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Abstract: We give a combinatorial description of simplicial cochain and cocycle

operations mod p by certain subspace arrangements over Z/p. Then we show that any

primary or higher cohomology operation mod p has a description at the cochain level by

polynomials of coface operators. We define an algebraic filtration on the space of cochain

operations and give an explicit dimension formula for the space of cocyle operation of

fixed algebraic degree. The filtration is also defined on Steenrod operations and leads

to a new spectral sequence converging to the cohomology of Eilenberg–MacLane spaces

mod p.

1 – Introduction

In [6] we gave a modification of L. Kristensen’s machinery of constructing co-

homology operations in algebraic topology by simplicial cochain operations which

also works for higher order cohomology operations. There are some significant

examples of applications of cochain operations, for example an independent proof

for the Hopf invariant one theorem by the computation of Kristensen of Massey

products in the Steenrod algebra [8], the examination of the β-family in stable

homotopy by L. Smith using a secondary Hopf invariant ([11]) and the authors

result on Brown–Kervaire invariants for Spin manifolds ([4], [5]). These results
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depend on skilful constructions of special cochain operations and heavy combi-

natorial calculations made by L. Kristensen. However, the algebraic structure of

the full set of cochain operations remained open and Kristensen did not make

computations above third order relations by combinatorial means. In this pa-

per, we consider the combinatorial structure of cochain operations, and obtain

some explicit results by relating cochain operations to subspace arrangements

over finite fields. There are some well-known examples of cochain operations:

The coboundary homomorphism d =
∑

(−1)i di in the cochain complex of any

space, the cup product given on the cochain level by the Alexander–Whitney for-

mula x∪ y = dIx · dJy with dI the front dim(y)-coface operator and dJ the back

dim(x)-coface operator, and more general, the cup-i products given by Steenrod’s

formula [12]

∪i : C
m(X;Z/2)× Cn(X;Z/2) −→ Cm+n−i(X;Z/2)

x ∪i y =
∑

I,J

dIx · dJy

where summation runs over all subsets I, J of

[m+ n− i] := {0, 1, . . . ,m+ n− i}

that are given by sequences 0 ≤ k0 < k1 < . . . < ki ≤ n+m− i such that

[n+m− i]− J = {0, . . . , k0} ∪ {k1, . . . , k2} ∪ . . .

[n+m− i]− I = {k0, . . . , k1} ∪ {k2, . . . , k3} ∪ . . .

and |I| = n − i, |J | = m − i. Using cup-i products, the Steenrod squares are

constructed explicitely by

sqi(x) = x ∪n−i x

for n-cochains mod 2. This raises the question if, in general, cohomology opera-

tions are represented by suitable polynomials in coface operators. We prove this

not only for primary cohomology operations mod p , but also show that higher

cohomology operations mod p are represented by algebraic systems of equations

on cochains, where the system is again given by polynomials in coface opera-

tors. This defines an algebraic filtration on the set of cochain operations and also

for cohomology operations. In the last section we consider cocycle operations

mod p and compute the dimensions of filtration quotients. The algebraic filtra-

tion defines a new spectral sequence converging to the cohomology of Eilenberg–

MacLane spaces mod p, and the computation of filtration quotients gives the

additive structure of its E0-term.
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2 – Simplicial cochain operations

Let Cm(−;R) denote the normalized cochain functor and C̃m(−;R) the

full cochain functor of simplicial sets, where R is a commutative ring. Thus

C̃m(X•;R) = map(Xm, R), the set of all R-valued functions on Xm, and

Cm(X•;R) is the subset of functions that vanish on the degenerate m-simplices.

We recall from [6] the basic definitions and properties of cochain operations:

Definition 1. An unstable cochain operation of type (R,m, S, n) is a

natural transformation from the functor Cm(−;R) to the functor Cn(−;S). There

is no condition of linearity. Denote the set of these operations by O(R,m, S, n).

There is a representability result of Eilenberg–MacLane (see [9]):

Cm(X•;R) = mor(X•, L(R,m+ 1)•) ,

where mor denotes the set of simplicial maps and L(R,m + 1)• is the acyclic

simplicial R-module which corresponds to the acyclic chain complex

l(R,m+ 1) := (. . .→ 0→ R→ R→ 0→ . . .→ 0)

by Dold–Kan equivalence. The representability isomorphism is given by pulling

back the fundamental cochain ι ∈ Cm(L(R,m+1);R). This gives by the Yoneda

lemma

O(R,m, S, n) = mor(L(R,m+ 1)•, L(S, n+ 1)•) = Cn(L(R,m+ 1)•;S) .

