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Abstract: In this paper we consider real generic holomorphic functions f: C→P1(C),

where C is a compact connected Riemann surface of genus g. f is said to be generic if

all the critical values have multiplicity one and it is real if and only if there exists an

antiholomorphic involution σ acting on C such that for all z in C, f ◦ σ(z) = f(z). It is

possible to give a combinatoric description of the monodromy of the unramified covering

obtained by restricting f to C−f−1(B), where B is the set of critical values of f . In this

paper we want to describe the topological type of the antiholomorphic involution σ of

the Riemann surface C that gives the real structure, once we know the monodromy graph

of f . More precisely, we give a lower bound on the number of connected components of

the fixed point locus of σ in terms of the monodromy graph, in the case in which f has

all real critical values. Moreover, we are able to determine the exact number of the fixed

components of σ in terms of the monodromy graph, when the monodromy graph satisfies

some suitable properties.

Introduction

Let f : C→P1(C) be a non constant holomorphic function of degree d, where

C is a compact connected Riemann surface of genus g. We assume that there

exists an antiholomorphic involution σ on C and that f is a real holomorphic

map, that is f ◦ σ(z) = f(z), ∀ z ∈ C.

In [Fr1] it is given a combinatorial description of the monodromies of generic

real algebraic functions.
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The purpose of this paper is to understand the topological type of the involu-

tion σ on C from the monodromy graph of the real algebraic function f : C → P1.

Let Σ be a compact connected Riemann surface of genus g, let M(Σ) denote

the set of all the complex structures of Σ.

Consider a curve with a complex structure X ∈M(Σ), X can be embedded in

a projective space Pn(C) in such a way that the image C of X in the projective

space is defined by a finite number of polynomial equations, i.e. C is a complex

algebraic curve.

If C is defined by real polynomials, then C is invariant under complex con-

jugation in Pn(C). Complex conjugation induces an antiholomorphic involution

on X, σ : X → X.

Viceversa, if X is a Riemann surface together with an antiholomorphic invo-

lution σ, it is possible to choose a pluricanonical embedding of X into Pn(C) in

such a way that σ is the involution induced by complex conjugation. So X is a

complex algebraic curve defined by real polynomials.

An antiholomorphic involution σ : X → X is induced by an orientation re-

versing involution of the topological surface σ : Σ→ Σ.

Definition 0.1. Two orientation reversing involutions σ : Σ→Σ, τ : Σ→Σ

are said to be of the same topological type if there exists a homeomorphism

f : Σ→ Σ such that τ = f ◦ σ ◦ f−1.

Equivalently we could say that σ and τ are of the same topological type

iff Σ/〈σ〉 is homeomorphic to Σ/〈τ〉, where 〈σ〉 is the group generated by

σ : Σ→ Σ.

Let σ : Σ→Σ be an orientation reversing involution, let Σσ be the fixed-point

set of σ and let ν be the number of connected components of Σσ.

Definition 0.2. The orientation reversing involution σ of the surface Σ is

said to be of type (g, ν, a = 0) if Σ−Σσ is not connected. Otherwise σ is of type

(g, ν, a = 1). We say that a real algebraic curve is of type (g, ν, 0), or (g, ν, 1)

according to the type of its topological model.

Remark 0.3. If a(σ) = 0 and Σσ is the fixed point locus of σ then the

number of components of Σ− Σσ is two.

In fact two adjacent connected components A, B of Σ−Σσ are homeomorphic,

since they are exchanged by σ. σ fixes the common boundary of Ā and B̄, so the

closure of A ∪B is a compact subvariety of Σ, hence it concides with Σ.
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Theorem 0.4. Let ν ≥ 0 be an integer. Assume that (g, ν, a) is the topo-

logical type of a real algebraic curve. If a = 1, then 0 ≤ ν ≤ g, if a = 0, then

1 ≤ ν ≤ g + 1 and ν ≡ g + 1 (mod 2). These are the only restrictions for the

topological types of real algebraic curves of genus g.

The second inequality, 1 ≤ ν ≤ g + 1, is a famous theorem of Harnack, the

rest was proved by Klein and Weichhold (see [Kl], [We]).

One computes that there are [(3g + 4)/2] topological types of orientation

reversing involutions of a genus g surface.

In this paper we consider a real generic algebraic function f : C → P1 with

all real critical values and we want to determine the topological invariants a(σ)

and ν(σ) of the antiholomorphic involution σ acting on the Riemann surface C.

In this contest we would like to mention a paper of Natanzon ([Na2]) in which

he studies the Hurwitz space of isomorphism classes of holomorphic mappings

f : C → P1 both in the complex and in the real case, and in which, in particular

in the real case he gives a complete description of the topological invariants of

the antiholomorphic involution acting on C and of the real map f .

In [Fr1] we give a complete description of all the monodromy graphs of generic

real algebraic functions: if C is a compact (connected) Riemann surface of genus

g and f : C → P1(C) is an algebraic function of degree d we say that f is generic

if all its critical values have multiplicity one. In fact we generalize the results

obtained in [C-F] in the case of polynomial mappings, i.e. holomorphic mappings

f : P1(C)→ P1(C) such that there exists a point p in the target for which f−1(p)

consists of only one point.

The problem of giving a topological classification of polynomial mappings was

reduced by Davis and Thom (see [Da], [Th]) to a combinatorial problem, more

precisely in 1957 C. Davis ([Da]) showed that for each choice of n distinct real

numbers there is a real polynomial of degree (n+1) having those as critical values,

and a similar question was asked for complex polynomials. Thom in 1965 ([Th])

observed that by Riemann’s existence theorem the answer is that for each choice

of n distinct complex numbers and an equivalence class of admissible monodromy,

there exists exactly one polynomial, up to affine transformations in the source,

having those points as critical values and the given monodromy.

The case in which f is rational, f−1(∞) has cardinality 2 and f is complex

has been treated by Arnold in [Ar4] where he counts all the monodromy graphs

in the complex case. In this case the monodromy graphs have the same number

n of edges and vertices and the product of the transpositions corresponding to
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the edges consists of two cycles of lengths p and q with p + q = n, where p and

q are the orders of the poles of the Laurent polynomial f . In this paper Arnold

gives a formula that counts such monodromy graphs depending on p and q.

The general (complex) case in which f has only ∞ as non generic critical

value has been recently solved by Goryunov and Lando (see [G-L]). Hurwitz in

1891 published a conjecture giving the number of topological types of rational

functions on P1(C) with fixed orders of poles and fixed critical values, assuming

that all the critical values except ∞ were generic (see [Hu]). Goryunov and

Lando gave a proof of the conjecture using, as Arnold already did for Laurent

polynomials, properties of the Lyashko–Looijenga mapping.

We describe now in detail the structure of the paper: the first section contains

results of [Fr1], namely we consider a compact (connected) Riemann surface C of

genus g and an algebraic function of degree d, f : C → P1(C). We assume that

f is generic, then in particular, by Hurwitz’s formula we know that the number

of critical values of f is 2g + 2d− 2.

If B is a finite set and 0 and ∞ are not in B, by Riemann’s existence theorem

one knows that there is a bijection between

(1) the set of conjugacy classes of homomorphisms µ : π1(P
1(C)−B, 0)→ Sd

such that Im(µ) is a transitive subgroup, and for a given basis γ1, ..., γn
of π1(C− B, 0), µ(γi) = σi is a transposition, the product σ1...σn = id

and

(2) the set of equivalence classes of algebraic maps f of degree d that are

generic with branch set equal to B.

If f is real then B is selfconjugate and viceversa if B is selfconjugate then f

is real if and only if complex conjugation on P1(C) lifts to C.

Once and for all we fix the canonical geometric basis of π1(P
1(C) − B, 0)

described in [C-F] (see Fig. 1). Then as in [B-C], we associate to the class, modulo

inner automorphisms of Sd, of the monodromy of an algebraic generic function

f : C → P1(C) of degree d a connected graph with d vertices and 2g + 2d − 2

labeled edges in such a way that the vertices correspond to the points in the fiber

f−1(0), the edge labeled by i connects two vertices iff they are interchanged by

µ(γi).

We state as in [Fr1] all the necessary conditions that a graph must satisfy in

order to be the monodromy graph of a generic real algebraic function of degree d

from a compact Riemann surface of genus g. Then we state the theorem of [Fr1]

where we prove that the conditions that we have found, are also sufficient.
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The reduced graph Gred of the monodromy graph G of f is defined to be

the graph obtained from G in this way: for every two vertices we remove some

edges of G in such a way that there remains only one edge connecting the two

vertices.

A polygon contained in G is said to be odd if it has an odd number of edges.

We obtain the two following results

Theorem 0.5. Let C be a real smooth algebraic curve of genus g, σ : C → C

be the antiholomorphic involution that gives the real structure, assume that

ν(σ) 6= 0, let f : C → P1
C be a generic real algebraic function of degree d ≥ 2

(f ◦ σ(x) = f(x), ∀x ∈ C).

Assume that all the critical values of f are real and positive (if they are not

positive it suffices to perform a base point change).

