PORTUGALIAE MATHEMATICA Vol. 59, No. 3, pp. 249-266 (2002) |
|
Weighted Norm Inequality for the Poisson Integral on the SphereBenjamin Bordin, Iara A.A. Fernandes and Sergio A. TozoniInstituto de Matemática, Universidade Estadual de Campinas,Caixa Postal 6065, 13.081-970 Campinas - SP -- BRAZIL E-mail: bordin@ime.unicamp.br , iara@ime.unicamp.br , tozoni@ime.unicamp.br Abstract: We obtain, for each $p$, $1<p<\infty$, a necessary and sufficient condition for the Poisson integral of functions defined on the sphere $S^n$, to be bounded from a weighted space $L^p(S^n,Wd\sigma)$ into a space $L^p(\B,\nu)$, where $\sigma$ is the Lebesgue measure on $S^n$ and $\nu$ is a positive measure on the unit ball $\B$ of $\R^{n+1}$. Keywords: Poisson integral; Carleson condition; homogeneous space; weight; sphere. Classification (MSC2000): 42B25, 43A85. Full text of the article:
Electronic version published on: 9 Feb 2006. This page was last modified: 27 Nov 2007.
© 2002 Sociedade Portuguesa de Matemática
|