As L(R,m+ 1)n = 0 for n < m, it follows O(R,m, S, n) = 0 for n < m.

As L(R,m)m = R with 0 ∈ R being the only degenerate simplex in dimension

m, it follows O(R,m, S,m) = {f : R→ S | f(0) = 0}. In particular, this includes

the Z-linear maps Hom(R,S) as a subset. The coboundary homomorphism

d : Cm(−;R)→ Cm+1(−;R) gives a further example of a cochain operation

d ∈ O(R,m,R,m+ 1) .

As the functor Cn(−;S) takes values in S-modules, we have a canonical

S-module structure on O(R,m, S, n) which corresponds to the ’pointwise’ struc-

ture in mor(L(R,m + 1)•, L(S, n + 1)•) induced from the simplicial S-module

structure on L(S, n+ 1)•. Furthermore, full cochains form an S-algebra
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C̃n(X•;S) = map(Xn, S) with respect to pointwise multiplication of functions

and Cn(X•;S) is an ideal. Hence O(R,m, S, n) is an ideal in the S-algebra

Õ(R,m, S, n) := C̃n(L(R,m+ 1)•;S) ,

which is the set of natural transformations from the normalized cochain func-

tor Cm(−;R) to the full cochain functor C̃n(−;S). All cochain operations a ∈

O(R,m, S, n) with n> 0 satisfy a(0) = 0, where 0 denotes the zero cochain on

a simplicial set X•. This follows easily utilizing naturality for the projection

X• → ∗• to a point. Composition of cochain operations gives a map

◦ : O(R2,m2, R3,m3)×O(R1,m1, R2,m2)→ O(R1,m1, R3,m3)

which is R3-linear in the left variable, but non-linear in the right variable, in

general. In particular, (a+ a′) ◦ b = a ◦ b+ a′ ◦ b and (a · a′) ◦ b = (a ◦ b) · (a′ ◦ b),

but a ◦ (b+ b′) 6= a ◦ b+ a ◦ b′ and a ◦ (b · b′) 6= (a ◦ b) · (a ◦ b′), in general.

3 – cochain operations and arrangements

In order to get a combinatorial description of cochain operations, we consider

the following explicit model of L(R,m+ 1)• (see [9]):

L(R,m+ 1)n = Cm(∆n
• ;R)

where ∆n
• denotes the simplicial standard n-simplex. The spaces ∆n

• form a

cosimplicial (with respect to the index n) simplicial set, and applying the con-

travariant cochain functor turns n into a simplicial index. Now, every m-simplex

in ∆n
• is uniquely given by a sequence

I = (0 ≤ i0 ≤ i1 ≤ . . . im ≤ n)

where the action of face and degeneracy operations dj , sj is given by deleting

respectively doubling the j-th number ij . Thus the non-degenerate m-simplices

are exactly the (m + 1)-subsets of the set [n] := {0, 1, . . . , n}, and L(R,m + 1)n
is the free R-module of R-valued functions on the set of (m+1)-subsets I of [n].

A basis is given by the Kronecker-functions [I] defined by

[I](I ′) :=

{

1 for I = I ′

0 for I 6= I ′
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hence rank(L(R,m+ 1)n) = (n+1
m+1). The cosimplicial structure maps

dj : ∆n−1
• → ∆n

• , j = 0, 1, . . . n− 1 ,

sj : ∆n+1
• → ∆n

• , j = 0, 1, . . . n+ 1 ,

are given by dj(I) = {i | j > i ∈ I}∪{i+1 | j ≤ i ∈ I} (i.e., add 1 to the numbers

≥ j), and sj(I) = {i | j ≥ i ∈ I} ∪ {i − 1 | j < i ∈ I} (i.e., subtract 1 from the

numbers > j). This shows that face and degeneracy operators on L(R,m)• are

the surjective respectively injective R-linear maps given by

dj [I] = [I] ◦ dj =

{

[sj(I)] for j ∈ I

0 for j /∈ I
,

sj [I] = [I] ◦ sj =

{

[dj(I)] + [dj+1(I)] for j ∈ I

[dj(I)] for j /∈ I
.