Let G be the monodromy graph of f . Assume furthermore that any two

polygons contained in Gred have no common edges. Set σ∗ : H1(C,Z/2Z) →

H1(C,Z/2Z). Then

dim(σ + identity)∗
(

H1(C,Z/2Z)
)

= #{odd polygons in Gred} .

So

ν(σ) = g + 1−#{odd polygons in Gred} .

In particular, if Gred does not contain any polygon, ν(σ) = g + 1.

Theorem 0.6. Let C be a real smooth algebraic curve of genus g, σ : C → C

be the antiholomorphic involution that gives the real structure, assume that

ν(σ) 6= 0, let f : C → P1
C be a generic real algebraic function of degree d ≥ 2

(f ◦ σ(x) = f(x), ∀x ∈ C).

Assume that all the critical values of f are real and positive (if they are not

positive it suffices to perform a base point change).

Let G be the monodromy graph of f . Then

dim(σ + identity)∗
(

H1(C,Z/2Z)
)

≤ ρ(Gred) ,

where ρ(Gred) is the minimal number of polygons of Gred whose union is the union

of all the polygons of Gred. So ν(σ) ≥ g + 1− ρ(Gred).
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1 – Monodromies of generic real algebraic functions

In this section we explain some results that are in [Fr1]. Let C be a compact

(connected) Riemann surface of genus g; a necessary condition for an algebraic

function f: C→P1 to be real is that the branch locus B of f must be selfconjugate.

Therefore the critical values of f are k real critical values w1, ..., wk and m pairs

(vi, v̄i) of complex conjugate critical values where vi is in the upper half plane.

If B is selfconjugate f is real if and only if complex conjugation on P1 lifts to

C. This means that complex conjugation fixes the monodromy class [µ] (obviously

we have chosen a basis of π1).

We suppose that 0 and ∞ are not critical values and we choose a geometric

basis of π1(P
1−B, 0) by taking γ1, ..., γk loops around wi and pairs of selfconjugate

loops (δi, δ̄i) around (vi, v̄i), where δi is in the upper half plane (see Fig. 1). The

circles around the critical values in the loops are performed counterclockwise.

Fig. 1

Suppose now that f : C → P1 is a generic algebraic function. We partition

the set B of critical values into two subsets: the set of negative critical values

ws
− < ... < w1

− < 0 and the set of positive critical values 0 < w1
+ < ... < wr

+.

With the choice of a geometric basis for π1(P
1(C)−B, 0) as in [C-F] (see Fig. 1)

we have: γ̄+
i = (γ+

1 )
−1

(γ+
2 )

−1
... (γ+

i−1)
−1

(γ+
i )

−1
γi−1

+... γ1
+, analogously for γ̄i

−.
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We can therefore conclude that µ is the monodromy of a real algebraic function

if and only if there exists a permutation α of period 2 (induced by complex

conjugation on f−1(0)) such that, if τi=µ(γ
+
i ), τ

′
i=µ(γ

−
i ), νj=µ(δj), ν̄j=µ(δ̄j),

ρi−1= τ1τ2...τi−1, ρ
′
i−1= τ ′1...τ

′
i−1, we have:

α τi α = ρi−1 τi ρ
−1
i−1 , α τ ′i α = ρ′i−1 τ

′
i ρ

′−1
i−1 , α νj α = ν̄j . (∗∗)

Let now G be the monodromy graph of f , E+ be the subgraph of G with the

edges labeled by the w+
j ’s. Analogously we define E−. Let Si be the subgraph of

G with the edges labeled by those w+
j ’s with j ≤ i. In the same way we define

S ′
i; finally let G∗ be the subgraph of G with labels given by the νj ’s and by the

ν̄j ’s. For a subgraph S, we define supp(S) as the union of the vertices of S.

Remark 1.1. If we order the loops δi’s of the basis of π1 in increasing order

starting from the first that we meet if we move counterclockwise with respect to

the positive direction of R, we have:

γ+
r ...γ

+
1 δ1...δm γ

−
s ...γ

−
1 δ̄m...δ̄1 = id ,

ν̄1...ν̄m τ
′
1...τ

′
s νm...ν1 τ1...τr = id , r + s+ 2m = 2d+ 2g − 2 .

Remark 1.2. Every vertex of G is contained in at least two edges.

Proof: If there exists one vertex which is contained in only one edge of G,

this is moved only by one transposition, thus the product of all the transpositions

corresponding to the edges of G is not the identity.

Consider now the ordering on the labels of the edges induced by the natu-

ral ordering on R of the critical values, i.e. σ1 = τ ′s, ..., σs = τ ′1, σs+1 = τ1, ...,

σs+r = τr.

To state the necessary conditions that G must satisfy in order to be the mono-

dromy graph of a generic real algebraic function, we need some technical defini-

tions.

Definition 1.3. Let T be a subgraph of E=E+∪E−. Let v be a vertex of T .

Let (k1, ..., kt) ∈ N
t with ki < ki+1 ∀ i = 1, ..., t− 1, such that σk1

, ..., σkt
are the

transpositions that correspond to all the edges of T that contain v. We say that

T is saturated in v if ∀m such that σm is a transposition corresponding to an

edge of E containing v, then either m < k1, or m > kt, or m ∈ {k1, ..., kt}.

T is said to be saturated if it is saturated in every vertex v.
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Definition 1.4. A triod is a graph with three edges and 4 vertices with

respective valences 3, 1, 1, 1.

Definition 1.5. An order degenerate saturated triod is a saturated

graph which is associated to the following transpositions: σi = (a, b) = σk,

σj = (b, c), i < j < k, c 6= a (see Fig. 2(a)).

Definition 1.6.

• A 3-path is a graph made of three consecutive distinct edges.

• A three-path with labeled edges is said to be snake if for the labeled edge

in the middle the labels of the neighboring edges are either both greater

or both smaller than its label (see Fig. 2(b)).

• A non-degenerate triangle is the graph associated to the following

transpositions: σi = (a, b), σj = (b, c), σk = (c, a), with a, b, c all distinct

(see Fig. 2(c)).

Fig. 2

Let us now suppose that all the critical values are real and positive, so τi = σi
∀ i. With simple computations, using (∗∗), (see [Fr1]) one can prove the following

lemmas.

Lemma 1.7. (See [Fr1]) There don’t exist saturated triods T in E and there

don’t exist order degenerate saturated triods.

Lemma 1.8. (See [Fr1]) Any saturated tree-path is snake and there doesn’t

exist any non-degenerated saturated triangle.
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Observe that in [C-F] we proved that the monodromy graphs that are associ-

ated to real generic polynomials are only linear snakes, that means that there are

no triods, and that every three path is snake. In this case, since the graph is a

tree, the condition of non existence of triods is equivalent to the condition of non

existence of saturated triods, so 1.7 and 1.8 give generalizations of the necessary

conditions found for polynomials in [C-F].

Lemma 1.9. (See [Fr1]) Let G be the monodromy graph of a real generic

algebraic function f : C → P1(C) of degree d ≥ 2, where C is a Riemann surface

of genus g. If g = 0 and T is a subgraph of G made of two vertices and r edges that

connect the two vertices, then r ≤ 2. If g > 0 and T is a saturated subgraph of G

made of two vertices and r edges that connect the two vertices, then r ≤ 2 + 2g,

∀ d ≥ 2.

The proof of Lemma 1.9, which we will not reproduce, is made in two steps:

at first we prove the statement with simple geometric methods in the case of

genus g = 0, then we use induction on g.

Now we would like to generalize the results of 1.7 and 1.8, but we need the

following

Definition 1.10. Let a be a vertex of a graph G with labeled edges. We say

that a set of indices {i0, ..., ir, i0 < i1 < ... < ir} is a saturated angle in a if

a ∈ supp(σis), ∀ s = 0, ..., r, and if ∀ j ≥ 1 ij = min{m > ij−1| a ∈ supp(σm)}.

Recall that we are now assuming σi = τi, ∀ i. Using (∗∗) we can show the

following two lemmas that generalize respectively 1.7 and 1.8.

Lemma 1.11. (See [Fr1]) Let G be as above. Let τh = (b, c). Let h<r1<r2<

...<rk < i be a saturated angle in b and suppose that τr1 6= τh, τri
= τr1 = (b, d)

∀ i = 1, ..., k, d 6= c, τi = (a, b), a 6= d.

Then k is even.

Lemma 1.12. (See [Fr1]) Let τh= (c, d), h < r1 < r2 < ... < rm a saturated

angle in d, τr1 = τr2 = ... = τrm = (d, b), b 6= c. Let i = min{r > rm| b ∈ supp(τr)},

τi = (b, a), a 6= d. Then m is even.

We are now ready to define on a graph G that satisfies these necessary condi-

tions an involution α.
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Theorem 1.13. (See [Fr1]) Let d, g be two integers, d ≥ 3, g ≥ 0. Let G be a

connected graph with d vertices and 2d+2g− 2 edges with labels τ1, ..., τ2d+2g−2

that verifies the necessary conditions 1.1, 1.2, 1.9, 1.11, 1.12. Then there is a

canonical procedure which associates to G an involution α.

