,(3.60)

where

A± =
1

u±y u±∞y
, | lnA±| ≤ C8(C6) .

Multiplying equation (3.59) by U± and integrating by parts, we arrive at the

energy relation

d

2 dt

∫

Ω±
c±(U±)2 dy +

∫

Ω±
A±
(
∂U±

∂y

)2
dy = 0

and, consequently, to the estimate

sup
t∈(0,∞)

∫

Ω±
c±(U±)2 dy +

∫ ∞

0

∫

Ω±
A±
(
∂U±

∂y

)2
dy dt ≤ C9 .

Using the inequality

Y (t) ≡

∫

Ω±
c±(U±)2 dy ≤ C10

∫

Ω±
A±
(
∂U±

∂y

)2
dy ,

where C10 = C10(c
±, α±), we obtain the ordinary differential inequality for the

function Y (t),
dY (t)

dt
+
2

C10
Y (t) ≤ 0 ,

and the estimate

Y (t) ≤ Y (0) e−C11t , C11 = 2/C10 .(3.61)

Using (3.36), we can write

|U±(y, t)|2 ≤ 2

(∫

Ω±
(U±)2 dy

)1/2 (∫

Ω±

(
∂U±

∂y

)2
dy

)1/2
≤ C12 Y

1/2(t) .(3.62)

Combining (3.61) and (3.62), we see that

max
y∈Ω±

|U±(y, t)|2 ≤ C12 Y
1/2(t) ≤ C13 e

−2λ0t .

The last estimate proves (2.9).
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Appendix A – Alterations for the case of prescribed jump of squared

temperature gradient

In this appendix we provide a brief exposition of the alterations that should

be made in the arguments of the article if the problem considered is stated in

equations (1.1)–(1.2), (1.4)–(1.5), and (1.6) (which replaces (1.3)).

Let us begin with stationary solutions. It is easy to verify that the function

p±∞(x) = α±
x−R∞
1±R∞

(A.1)

is the unique solution of the corresponding stationary problem (1.1)–(1.2), (1.4),

(1.6). Here the number R∞ is uniquely defined from the equation

g(R∞) ≡

(
α+

1−R∞

)2
−

(
α−

1 +R∞

)2
− β = 0 ,(A.2)

and it is easily seen that

g′(τ) =
2 (α+)2

(1− τ)3
+
(α−)2

(1 + τ)3
> 0 , τ ∈ (−1, 1), g(±) = ±∞ .

Note that when (1.6) is used instead of (1.3), condition (3.5) assumes the form

u+ = u− ,

(
∂u+

∂y

)−2
−

(
∂u−

∂y

)−2
= β .(A.3)

All the arguments of subsection 3.1 should be repeated almost verbatim, but

the problem considered is changed to (3.4), (A.3), (3.6), and (3.7).

In subsection 3.2, we introduce the new functions

w±(y, t) =

(
1

u±y

)2
(A.4)

which solve the following boundary problem (cf. (3.8)–(3.13)):

c±w±t = w±w±yy −
1

2
(w±y )

2 ,(A.5)

w+ − w− = β ,
1

c+
w+y

(w+)3/2
−
1

c−
w−y

(w−)3/2
= 0 on y = 0 ,(A.6)

∂w±

∂y
(±α, t) = 0 ,(A.7)

w±(y, 0) = w±0 (y) .(A.8)
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Using an argument quite similar to that of subsection 3.2, we establish the esti-

mates

w±(y, t) ≤ C2 , w+(y, t) ≥ β .

In the proof of Lemma 3.1 (see Remark 3.1) for the problem (3.20)–(3.23),

the only alteration that is necessary is changing conditions (3.21) to the following

ones:

v+ = v− ,
v+y

(u+y )3
=

v−y

(u−y )3
.(A.9)

The remaining part of the proof is repeated without change.

In the proof of estimate for R(t) (see Remark 3.2), the only alteration is

changing equation (3.26) to

u+1 (y) = −1 + a

(
α+

y√
1 + a2 β

)
;

the rest of the proof is repeated without change.

In subsection 3.3, the proof of the estimate in (3.35) does not specify the form

of the boundary condition at x = R(t). Hence the assertions of Lemmas 3.1–3.3

and Remark 3.3 are also valid in the case considered here.

Other considerations of the article can be realized in a similar manner.
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