Hence the degenerate simplices in L(R,m + 1)n form the union of a central

arrangement

Am
n :=

n−1
⋃

i=0

Vi

Vi := im
(

si : L(R,m+ 1)n−1 → L(R,m+ 1)n
)

of n free submodules Vi of rank ( n
m+1) (for basic facts on arrangements, see [10]).

We recall that the associated intersection poset L(A) of an arrangement A is

given by the set of intersections of members in A with respect to reverse inclusion.

Theorem 1. The set of cochain operations O(R,m, S, n) can be identified

with the set of S-valued functions on the free R-module V := L(R,m+1)n of rank

(n+1
m+1) which vanish on the arrangement A

n
m. The intersection poset L(A

n
m) is

the poset of subsets of [n−1] truncated above the level n−m. The rank function

is given by (n+1−r
m+1 ) where r denotes the cardinality of the subset. If R is a finite

ring of cardinality q, then O(R,m, S, n) is a free S-module of rank

n
∑

r=0

(−1)r(nr ) q
(n+1−r

m+1
) .

Proof: The first statement directly follows from the definition of normal-

ized cochains. By the fundamental lemma for degenerate simplices, we have for

0 ≤ i1 < i2 < . . . ir ≤ n− 1 that

Vi1,i2,...ir := im(si1) ∩ im(si2) ∩ . . . ∩ im(sir)

= im
(

sir . . . si2si1 : L(R,m+ 1)n−r → L(R,m+ 1)n
)

.
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By the injectivity of degeneracy maps, this is a free R-module of rank (n+1−r
m+1 ).

As long as this rank is not 0, i.e. for 1 ≤ r ≤ n−m, the submodules Vi1,i2,...ir for

different choices of ij are different from each other as their intersections have lower

rank. This proves the assertion on the intersection poset of An
m. The complement

of the arrangement is a finite set if and ony if R is finite, and then the S-valued

functions form a free S-module. By the inclusion-exclusion principle, it follows

that the cardinality of An
m is given by

#(An
m) =

n
∑

r=1

(−1)r−1
∑

0≤i1<i2<...ir≤n−1

#(Vi1,i2,...ir) .

Together with #(L(R,m + 1)n) = q( n+1
m+1

), this implies the formula for the rank

of O(R,m, S, n).

In order to illustrate this result we include a picture of the intersection poset

L(A4
2):
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4 – Polynomials in coface operators

We have seen that some classical examples of cochain operations (differential,

cup-i products, Steenrod squares) can be represented by polynomials in coface

operators. Now we show that this is always the case over a finite field F. First

we make precise what we mean by a coface operator:
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Definition 2. For I := (0 ≤ i1 < i2 < . . . < in−m ≤ n), define the coface

operator dI to be the natural transformation

dI : C̃m(−;R) −→ C̃n(−;R)

defined by dI(x)(σ) := x(di1di2 · · · din−mσ) for any m-cochain x and n-simplex

σ of some space X•. A monomial in coface operators is a finite product

dI1dI2 · · · dIs with respect to the pointwise multiplication in C̃n(−;R) (here,

of course, the source dimensions and the target dimensions for all dIj have to

coincide with m and n, respectively). A polynomial in coface operators is a

finite R-linear combination of monomials.

It is clear that dI is a linear transformation, but, in general, it does not maps

normalized cochains to normalized cochains again. For example, (dix)(siσ) =

x(σ) need not to vanish. Hence restriction only gives a natural transformation

dI : Cm(−;R) −→ C̃n(−;R) .

It seems to be a combinatorially difficult problem to determine explicitely all

polynomials in coface operators that map normalized cochains to normalized

cochains again (i.e., the polynomials that give elements in O(R,m,R, n)).

Theorem 2. For a finite field F, any element in a ∈ Õ(F,m,F, n) has a
representation as a polynomial in coface operators, i.e. for any x ∈ Cm(X;F),
it holds

a(x) = c +
∑

I

cI d
I(x) +

∑

I,J

cI,J d
I(x) · dJ(x)

+
∑

I,J,K

cI,J,K dI(x) · dJ(x) · dK(x) + . . . ,

where summation takes place over the (n − m)-subsets I, J,K, . . . of [n] and

c, cI , cI,J , . . . denote coefficients in F. In particular, this also holds true for the
ideal O(F,m,F, n) of cochain operations, where we have additionally c = 0.