We don’t give the proof of the theorem, which is in [Fr1], but we describe how

α is defined, since we will use its definition in the sequel.

Every vertex b is in the support of two edges of E+.

Let i = min{h| b ∈ supp(τh)}, j = min{k > i| b ∈ supp(τk)}, τi = (a, b).

1. τi 6= τj . We define α(b) = a.

2. τi = τj = (a, b).

(a) ∃h>j| b ∈ supp(τh) and τh 6=τi. Choose h=min{k>j| b ∈ supp(τk),

τk 6= τi}. Let i = r1 < r2 < ... < rt < h be a saturated angle in b.

By assumption τrk
= (a, b) ∀ k = 1, ..., t.

If t is even we define α(b) = b.

If t is odd we define α(b) = a.

(b) ∀h > j s.t. b ∈ supp(τh), τh = τj . Since d ≥ 3 and G is connected,

there exists h| a ∈ supp(τh) and τh 6= τi.

(i) i = min{k| a ∈ supp(τk)} and a ∈ supp(τh), h > i, τh 6= τi.

Take h = min{k > i| a ∈ supp(τk), τk 6= τi}. Let i = r1 <

r2 < ... < rt < h be a saturated angle in a, then by assumption

τrj
= (a, b) ∀ j = 1, ..., t.

Then if t is even we define α(b) = b.

If t is odd we define α(b) = a.

(ii) a ∈ supp(τh) with h < i. Then τh 6= τi since b /∈ supp(τk) with

k < i.

We define α(b) = b.

Let us now suppose that the critical values of f are real but not necessarily

positive.

Remark 1.14. Suppose that τ1=σl, that we change base point in π1(C−B, 0)

and that we choose as base point the point a on the real axis such that w+
1 <

a < w+
2 . Then if we call σ̂1, ..., σ̂m the totally ordered set of transpositions that

we get, we have: σ̂i = σi, for i ≥ l; σ̂j = σl σj σl, for j ≤ l − 1.

In order to give the general statement we introduce the following
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Definition 1.15. An odd multiple triod is a graph whose edges correspond

to the transpositions: σh = (b, c), σr1 = ... = σrk
= (b, d), c 6= d, σi = (a, b), a 6= d,

where h < r1 < ... < rk < i is a saturated angle in b and k is odd (e.g. a non

degenerate or an order degenerate triod).

An odd multiple path is a graph whose edges correspond to the transpo-

sitions σh = (c, d), σr1 = ... = σrm = (d, b), σi = (b, a) where b 6= c, a 6= d,

h < r1 < ... < rm is a saturated angle in d, i = min{r > rm|b ∈ supp(σr)} and m

is odd (e.g. a non-degenerate triangle or a non snake 3-path).

Definition 1.16. A multiple-bond-snake pair is a pair ((σ1, ..., σm), l), where

σ1, ..., σm is a totally ordered set of transpositions, l ∈ {1, ...,m + 1} satisfying

the following:

1. σmσm−1... σl σ1... σl−1 = id;

2. if G is the associated graph, then G doesn’t contain any odd multiple triod;

3. G doesn’t contain any odd multiple path;

4. G satisfies 1.9.

Definition 1.17. The admissible operation is the following operation:

((σ1, ..., σm), l) → (σlσ1σl, ..., σlσl−1σl, σl, ..., σm, l + 1) .

Then one can prove the following

Proposition 1.18. (See [Fr1]) The admissible operation carries the set of

multiple-bond-snake pairs to itself.

Finally in section 2 of [Fr1] we prove the following

Theorem 1.19. (See [Fr1]) Let g, d be two integers such that d ≥ 2, g ≥ 0,

let G be a connected graph with d vertices and 2g+2d−2 edges that is associated

to the multiple-bond-snake pair (σ1, ..., σ2d+2g−2, l = 1) (since l = 1, τi = σi, ∀ i).

Let α be the canonical involution provided by 1.13, then α satisfies (∗∗), therefore

G is the monodromy graph of a generic real algebraic function f : C → P1(C)

of degree d whose critical values are all real and positive, where C is a compact

Riemann surface of genus g.



12 P. FREDIANI

2 – Topological types of involutions

Let f : C → P1
C be a real generic algebraic function, let σ : C → C be the

antiholomorphic involution that gives the real structure, i.e. f ◦ σ(x) = f(x),

∀x ∈ C.

We would like to describe the topological invariants of the involution σ, once

we know the monodromy graph of f . On this subject we would like to mention

a paper of Natanzon (see [Na2]) in which he studies both the complex and the

real Hurwitz space.

We would like now to understand from the monodromy graph of a real generic

algebraic function f : C → P1 the topological type of the antiholomorphic invo-

lution σ : C → C.

We will partially solve this problem in the case in which f has only real

critical values by computing the action of the involution σ on H1(C,Z/2Z), using

Reidemeister–Schreier presentation of π1(C).

Theorem 2.1. Let C be a real smooth algebraic curve of genus g, σ : C→C

be the antiholomorphic involution that gives the real structure, assume that

ν(σ) 6= 0, let f : C → P1
C be a generic real algebraic function of degree d ≥ 2

(f ◦ σ(x) = f(x), ∀x ∈ C).

Assume that all the critical values of f are real.

Let G be the monodromy graph of f , set σ∗ : H1(C,Z/2Z) → H1(C,Z/2Z).

If G doesn’t contain any (non degenerate) polygon as a subgraph, then

σ∗ ≡ identity : H1(C,Z/2Z)→ H1(C,Z/2Z) ,

so a(σ) = 0, ν(σ) = g + 1.

Proof: We assume that all the critical values of f are positive, the general

case follows easily by base point change in π1(P
1 − {critical values of f}).

By the hypothesis we have made on the graph G, we know that there exists a

vertex b such that if r1, ..., rt are the labels of all the edges that pass through b,

then τr1 = τr2 = ... = τrt = (b, a).

Let i = min{h| b ∈ supp(τh)}, j = min{k > i| b ∈ supp(τk)}.

We immediately see from the hypothesis on b that the first case in 1.13 can

be excluded. We therefore assume that τi = τj , i.e. we restrict our attention to

case two of 1.13.

In order to find the action of σ∗ on H1(C,Z/2Z), we give a presentation of

H1(C,Z/2Z) using the Reidemeister–Schreier method (see e.g. [M-K-S]).
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Observe that, since the graph doesn’t contain any polygon and the product

τ1τ2...τ2d+2g−2 = id, for each pair of two vertices {a, b}, there are at least two

edges that connect {a, b}.

First of all we find a presentation of π1(C − f−1(B), b) where B is the set of

critical values of f , b ∈ f−1(0) corresponds to the vertex of the graph with the

properties described above, then we have to take the quotient for some relations

to determine π1(C, b). Finally we take the quotient for the commutators and we

consider everything in Z/2Z, in order to determine H1(C,Z/2Z).

Note that the order in which we perform these operations is important, since

we cannot abelianize before we have found a Reidemeister–Schreier presentation

of the fundamental group.

In order to apply the Reidemeister–Schreier method we must find a Schreier

system of representatives for π1(P
1 − B, 0) modulo f∗π1(C − f−1(B), b). We

choose a maximal tree contained in G in this way: for each two vertices that are

connected by an edge, we choose the edge with the smallest label.

In our situation we have τi = τj = τr3 = ... = τrt = (a, b), τh=(a, c) with c 6= b

and where h is the minimum of the labels of the edges that connect a and c

(see Fig. 3).

Fig. 3

A Schreier system of representatives for π1(P
1−B, 0) modulo f∗ π1(C−f

−1(B), b)

is the following:

L0 = 1 , L1 = γi , L2 = γi γh , L3 = γi γh γr , ...

and so on following the maximal tree that we have chosen.

After some easy computations we see that a set of generators for H1(C,Z/2Z)

is given as follows:

g1 = γi γj , g2 = γi γr3 , g3 = γi γr4 , ... , gt−1 = γi γrt ;

let m1=h<m2<...<mk be a saturated angle in a and τms = (a, c), ∀ s=1, ..., k,

we continue the list of generators as follows:

gt = γi γh γm2
γ−1
i , gt+1 = γi γh γm3

γ−1
i , ... , gt+k−2 = γi γh γmk

γ−1
i ;
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now if r is the minimum of the labels of the edges that connect c with a vertex d

different from a and b, and s1 = r < s2 < ... < sl is a saturated angle in c and

τsj
= (c, d), ∀ j = 1, ..., l, then we continue the list of generators as follows:

gt+k−1 = γi γh γr γs2 γ
−1
h γ−1

i , gt+k = γi γh γr γs3 γ
−1
h γ−1

i , ... ,

gt+k+l−3 = γi γh γr γsl
γ−1
h γ−1

i .

The complete list of generators of H1(C,Z/2Z) is made by going on in this way

using all the edges of the maximal tree that we have chosen above.

Notice that we must take the quotient by some relations. More precisely the

relations are the following:

R1 = γt1 , R2 = γt2 , ... , Rn = γtn ,

where {γt1 , ..., γtn} is the set of all the loops such that the corresponding trans-

positions {τt1 , ..., τtn} do not move b;

Rn+1 = γ2
i , Rn+2 = γ2

j , Rn+3 = γ2
r3
, ... ,

Rn+t = γ2
rt
, Rn+t+1 = γiγ

2
hγ

−1
i , Rn+t+2 = γiγ

2
m2
γ−1
i , Rn+t+3 = γiγ

2
m3
γ−1
i , ... ,

Rn+t+k = γiγ
2
mk
γ−1
i , Rn+t+k+1 = γiγhγiγ

−1
h γ−1

i , Rn+t+k+2 = γiγhγjγ
−1
h γ−1

i ,

Rn+t+k+3 = γiγhγr3γ
−1
h γ−1

i , ... ,

Rn+k+2t = γiγhγrtγ
−1
h γ−1

i , Rn+k+2t+1 = γiγhγ
2
rγ

−1
h γ−1

i ,

Rn+k+2t+2 = γiγhγ
2
s2
γ−1
h γ−1

i , Rn+k+2t+3 = γiγhγ
2
s3
γ−1
h γ−1

i , ... ,

Rn+k+2t+l = γiγhγ
2
sl
γ−1
h γ−1

i , Rn+k+2t+l+1 = γiγhγrγiγ
−1
r γ−1

h γ−1
i ,

Rn+k+2t+l+2 = γiγhγrγjγ
−1
r γ−1

h γ−1
i , Rn+k+2t+l+3 = γiγhγrγr3γ

−1
r γ−1

h γ−1
i ,

... ,

Rn+k+3t+l = γiγhγrγrtγ
−1
r γ−1

h γ−1
i , Rn+k+3t+l+1 = γiγhγrγhγ

−1
r γ−1

h γ−1
i ,

Rn+k+3t+l+2 = γiγhγrγm2
γ−1
r γ−1

h γ−1
i , Rn+k+3t+l+3 = γiγhγrγm3

γ−1
r γ−1

h γ−1
i ,

... ,

Rn+k+3t+l+k = γiγhγrγmk
γ−1
r γ−1

h γ−1
i ,

and so on using the edges of the maximal tree that we have chosen above.

Finally there is also the relation

S1 = γ1 γ2 ... γ2d+2g−2 ,
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that comes from π1(P
1−B, 0) and all the relations conjugated to S1 by the paths

of the maximal tree:

S2 = (γi) γ1 γ2 ... γ2d+2g−2 (γ
−1
i ) ,

S3 = (γi γh) γ1 γ2 ... γ2d+2g−2 (γ
−1
h γ−1

i ) ,

S4 = (γi γh γr) γ1 γ2 ... γ2d+2g−2 (γ
−1
r γ−1

h γ−1
i ) ,

and so on. Finally we must abelianize and consider everything in Z/2Z, i.e.

gj = g−1
j ∀ j.

So we start now with case 2.

Case 2.(a) is excluded by the hypothesis on b. In fact there cannot exist h > j

such that b ∈ supp(τh) and τh 6= τi.

Therefore we treat case 2.(b), that is we assume that ∀h > j such that

b ∈ supp(τh), then τh = τj and there exists h such that a ∈ supp(τh) and τh 6= τi.

We assume at first that we are under the hypothesis of case 2.(b)(i), that is

i = min{k| a ∈ supp(τk)}, a ∈ supp(τh), h > i, τh 6= τi. Let i = r1 < j = r2 <

r3 < ... < rt < h be a saturated angle in a such that τi = τj = τr3 = ... = τrt .

If t is even then σ(b) = b, if t is odd then σ(b) = a.

Suppose that t is even, so σ(b) = b.

Recall that σ∗(γn) = γ−1
1 γ−1

2 ...γ−1
n−1γ

−1
n γn−1...γ2γ1 ∀n.

Thus, using the relations written above we get:

σ∗(g1) = σ∗(γiγj)

= (γ−1
1 γ−1

2 ...γ−1
i−1γ

−1
i γi−1...γ2γ1)

. (γ−1
1 γ−1

2 ...γ−1
i−1γ

−1
i γ−1

i+1...γ
−1
j−1γ

−1
j γj−1...γi+1γiγi−1...γ2γ1)

= γ−1
1 γ−1

2 ...γ−1
i−1γ

−2
i γ−1

i+1...γ
−1
j−1γ

−1
j γj−1...γi+1γiγi−1...γ2γ1

= (γ−1
1 )(γ−1

2 )...(γ−1
i−1)(γ

−2
i )(γ−1

i+1)...(γ
−1
j−1)(γ

−2
j )(γjγ

−1
i )(γiγj−1γ

−1
i )

... (γiγi+1γ
−1
i )(γ2

i )(γi−1)...(γ1)

= (γjγ
−1
i ) = g−1

1 = g1 .

Analogously we have: σ∗(g2) = σ∗(γiγr3) = g2. Similarly one sees that

σ∗(gs) = σ∗(γiγrs+1
) = gs ∀ s = 1, ..., t− 1.

With a similar computation we obtain: σ∗(gt) = σ∗(γiγhγm2
γ−1
i ) = gt.

Analogously one sees that σ∗(gt+s) = gt+s ∀ s. Therefore σ∗ = Id.
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We consider now case 2.(b)(i) with t odd, so that σ(b) = a.

Observe that since τ2g+2d−2τ2g+2d−1...τ1(a) = a, and G doesn’t contain any

polygon, there must exist an odd number of edges connecting a and b with labels

greater than h.

Therefore we have i = r1 < j = r2 < r3 < ... < rt < h < m1 < m2 < ... < ms,

a saturated angle in a where τi = τj = τr3 = ... = τrt = τm1
= ... = τms = (a, b),

τh = (a, c) with c 6= b and both t and s are odd.

Now since τ2g+2d−2τ2g+2d−1...τ1(b) = b, and G doesn’t contain any polygon,

there must exist h < p1 < p2 < ... < pm < m1 < ... < ms, a saturated angle in a

where m is odd, τh = τp1 = ... = τpm = (a, c) (see Fig. 4).

Fig. 4

A set of generators for π1(C, b) can be found as we have explained above.

Now, if we let σ∗ act on π1(C, b) we have to take in the target a = σ(b) as

base point. Thus we have another maximal tree and therefore another set of

generators and relations for π1(C, a).

We only write the set of generators, the relations can be found as above.

We call the generators of π1(C, b) gi’s as before, the generators of π1(C, a) in

the target ψi’s.

ψ1 = γiγj = g1, ψ2 = γiγr3 = g2, ψ3 = γiγr4 = g3, ..., ψt−1 = γiγrt = gt−1 ,

ψt = γhγp1 , ψt+1 = γhγp2 , ..., ψt+m−1 = γhγpm ,

ψt+m = γiγm1
, ψt+m+1 = γiγm2

, ..., ψt+m+s−1 = γiγms .

And so on following the maximal tree.

We perform now σ∗.

σ∗(g1) = σ∗(γiγj)

= (γ−1
1 γ−1

2 ...γ−1
i−1γ

−1
i γi−1...γ1)

. (γ−1
1 ...γ−1

i−1γ
−1
i γ−1

i+1...γ
−1
j−1γ

−1
j γj−1...γi+1γiγi−1...γ1) =
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= (γ−1
1 )...(γ−1

i−1)(γ
−2
i )(γ−1

i+1)...(γ
−1
j−1)(γ

−2
j )(γjγ

−1
i )(γiγj−1γ

−1
i )

... (γiγi+1γ
−1
i )(γ2

i )(γi−1)...(γ1)

= γjγ
−1
i = ψ1 .

In the same way one sees that σ∗(gj) = ψj ∀ j = 1, ..., t− 1.

Analogously we can compute the image of the other generators and we obtain:

σ∗(γiγhγp1γ
−1
i ) = ψt.

Observe that since we have performed a base point change in the target, we

have Id∗(γiγhγp1γ
−1
i ) = γhγp1 = ψt.

With a similar computation it is easy to see that

σ∗(γiγhγpl
γ−1
i ) = γhγpl

= Id∗(γiγhγpl
γ−1
i ) , ∀ l = 1, ...,m .

The image of the last group of generators can be computed analogously and we

get: σ∗(γiγm1
) = ψtψt+1...ψt+m−1ψt+m.

Now we show, using the relations, that ψtψt+1...ψt+m−1 = 1.

In fact recall that
γ1γ2...γ2g+2d−2 = 1 ,

γiγ1γ2...γ2g+2d−2γ
−1
i = 1 .

So we have to write these two relations in terms of the generators ψ ′
js.

1 = γ1γ2...γ2g+2d−2

= (γ1)...(γi−1)(γiγi+1γ
−1
i )...(γiγj−1γ

−1
i )(γiγj)(γj+1)...(γr3γ

−1
i )

... (γrtγ
−1
i )(γiγrt+1γ

−1
i )...(γiγhγ

−1
i )...(γiγp1γ

−1
i )...(γiγpmγ

−1
i )

... (γiγm1
)(γm1+1)...(γiγms)(γms+1)...(γ2d+2g−2)

= ψ1ψ2...ψt−1ψt+mψt+m+1...ψt+m+s−1 .