For the proof, we need two lemmas:

Lemma 1. With respect to the isomorphism

Õ(R,m,R, n) = C̃n(L(R,m+ 1)•;R) = map(L(R,m+ 1)n, R) ,

the element dI is given by [Ī]∗, where [J ]∗ ∈ map(L(R,m + 1)n, R) denotes the

dual basis of the basis [J ] ∈ L(R,m+1)n, and Ī ⊂ [n] denotes the complementary

subset of I ⊂ [n].
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Proof: We have to evaluate dI on the fundamental cochain

ι ∈ Cm(L(R,m+ 1)•;R) .

Here, L(R,m+1)m = R ·M with M := {0 < 1 < 2 < . . . < m} and ι is given by

the obvious isomorphism ι : r ·M 7→ r. We get

dI(ι)([J ]) = ι(di1di2 · · · din−m [J ])

for any basis element [J ] of L(R,m+1)n. Application of dj to [J ] gives 0 if j ∈ J

and [sj J ] otherwise, i.e. we delete the ‘hole’ j in J by subtracting 1 from the

numbers > j of J . This shows that for any (m+1)-subset J of [n], we have

di1di2 · · · din−m [J ] =

{

M if I is the complement of J in [n]

0 otherwise
.

Lemma 2. Let V be a finite dimensional vector space over a finite field F of
order q. Then the evaluation map from the symmetric algebra of the dual space

V ∗ to the algebra map(V,F) is an epimorphism with kernel generated by the

Frobenius map, i.e.

Sym(V ∗)/〈lq− l | l ∈ V ∗〉 = map(V,F) .

If l1, l2, . . . ld is a basis of V
∗, then the maps

le1,e2,...ed
:= le11 · l

e2
2 · · · l

ed

d : V → F

with all 0 ≤ ek < q form a basis of map(V,F).

Proof: We recall the identity xq − x =
∏

a∈F(x − a) in the polynomial ring

F[x]. Thus, the Kronecker function δ0 : F → F is given by the polynomial xq−1−1.

Let v1, v2, . . . vd be a basis of V with dual basis l1, l2, . . . ld of V
∗. Then for v ∈ V ,

the Kronecker function δv : V → F is given by

δv(w) =
d
∏

i=1

δ0
(

li(w − v)
)

which is a polynomial in the li of order ≤ d(q − 1). Moreover, the order of each

li in δv is ≤ q − 1. The lemma follows as the δv for all v ∈ V form a basis of the

vector space map(V,F).

Now, the proof of the theorem above is a direct consequence of both lemmas:
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Proof of Theorem 2: The cochain operation a ∈ Õ(F,m,F, n) corresponds
to a function a : L(F,m + 1)n → F which by the second lemma is representable

by a polynomial in the dual basis [I]∗ of the basis [I] of L(F,m+1)n. By the first

lemma, these linear forms are given by coface operators. If the cochain operation

is normalized, it has to vanish on the zero vector 0 ∈ L(F,m + 1)n because it is

degenerate, which gives c = 0.

Let a ∈ O(F,m,F, n) and b ∈ O(F, k,F,m) be cochain operations which are

represented by polynomials in coface operators

a =
∑

I

cI
∏

I∈I

dI , b =
∑

J

c′J
∏

J∈J

dJ ,

where summation is over systems I,J of (n−m)-subsets I, respectively (m−k)-

subsets J . Then the composition a ◦ b ∈ O(F, k,F, n) is a poynomial in coface

operators given by

a ◦ b =
∑

I

cI
∏

I∈I

(

∑

J

c′J
∏

J∈J

dI ◦ dJ
)

.

In contrast to the symmetric algebra Sym(V ∗), there exists no graduation by

algebraic degree on map(V,F) for F finite but only a filtration. The reason is

that the kernel of the evaluation map is a non-homogeneous ideal. For example,

it holds (dI)q − dI = 0.

Definition 3. Let F be a finite field and s be a natural number. A cochain

operation a ∈ Õ(F,m,F, n) is of filtration ≤ s if it can be represented by a

polynomial in coface operators of degree at least s. We denote the subspace

of these elements a by F≤sÕ(F,m,F, n) and the intersection with normalized

cochain operations by F≤sO(F,m,F, n).