1 = γiγ1γ2...γ2g+2d−2γ
−1
i

= (γiγ1γ
−1
i )...(γiγi−1γ

−1
i )(γ2

i )(γi+1)...(γj−1)(γjγ
−1
i )(γiγj+1γ

−1
i )

... (γiγr3)(γr3+1)...(γiγrt)(γrt+1)...(γh−1)(γhγh+1γ
−1
h )...(γhγp1)(γp1+1)

... (γp2γ
−1
h )(γhγp2+1γ

−1
h )...(γhγpm)(γpm+1)...(γm1

γ−1
i )(γiγm1+1γ

−1
i )

... (γiγm2
)...(γmsγ

−1
i )(γiγms+1γ

−1
i )...(γiγ2g+2d−2γ

−1
i )

= ψ1ψ2...ψt−1(ψtψt+1...ψt+m−1)ψt+mψt+m+1...ψt+m+s−1 .

But from this second relation we get

ψtψt+1...ψt+m−1 = ψ1...ψt−1ψt+mψt+m+1...ψt+m+s−1 = 1

by the first relation.
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So we have σ∗(γiγm1
) = ψt+m = Id∗(γiγm1

). In the same way we see that

σ∗(γiγmk
) = ψt+m+k−1 = Id∗(γiγmk

), ∀ k = 1, ..., s.

Therefore we have proven that in case 2.(b)(i)

σ∗ = Id∗ : H1(C,Z/2Z)→ H1(C,Z/2Z) .

It remains case 2.(b)(ii).

Here we assume that τi = τj = (a, b), ∀h > j such that b ∈ supp(τh), τh = τj ,

a ∈ supp(τh), h < i, so τh 6= τi and σ(b) = b.

Take b as base point, h = min{r| a ∈ supp(τr)}, so γi and γh are two edges of

the maximal tree.

The generators and relations of π1(C, b) are described above, whence we have

to calculate σ∗(gj) ∀ j.

Since G doesn’t contain any polygon and τ2g+2d−2τ2d+2g−1...τ1(a) = a, there

must exist at least an index p1 such that τp1 = τh = (a, c), p1 > h.

Now by 1.7, we know that if h<p1<p2<...<pm<i = r1<j = r2 < ... < rt <

m1 < m2 < ... < ms is a saturated angle in a with τh = τp1 = ... = τpm = (a, c),

and τi = τj = τr3 = ... = τrt = (b, a), then t is even.

Now since τ2g+2d−2τ2d+2g−1...τ1(a) = a, and there aren’t polygons, then m is

even and s is odd, or m is odd and s is even. But we know that σ(a) = c, so m

cannot be odd, otherwise {σ(b), σ(a)} = {ρi−1(b), ρi−1(a)} = {b, a}, and this is a

contradiction.

Therefore we have m even and s odd (see Fig. 5).

Fig. 5

We calculate at first

σ∗(g1) = σ∗(γiγj)

= (γ−1
1 γ−1

2 ...γ−1
h−1γhγ

−1
h+1...γ

−1
p1−1γ

−1
p1
γ−1
p1+1...γ

−1
p2−1γ

−1
p2
γ−1
p2+1

... γ−1
pm−1γ

−1
pm
γ−1
pm+1...γ

−1
i−1γ

−1
i γi−1...γpm+1...γp2 ....γp1 ...γh...γ1) .
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. (γ−1
1 γ−1

2 ...γ−1
h−1γhγ

−1
h+1...γ

−1
p1−1γ

−1
p1
γ−1
p1+1...γ

−1
p2−1γ

−1
p2
γ−1
p2+1

... γ−1
pm−1γ

−1
pm
γ−1
pm+1...γ

−1
i−1γ

−1
i γ−1

i+1...γ
−1
j−1γ

−1
j γj−1...γiγi−1

... γpm+1...γp2 ...γp1 ...γh...γ1)

= (γ−1
1 )...(γ−1

h−1)(γ
−1
h )...(γ−1

p1
)...(γ−1

p2
)...(γ−1

pm
)...(γ−1

i−1)(γ
−2
i )(γ−1

i+1)

... (γ−1
j−1)(γ

−2
j )(γjγ

−1
i )(γiγj−1γ

−1
i )...(γiγi+1γ

−1
i )(γ2

i )(γi−1)

... (γpm)...(γp1)...(γh)...(γ1)

= (γjγ
−1
i ) = g1 .

Analogously we obtain: σ∗(gk) = σ∗(γiγrk+1) = gk ∀ k = 1, ..., t− 1.

With a similar computation we get: σ∗(gt) = gt and

σ∗(gt+l) = σ∗(γiγpl+1
γ−1
h γ−1

i ) = gt+l , ∀ l = 1, ...,m− 1 .

Finally we have to calculate σ∗(gt+m) and we obtain:

σ∗(gt+m) = g1g2...gt−1gt+m .

Then we see that from the relations we get g1g2...gt−1 = 1. In fact, we have

γ1γ2...γ2d+2g−2 = 1 and

1 = γ1γ2...γ2d+2g−2

= (γ1)...(γh−1)(γh)...(γp1)...(γpm)...(γi−1)(γiγi+1γ
−1
i )...(γiγj−1γ

−1
i )(γiγj)

... (γr3γ
−1
i )...(γiγrt)(γrt+1)...(γm1

)...(γms)...(γ2g+2d−2)

= g1...gt−1 .

So σ∗(gt+m) = gt+m.

Similarly one can verify that σ∗(gt+m+r) = σ∗(γiγhγmr+1
γ−1
i ) = gt+m+r,

∀ r = 1, ..., s− 1.

Thus we have proven that σ∗ : H1(C,Z/2Z) → H1(C,Z/2Z) is the identity

in all the cases of 1.13.

Now, in order to conclude that a(σ) = 0 and ν(σ) = g + 1 we use the fact

that for a real curve (C, σ), ν(σ) = g + 1− dim(σ + id)∗(H1(C,Z/2Z)) (see e.g.

[Ci-Pe], Corollary 4.1.8).

We have just proven that σ∗ = id, so ν(σ) = g + 1 and therefore a(σ) = 0.

Let us now define the reduced graph Gred of the monodromy graph G of f to

be the graph obtained from G in this way: for every two vertices we remove some

edges of G in such a way that there remains only one edge connecting the two

vertices.
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A polygon in G is said to be odd if it has an odd number of edges.

We prove the following

Theorem 2.2. Let C be a real smooth algebraic curve of genus g, σ : C → C

be the antiholomorphic involution that gives the real structure, assume that

ν(σ) 6= 0, let f : C → P1
C be a generic real algebraic function of degree d ≥ 2

(f ◦ σ(x) = f(x), ∀x ∈ C).

Assume that all the critical values of f are real and positive (if they are not

positive it suffices to perform a base point change).

Let G be the monodromy graph of f . Assume furthermore that any two

polygons contained in Gred have no common edges. Set σ∗ : H1(C,Z/2Z) →

H1(C,Z/2Z). Then

dim(σ + identity)∗(H1(C,Z/2Z)) = #{odd polygons in Gred} .

So

ν(σ) = g + 1−#{odd polygons in Gred} .

Proof: Assume first of all that the graph G has only 3 vertices and that Gred
is a triangle. Then there exists a vertex which is fixed by σ.

Let us now take as base point one vertex of the triangle which is fixed by σ,

let us call it b, then since σ(b) = b, and case 2.(b) of 1.13 cannot occur (since b

is a vertex of a triangle), b must satisfy the hypothesis of 2.(a) of 1.13.

So we take as base point a vertex b such that σ(b) = b and b satisfies the

hypothesis of case 2.(a) of 1.13.

Assume that τi = τj = τr1 = ... = τrt = (a, b), τh = τm1
= ... = τmr = (b, c),

τk = (c, a), i < j < r1 < ... < rt < h < m1 < ... < mr is a saturated angle in b.

k can either be smaller or bigger than i.

Assume first of all that k < i. Let kn < kn−1 < ... < k1 < k < i be a saturated

angle in a, τkj
= τk = (c, a), ∀ j = 1, ..., n.

As in Theorem 2.1 we have generators for H1(C,Z/2Z):

g1 = γiγj , g2 = γiγr1 , ..., gt−1 = γiγrt , gt = γhγm1
, ..., gt+r−1 = γhγmr ,

g′1 = γiγkγ
−1
h , g′2 = γiγk1

γ−1
h , ..., g′n+1 = γiγkn

γ−1
h .

The relations are analogue to the relations in Theorem 2.1, so we have:

S1 = γ1...γ2g+2d−2 = g1g2...gt−1gtgt+1...gt+r+1 ,
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therefore we get g1g2...gt−1 = gtgt+1...gt+r+1.

S2 = γiγ1γ2...γ2g+2d−2γ
−1
i = g′1...g

′
n+1g1...gt−1 ,

whence we have g1g2...gt−1 = g′1g
′
2...g

′
n+1.

σ∗(g1) = σ∗(γiγj)

= (γ−1
1 γ−1

2 ...γ−1
i−1γ

−1
i γi−1...γ1)

. (γ−1
1 γ−1

2 ...γ−1
i−1γ

−1
i γ−1

i+1...γ
−1
j−1γ

−1
j γj−1...γiγi−1...γ1)

= (γ1)
−1...(γi−1)

−1(γi)
−2(γi+1)

−1...(γj−1)
−1(γj)

−1(γjγ
−1
i )(γiγj−1γ

−1
i )

... (γiγi−1γ
−1
i )(γ2

i )(γi−1)...(γ1)

= g1 .

Analogously one sees that σ∗(gj) = gj , ∀ j = 1, ..., t−1, and σ∗(gt+j) = gt+j ,

∀ j = 0, ..., r+1.

σ∗(g
′
1) = σ∗(γiγkγ

−1
h )

= (γ−1
1 ...γ−1

kn
...γ−1

k2
...γ−1

k1
...γ−1

k−1γ
−1
k ...γ−1

i−1γ
−1
i γi−1...γk+1γk...γk1

...γkn
...γ1)

. (γ−1
1 ...γ−1

kn
...γ−1

k1
...γ−1

k−1γ
−1
k γk−1...γk1

...γkn
...γ1)

. (γ−1
1 ...γ−1

kn
...γ−1

k1
...γ−1

k−1γ
−1
k ...γ−1

i−1γ
−1
i γ−1

i+1...γ
−1
j ...γ−1

r1
...γ−1

rt

... γ−1
h−1γhγh−1...γrt ...γr1 ...γj ...γi...γk...γk1

...γkn
...γ1)

= (γ−1
1 )...(γ−1

kn
)...(γ−1

k1
)...(γ−1

k−1)(γ
−1
k )...(γ−1

i−1)(γ
−2
i )(γiγi−1γ

−1
i )

... (γiγk+1γ
−1
i )(γiγ

−2
k γ−1

i )(γiγkγ
−1
h )(γhγk+1γ

−1
h )

... (γhγ
−1
i−1γ

−1
h )(γhγ

−1
i γ−1

h )...(γhγ
−1
j γ−1

h )...(γhγ
−1
r1
γ−1
h )...(γhγ

−1
rt
γ−1
h )

... (γhγ
−1
h−1γ

−1
h )(γ2

h)(γh−1)...(γrt+1)(γrtγ
−1
i )(γiγrt−1γ

−1
i )

... (γr2γ
−1
i )(γiγr2−1γ

−1
i )...(γiγr1)...(γj+1)(γjγ

−1
i )(γiγj−1γ

−1
i )

... (γiγi+1γ
−1
i )(γ2

i )(γi−1)...(γk)...(γk1
)...(γkn

)...(γ1)

= g′1 gt−1 gt−2 ... g1 .

σ∗(g
′
2) = σ∗(γiγk1

γ−1
h )

= (γ−1
1 ...γkn

...γ−1
kn−1

...γ−1
2 ...γ−1

k1−1γ
−1
k1
γ−1
k1+1...γ

−1
k−1γ

−1
k γ−1

k+1

... γ−1
i−1γ

−1
i γi−1...γk+1γkγk−1...γk1+1γk1

γk1−1...γk2
...γkn

...γ1)
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. (γ−1
1 ...γ−1

kn
...γ−1

k2
...γ−1

k1−1γ
−1
k1
γk1−1...γk2

...γkn
...γ1)

. (γ−1
1 ...γkn

...γk2
...γ−1

k1−1γ
−1
k1
...γ−1

k ...γ−1
i ...γ−1

j ...γ−1
r1
...γ−1

rt

... γ−1
h−1γhγh−1...γrt ...γr2 ...γr1 ...γj ...γi...γk...γk1

...γkn
...γ1)

= (γ−1
1 )...(γ−1

kn
)...(γ−1

k2
)...(γ−1

k1
)...(γ−1

k )...(γ−1
i−1)(γ

−2
i )(γiγi−1γ

−1
i )

... (γiγk+1γ
−1
i )(γiγkγ

−1
h )(γhγk−1γ

−1
h )

... (γhγk1+1γ
−1
h )(γhγ

−1
k1
γ−1
i )(γiγk1+1γ

−1
i )...(γiγ

−1
k γ−1

h )(γhγ
−1
k+1γ

−1
h )

... (γhγ
−1
i γ−1

h )...(γhγ
−1
j γ−1

h )...(γhγ
−1
r1
γ−1
h )...(γhγ

−1
rt
γ−1
h )

... (γhγh−1γ
−1
h )(γ2

h)(γh−1)...(γrt+1)(γrtγ
−1
i )...(γr2γ

−1
i )...(γiγr1)(γr1−1)

... (γjγ
−1
i )(γiγj−1γ

−1
i )...(γiγi+1γ

−1
i )(γ2

i )(γi−1)...(γk)...(γk1
)...(γkn

)...(γ1)

= g′1 g
′
2 g

′
1 gt−1 gt−2 ... g1

= g′2 gt−1 gt−2 ... g1 .

In the same way one can see that σ∗(g
′
d) = g′dg1g2...gt−1 ∀ d = 2, ..., n.

We claim now that rank(σ + Id)∗ = 1.

In fact let us first of all consider the following matrix whose columns are the

images through (σ + Id)∗ of the generators g1, ..., gt−1, gt, ..., gt+r−1, g
′
1, ..., g

′
n+1.



























0 · · · 0 1 1 · · · 1
0 · · · 0 1 1 · · · 1
...

...
...
...

...
0 · · · 0 1 1 · · · 1
0 · · · 0 0 0 · · · 0
...

...
...
...

...
0 · · · 0 0 0 · · · 0



























We have:

Im(σ + Id)∗ =
〈

(σ + Id)∗(g
′
1)
〉

.

Therefore we only have to check that (σ+ Id)∗(g
′
1) = g1...gt−1 is not the identity.

But this is true, since the only relations between the gi’s and the g′j ’s are S1 and

S2. Thus we have proven that rank(σ + Id)∗ = 1.

Assume now that k > i, more precisely suppose that τi = τj = τr1 = ... = τrt =

(a, b), τk = τk1
= ... = τks

= (a, c), τh = τm1
= ... = τmr = (b, c), with t even and

s odd, where i < j < r1 < ... < rt < k < k1 < ... < ks < h < m1 < ... < mr are

the labels of a saturated subgraph.
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We compute the action of σ only on the set of generators:

g′ = γi γk γ
−1
h ,

g′1 = γi γk1
γ−1
h ,

g′2 = γi γk2
γ−1
h ,

...

g′s = γi γks
γ−1
h ,

since on the other generators we have already seen that σ acts as the identity.

We have the relations

S1 = γ1 γ2 ... γ2g+2d−2 = g1 g2 ... gt−1 gt gt+1 ... gt+r+1 ,

so we get g1 g2 ... gt−1 = gt gt+1 ... gt+r+1.

S2 = γi γ1 γ2 ... γ2g+2d−2 γ
−1
i = g1 g2 ... gt−1 g

′ g′1 ... g
′
s ,

therefore we obtain g1 g2 ... gt−1 = g′ g′1 g
′
2 ... g

′
s.

σ∗(g
′) = σ∗(γiγkγ

−1
h )

= (γ−1
1 ...γ−1

i−1γ
−1
i γi−1...γ1)

. (γ−1
1 ...γ−1

i−1γ
−1
i ...γ−1

j ...γ−1
r1
....γ−1

rt
...γ−1

k−1γ
−1
k γk−1...γrt ....γr1 ...γj ...γi...γ1)

. (γ−1
1 ...γ−1

i ...γ−1
j ...γ−1

r1
...γ−1

rt
...γ−1

k−1γ
−1
k ...γ−1

k1
...γ−1

ks
...γ−1

h−1γhγh−1

... γks
...γk1

...γk...γrt ...γr1 ...γj ...γi...γ1)

= (γ−1
1 )...(γ−1

i−1)(γ
−2
i )(γ−1

i+1)...(γ
−1
j−1)(γ

−2
j )(γjγ

−1
i )(γiγj+1γ

−1
i )

... (γiγr1−1γ
−1
i )(γiγr1)...(γrtγ

−1
i )(γiγrt+1γ

−1
i )

. (γiγ
−1
k−1γ

−1
i )(γiγ

−2
k γ−1

i )(γiγ
−1
k+1γ

−1
i )

... (γiγ
−1
k1−1γ

−1
i )(γiγ

−1
k1
γ−1
h )(γhγ

−1
k1+1γ

−1
h )...(γhγ

−1
k2−1γ

−1
h )(γhγ

−1
k2
γ−1
i )

... (γiγ
−1
ks
γ−1
h )(γhγ

−1
ks+1γ

−1
h )...(γhγh−1γ

−1
h )(γ2

h)(γh−1)

... (γks
)...(γk2

)(γk2−1)...(γk1+1)(γk1
)...(γrt+1)(γrtγ

−1
i )(γiγrt−1γ

−1
i )

... (γr2γ
−1
i )(γiγr1)(γr1−1)...(γjγ

−1
i )(γiγj−1γ

−1
i )...(γ2

i )(γi−1)...(γ1)

= g′1... g
′
s .