From the definition, we see that the filtration is multiplicative, i.e. the point-

wise product gives

F≤sÕ(F,m,F, n) · F≤tÕ(F,m,F, n) ⊂ F≤s+tÕ(F,m,F, n) .

The filtration can also be given in another way. We recall the definition of cross-

effects of maps f : A → B between abelian groups A and B from Eilenberg and

MacLane [3] with a small modification concerning an additional term f(0):

f (n) :
∏

n

A −→ B ,

f (n)(a1, a2, . . . , an) :=
∑

I⊂{1,2,...n}

(−1)n−#(I) f
(

∑

i∈I

ai
)

.
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The sum over the empty index set is understood to be 0. Thus, f (0) = f(0),

f (1)(a1) = f(a1)− f(0), f (2)(a1, a2) = f(a1 + a2)− f(a1)− f(a2) + f(0) and so

on. It is clear that f (n) is symmetric in its variables and (f + g)(n) = f (n) + g(n).

Moreover, the following properties hold:

Lemma 3. If n > 0 and one ai = 0, then f (n)(a1, a2, . . . , an) = 0. It holds

f(a1 + a2 + . . .+ an) =
n
∑

k=0





∑

{i1,...ik}⊂{1,...,n}

f (k)(ai1 , ai2 , . . . , aik)





and

f (n)(a1 + a′1, a2, . . . , an) =

= f (n)(a1, a2, . . . , an) + f (n)(a′1, a2, . . . , an)− f (n+1)(a1, a
′
1, a2, . . . , an) .

In particular, if f (n)=0, then also f (n+1)=0, and f (n+1)=0 is equivalent to the

multilinearity of f (n).

As the proof is by straightforward induction we omit it. Thus we can define

a cross-effect filtration on map(A,B) by

F≤smap(A,B) :=
{

f ∈ map(A,B) | f (s+1) = 0
}

.

The definition of cross-effects and of the filtration also make sense for topological

abelian groups or simplicial abelian groups. In order to compare both filtrations

for cochain operations, we need a lemma.

Lemma 4. Let A and B be abelian groups and g : A×A× . . .×A→ B be a

multilinear map in s variables. Let f(x) := g(x, x, . . . , x), then the s-cross-effect

of f is the symmetrization of g, i.e. it holds

f (s)(x1, x2, . . . , xs) =
∑

π

g(xπ(1), xπ(2), . . . , xπ(s))

where the sum runs over all permutations π of {1, 2, . . . , s}.

Proof: The definition of the s-cross-effect and the multilinearity of g yield

f (s)(x1, x2, . . . , xs) =
∑

I⊂{1,2,...,s}

(−1)s−#I
∑

i1,...,is∈I

f(xi1 , xi2 , . . . , xis) .

Thus every s-tupel (i1, i2, . . . , is) occurs in the whole sum as often as there are

subsets I with {i1, i2, . . . , is} ⊂ I ⊂ {1, 2, . . . , s}. Denote the cardinality of
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{i1, i2, . . . , is} by k and the cardinality of I by i, then the number of these I is

given by (s−ki−k ). Thus we obtain

f (s)(x1, x2, . . . , xs) =
∑

i1,i2,...,is∈{1,2,...,s}

ci1,i2,...,is f(xi1 , xi2 , . . . , xis) ,

where

ci1,i2,...,is =
∑

k≤i≤s

(−1)s−i (s−ki−k ) = (1− 1)s−k =

{

0 if k < s

1 if k = s
.

Hence, only the s-tuples (i1, i2, . . . , is) with pairwise different entries contribute

to the sum (with coefficient 1).

Proposition 1. Let F be a finite field. Then, with respect to the isomor-
phism O(F,m,F, n) = mor(L(F,m+1)•, L(F, n+1)•), the filtration of a cochain

operation coincides with the cross-effect filtration.