In the same way we have σ∗(g
′
1) = g′g′2 g

′
3 ... g

′
s.

Analogously σ∗(g
′
i) = g′g′1... g

′
i−1 g

′
i+1... g

′
s, ∀ i.
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We claim now that rank(σ + Id)∗ = 1.

In fact, as above, let us first of all consider the following matrix whose columns

are the images through (σ + Id)∗ of the generators gi’s, g
′, g′1, ..., g

′
s.



























0 · · · 0 0 0 · · · 0
0 · · · 0 0 0 · · · 0
...

...
...
...

...
0 · · · 0 0 0 · · · 0
0 · · · 0 1 1 · · · 1
...

...
...
...

...
0 · · · 0 1 1 · · · 1



























.

We notice, as before, that we have:

Im(σ + Id)∗ =
〈

(σ + Id)∗(g
′)
〉

.

Therefore we only have to check that

(σ + Id)∗(g
′) = g′g′1... g

′
s = g1... gt−1

is not the identity. But this is true, since the only relations are S1 and S2. Thus

we have proven that rank(σ + Id)∗ = 1.

Assume that G has d vertices and Gred is a polygon with d edges.

We want to show that, as in the case of triangles, in order to compute the rank

of (σ + Id)∗ it suffices to restrict ourself to the case in which every two vertices

of G are connected by exactly 2 edges. In fact, when we have polygons in the

reduced graph, we have generators of the type of the g′i’s that we have obtained

in the case of triangles, as it is illustrated in Figure 6, where we have

g′1 = γk1
γk2

... γkr
γi1γ

−1
hs
... γ−1

h2
γ−1
h1

,

g′2 = γk1
γk2

... γkr
γi2γ

−1
hs
... γ−1

h2
γ−1
h1

,

...

g′t = γk1
γk2

... γkr
γitγ

−1
hs
... γ−1

h2
γ−1
h1

,
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Notice that in the figure we only drew the subgraph of G we are interested in.

Fig. 6

Assume that i1 < i2 < ... < it and that {i1, i2, ..., it} is a saturated angle

both in a and in c.

Then one can easily prove, as in the case of triangles, that if σ∗(g
′
ij
) = h, then

σ∗(g
′
ij+1

) = hg′ij+1
g′ij , so that

(σ∗ + Id)(g′ij ) = h g′ij ,

(σ∗ + Id)(g′ij+1
) = h g′ij+1

g′ij g
′
ij+1

= h g′ij .

Therefore

(σ∗ + Id)(g′i1) = (σ∗ + Id)(g′i2) = ... = (σ∗ + Id)(g′it) .

This allows us to reduce ourselves to the case in which every two vertices are

connected by exactly two edges. In fact if in Figure 6 t is even, we can delete all

the edges connecting a and c with labels ij with j ≥ 3. If t is odd, we know from

the properties of monodromy graphs of real generic algebraic functions described

in section 1, that there must exist at least another edge connecting a and c with

a label m either bigger then it or smaller then i1 (of course then the set of indices

{m, i1, ..., it} need not be anymore a saturated angle in a and c, as Figure 7

shows).

If t is odd then we delete all the edges with labels i2, ..., it and we are left with

the two edges with labels i1 and m. The procedure that we have just described

is illustrated in the two examples given in Figure 7.
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Observe that in Figure 7, when we remove some edges, we relabel the edges

of the new graph mantaining the previous order, only in order to have the labels

in the right set of indices.

Fig. 7

First of all we treat the case in which the polygon given by Gred is odd, i.e. it

has an odd number of vertices, and every two vertices are connected by exactly

2 edges.

To understand better the situation, we describe precisely the case of pentagons

and then we explain how to get the general case of an odd polygon.

For pentagons we have the different graphs of Figure 8.

Notice that every other graph of this type can be treated analogously. In all

the examples in Figure 8 we take as base point the vertex b.

In Figure 8 1) a Schreier system of representatives for π1(P
1 − B, 0) modulo

f∗π1(C−f
−1(B), b) is the following: L0=1, L1=γ1, L2=γ3, L3=γ1γ9, L4=γ3γ5.

A list of generators is the following: g1 = γ1γ2, g2 = γ3γ4, g3 = γ1γ9γ10γ
−1
1 ,

g4 = γ3γ5γ6γ
−1
3 , g′1 = γ1γ9γ7γ

−1
5 γ−1

3 , g′2 = γ1γ9γ8γ
−1
5 γ−1

3 .

We have seen in 2.1 that σ∗(gi) = gi for all i, and as in the case of triangles

one easily sees that (σ + Id)∗(g
′
1) = (σ + Id)∗(g

′
2).
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Therefore the image of (σ∗ + Id) is generated by (σ∗ + Id)(g′1) and the only

thing that we have to prove is that (σ∗ + Id)(g′1) 6= 0. We have:

σ∗(g
′
1) = g2 g4 g

′
2

and the relations S1 = γ1γ2...γ8, S2 = γ1γ1γ2...γ8γ
−1
1 , S3 = γ3γ1γ2...γ8γ

−1
3 ,

S4 = γ1γ9γ1γ2...γ8γ
−1
9 γ−1

1 , give: g1 = g2 = g3 = g4, g
′
2 = g1g

′
1.

Thus we get: H1(C,Z/2Z) = 〈g1, g
′
1〉,

σ∗(g
′
1) = g2 g4 g

′
2 = g1 g2 g4 = g2

1 g1 g
′
1 = g1 g

′
1 .

Then (σ∗ + Id)(g′1) = g1 and the rank of (σ∗ + Id) is one.

Fig. 8

Now we treat case 2) in Figure 8. Here we choose L0 = 1, L1 = γ2, L2 = γ9,

L3 = γ2γ1, L4 = γ9γ7.

We have a list of generators: g1 = γ2γ3, g2 = γ9γ10, g3 = γ2γ1γ6γ
−1
2 , g4 =

γ9γ7γ8γ
−1
9 , g′1 = γ2γ1γ4γ

−1
7 γ−1

9 , g′2 = γ2γ1γ5γ
−1
7 γ−1

9 . Also here we only have to

determine the image of g′1 by (σ∗ + Id). We obtain as above σ∗(g
′
1) = g1g4g

′
2 =

g2
1g1g

′
1 = g1g

′
1, since the relations Si’s give: gi = gj ∀ i, j, g

′
2 = g1g

′
1.

So it remains to consider case 3) in Figure 8. Here we have: L0 = 1, L1 = γ5,

L2= γ8, L3= γ5γ1, L4= γ8γ2. We have a list of generators: g1= γ5γ6, g2= γ8γ9,

g3 = γ5γ1γ7γ
−1
5 , g4 = γ8γ2γ10γ

−1
8 , g′1 = γ5γ1γ3γ

−1
2 γ−1

8 , g′2 = γ5γ1γ4γ
−1
2 γ−1

8 .
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One computes: σ∗(g
′
1) = g1g

′
1, and the relations still give: gi = gj ∀ i, j,

g′2=g1g
′
1. Thus the statement is proven in the case of pentagons.

In general, for an odd polygon with d edges and such that every two ver-

tices are connected by 2 edges (i.e. the genus of C is 1), we obtain a similar list

of generators: g1, ..., gd−1, g
′
1, g

′
2 such that σ∗(gi) = gi ∀ i, (σ∗ + Id)(g′1) =

(σ∗ + Id)(g′2) = g1. Therefore the rank of (σ∗ + Id) is one.

Assume now that G is a graph made of d edges with d even, such that the

reduced graph Gred is a polygon with d edges.

We have already remarked that we can restrict out attention to the case in

which every two vertices of G are connected by exactly 2 edges. First of all we

consider the case in which d = 4. We will prove that the action of σ∗ on the

generators obtained from the edges of the square is the identity. Following 1.13

we see that for a square in G we have basically the three following possibilities

illustrated in Figure 9:

Fig. 9

So we treat at first the simplified case A).

We take b as base point. We choose: L0 = 1, L1 = γ1, L2 = γ3, L3 = γ1γ7.

A list of generators is: g1= γ1γ2, g2= γ3γ4, g3= γ1γ7γ8γ
−1
1 , g′1= γ1γ7γ5γ

−1
3 ,

g′2= γ1γ7γ6γ
−1
3 .

We have relations:

S1 = γ1γ2 ... γ8 = (γ1γ2)(γ3γ4)(γ5)(γ6)(γ7)(γ8) = g1 g2, so g1 = g2 ,

S2 = γ1γ1γ2 ... γ8γ
−1
1 = g1 g3, so g3 = g1 ,

S3 = γ3γ1γ2 ... γ8γ
−1
3 = g2 g

′
1 g

′
2 .
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So we have g′2 = g1g
′
1 and H1(C,Z/2Z) = 〈g1, g

′
1〉.

σ∗(g1) = g1, σ∗(g
′
1) = g2g

′
2 = g1g1g

′
1 = g′1. Therefore we have seen that in

case A) σ∗ = Id.

Now we consider case B).

We have: L0 = 1, L1 = γ2, L2 = γ7, L3 = γ2γ1.

A list of generators is the following: g1 = γ2γ3, g2 = γ7γ8, g3 = γ2γ1γ6γ
−1
2 ,

g′1 = γ2γ1γ4γ
−1
7 , g′2 = γ2γ1γ5γ

−1
7 . The relations give:

S1 = γ1γ2 ... γ8 = g1 g2, so we have g1 = g2 ,

S2 = γ2γ1γ2 ... γ8γ
−1
2 = g′1 g

′
2 g3 ,

S3 = γ7γ1γ1γ2 ... γ8γ
−1
1 γ−1

7 = g′1 g
′
2 g2 ,

therefore we have g1 = g2 = g3, g
′
2 = g1g

′
1, and H1(C,Z/2Z) = 〈g1, g

′
1〉.

σ∗(g1) = g1, σ∗(g
′
1) = g1g

′
2 = g2

1g
′
1 = g′1. Thus we have seen that also in

case B) σ∗ = Id.

Now we treat case C). We observe that here all the vertices are moved by σ.

We take at first b as base point, σ(b) = a. A list of generators is: g1 = γ1γ7,

g2 = γ3γ4, g3 = γ1γ5γ6γ
−1
1 , g′1 = γ1γ5γ2γ

−1
3 , g′2 = γ1γ5γ8γ

−1
3 . The relations are:

S1 = γ1γ2 ... γ8 = g3 g1, so we have g3 = g1 ,

S2 = γ1γ1γ2 ... γ8γ
−1
1 = g2 g1, so we obtain g2 = g1 ,

S3 = γ1γ5γ1γ2 ... γ8γ
−1
5 γ−1

1 = g′1 g2 g
′
2 ,

therefore we get g′2 = g1g
′
1, and H1(C,Z/2Z) = 〈g1, g

′
1〉. Now σ(b) = a so we take

a as base point in the target. A list of generators is the following: ψ1 = γ1γ7,

ψ2 = γ5γ6, ψ3 = γ1γ3γ4γ
−1
1 , ψ′

1 = γ1γ3γ2γ
−1
5 , ψ′

2 = γ1γ3γ8γ
−1
5 .

The relations are:

S′
1 = γ1γ2 ... γ8 = ψ3 ψ1, so we have ψ1 = ψ3 ,

S′
2 = γ1γ1γ2 ... γ8γ

−1
1 = ψ2 ψ1, therefore we get ψ2 = ψ1 ,

S′
3 = γ1γ3γ1γ2 ... γ8γ

−1
3 γ−1

1 = ψ′
1 ψ2 ψ

′
2 ,

so we have ψ′
2 = ψ1ψ

′
1 and H1(C,Z/2Z) = 〈ψ1, ψ

′
1〉.

σ∗(g1) = σ∗(γ1γ7) = ψ2ψ1ψ3 = ψ1, σ∗(g
′
1) = σ∗(γ1γ5γ2γ

−1
3 ) = ψ′

1.

On the other hand Id∗(g1) = ψ1, Id∗(g
′
1) = ψ′

1.

Therefore also in case C) σ∗ = Id∗.
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Now in the same way one can see that if Gred is an even polygon, then σ∗ = Id∗.

In fact we restrict ourselves to the case in which every two vertices are con-

nected by exactly two edges and we find as above a list of generators g1, ..., gd−1,

g′1, g
′
2 and relations Si such that H1(C,Z/2Z) = 〈g1, g

′
1〉 and σ∗(g1)=g1,

σ∗(g
′
1)=g

′
1, if the base point b is fixed; otherwise, if G has no vertex which is fixed

by σ, we have σ∗(g1) = ψ1, σ∗(g
′
1) = ψ′

1, where ψ1 and ψ′
1 are the corresponding

generators that we have obtained by changing base point to σ(b).

Therefore the theorem is proven in the case in which Gred is a polygon. Now

one has only to use Theorem 2.1 to obtain the statement under the assumption

that every two polygons in Gred do not have any common edge.

Now using the proof of 2.2 we obtain the following

Theorem 2.3. Let C be a real smooth algebraic curve of genus g, σ : C → C

be the antiholomorphic involution that gives the real structure, assume that

ν(σ) 6= 0, let f : C → P1
C be a generic real algebraic function of degree d ≥ 2

(f ◦ σ(x) = f(x), ∀x ∈ C).

Assume that all the critical values of f are real and positive (if they are not

positive it suffices to perform a base point change).

Let G be the monodromy graph of f . Set σ∗ : H1(C,Z/2Z) → H1(C,Z/2Z).

Then

dim(σ + identity)∗(H1(C,Z/2Z)) ≤ ρ(Gred) ,

where ρ(Gred) is the minimal number of polygons of Gred whose union is the union

of all the polygons of Gred. So

ν(σ) ≥ g + 1− ρ(Gred) .

Proof: The inequality obviously holds if the reduced graph Gred does not

contain any polygon (see 2.1) or if every pair of polygons in Gred have no common

edges (see 2.2).

So we must understand what happens when we have two polygons in Gred
that have at least a common edge. Assume that the reduced graph is the union

of two polygons as in Figure 10.

In Figure 10 we have chosen labels of the edges of the reduced graph as follows:

for any two vertices a and a′ of Gred we have taken the smallest label of the edges

of G connecting a and a′.
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Fig. 10

Then we choose the following set of Schreier representatives for π1(P
1−B, 0)

modulo f∗π1(C − f
−1(B), b):

L0 = 1 ,

L1 = γi1 ,

L2 = γi1γi2 ,
...

Lr−1 = γi1γi2 ... γir−1
,

L′
1 = γj1 ,

L′
2 = γj1γj2 ,
...

L′
s−1 = γj1γj2 ... γjs−1

,

L′′
1 = γm1

,

L′′
2 = γm1

γm2
,

...

L′′
t = γm1

γm2
... γmt .

As in the proof of 2.2 we can assume that every two vertices are connected by

exactly two edges. Then if the reduced graph is as in the figure, we have that the

genus of C is 2 and H1(C,Z/2Z) is generated by g1, h1, g
′
1 h

′
1, where g1 = γi1γn,

n is the label of the other edge connecting b with a, h1 = γj1γp, p is the label of

the other edge connecting b with c,

g′1 = Lr−1 γir(L
′′
t )

−1 ,

h′1 = L′
s−1 γjs(L

′′
t )

−1 .
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Then, since σ∗(g1) = g1, σ∗(h1) = h1, the image of (σ∗ + Id) is generated by the

elements: (σ∗ + Id)(g′1), (σ∗ + Id)(h′1).

Therefore the rank of (σ∗ + Id) is smaller or equal to 2.

In conclusion, to determine the rank of (σ∗ + Id) we can assume that the

monodromy graph G is such that every two vertices are connected by exactly two

edges. Under this assumption, every polygon in a tessellation of Gred gives rise

to two generators gi, g
′
i with σ∗(gi) = gi, so that only g′i possibly contributes to

increase the rank of (σ∗ + Id). But then rank(σ∗ + Id) ≤ ρ(Gred), where ρ(Gred)

is the minimal number of polygons in Gred whose union is the union of all the

polygons in Gred.

Remark 2.4. Notice that in the proof of 2.3, if Gred is the union of two

polygons with common edges, we cannot conclude that rank(σ∗ + Id) = 2, as it

is shown in the following example (Fig. 11).

Fig. 11

We have L0 = 1, L1 = γ1, L2 = γ5, L3 = γ4.

The generators are g1=γ1γ2, g2=γ5γ6, g3=γ3γ4, g
′
1=γ1γ9γ

−1
5 , g′2=γ1γ10γ

−1
5 ,

h′1 = γ5γ7γ
−1
3 , h′2 = γ5γ8γ

−1
3 .

The relations are S1 = γ1γ2...γ10 = g1g2g3, S2 = γ1γ1γ2...γ10γ
−1
1 = g1g

′
1g

′
2,

S3 = γ5γ1γ2...γ10γ
−1
5 = g2h

′
1h

′
2g

′
1g

′
2, therefore g2 = g1g3, g

′
2 = g1g

′
1, h

′
2 = g3h

′
1,

H1(C,Z/2Z)=〈g1, g3, g
′
1, h

′
1〉 and σ∗(gi) = gi, i=1, 3, σ∗(g

′
1) = g1g3g

′
1, σ∗(h

′
1)=

g1g3h
′
1,

(σ∗ + Id) =











0 0 1 1
0 0 1 1
0 0 0 0
0 0 0 0











and (σ∗ + Id)(g′1) = (σ∗ + Id)(h′1).
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Remark 2.5. Let T be a graph that is the union of two polygons that have

some edges in common. Then there exists a monodromy graph G of a real generic

algebraic function with all real critical values with Gred = T , such that

1. If the two polygons are both odd, then rank(σ∗ + Id) = 2.

2. If one polygon is odd and the other is even, then rank(σ∗ + Id) = 1.

3. If both polygons are even, then σ∗ = Id.

Proof: One can easily compute that it suffices to consider the graph G in

Figure 12.

Fig. 12

Remark 2.6. Notice that for the graph in Figure 13 we have

rank(σ∗ + Id) = 2 ,

although there is a polygon with an even number of edges.

Fig. 13
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