Proof: For a simplicial abelian group A•, we have mor(A•, L(R,n+ 1)•) =

Cn(A•;R) ⊂ map(An, R). Hence the cross-effects of a map in mor(L(R,M)•,

L(R,n)•) correspond exactly to the cross-effects of the corresponding map in

map(L(R,m)n, R) using suitable sums of copies of L(R,m)• for A•. Thus we

have to show that for a finite dimensional vector space V over a finite field F, the
polynomial filtration in map(V,F) coincides with the cross-effect filtration. For

a monomial f(v) = l1(v) l2(v) · · · ls(v) in linear forms li ∈ Hom(V,F), the above

lemma shows that

f (s)(v1, v2, . . . , vs) =
∑

π

l1(vπ(1)) l2(vπ(2)) · · · ls(vπ(s)) .

In particular, f (s) is multilinear and thus f (s+1) = 0, showing that a map of

polynomial filtration ≤ s also has cross-effect filtration ≤ s. Furthermore, by

Lemma 2, a basis l1, l2, . . . ld of V ∗ yields a basis le1,e2,...ed
:= le11 · le22 · · · l

ed

d of

map(V,F), where all 0 ≤ ek < q. By definition, le1,e2,...,ed
has polynomial filtra-

tion precisely given by s :=
∑d

k=1 ek. We have to show that also the cross-effect

filtration is precisely s, i.e. l
(s)
e1,e2,...,ed 6= 0. Here we have to be careful as the sym-

metrization does not run over the symmetric group in d letters but in s letters. In

particular, for the power le of a single linear form l, we get (le)(e)(v1, v2, . . . , ve) =

e! l(v1) l(v2) · · · l(ve). Hence in the symmetrization l
(s)
e1,e2,...,ed , the summand

l1(v1) l1(v2) · · · l1(ve1) · l2(ve1+1) l2(ve1+2) · · · l2(ve1+e2) · · ·

· · · ld(vs−ed+1) ld(vs−ed+2) · · · ld(vs)



82 STEPHAN KLAUS

appears exactly e1! e2! · · · ed! times. As 0 ≤ ek < q, this factor is non-zero in F,
thus l

(s)
e1,e2,...,ed 6= 0.

In general, this result is not true for other coefficients. As an example consider

the map f : Z → Z given by f(n) := (n2 ). It has cross-effect filtration 2, but it

cannot be represented as a polynomial in linear forms with integer coefficients.

If a ∈ O(F,m,F, n) and b ∈ O(F, k,F,m) are cochain operations which are rep-

resented by polynomials in coface operators of order s and t, respectively, then

the composition a ◦ b ∈ O(F, k,F, n) is a cochain operation which is represented

by a polynomial in coface operators of order ≤ st. Thus, composition behaves

multiplicative with repect to the filtration:

◦ : F≤sÕ(F,m,F, n)×F≤tÕ(F, k,F,m) −→ F≤stÕ(F, k,F, n) .

For cochain operations of cross-effect filtration ≤ 1, we have the following result:

Lemma 5. The cochain operations in O(R,m, S, n), n > 0, of cross-effect

filtration ≤ 1 are given by the space of linear cochain operations. It holds

Hom(L(R,m+ 1)•, L(S, n+ 1)•) =











Hom(R,S) iff n = m
d ◦Hom(R,S) iff n = m+ 1
0 otherwise

.

Proof: For n > 0, we have a(0) = 0 which proves the first statement. The

assertion on linear operations follows straightforward using Dold–Kan equivalence

[9]

Hom(L(R,m+ 1)•, L(S, n+ 1)•) =

= Homchain(l(R,m+ 1)∗, l(S, n+ 1)∗) .

Unfortunately, Dold–Kan equivalence cannot be applied to obtain the non-

linear maps in O(R,m, S, n). We will determine the subspaces of higher filtration

explicitely in the modified case of cocycle operations (see Section 6).

5 – Representation of primary and higher cohomology operations

We recall the well-known result that unstable primary cohomology operations

of type (R,m, S, n) can be identified with the cohomology group

A(R,m, S, n) := [K(R,m)•,K(S, n)•] = Hn(K(R,m)•;S)
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of the Eilenberg–MacLane spaceK(R,m)•. Here, the connection between L(R,m)•
and K(R,m)• (standard simplicial model) is given as follows [9]: The differential

d : L(R,m)• → L(R,m + 1)• is a homomorphism of simplicial R-modules with

ker(d) = K(R,m− 1)• and also im(d) = K(R,m)•. In other words, we have

K(R,m)n = Zm(∆n
• ;R) = Bm(∆n

• ;R) .

The space L(R,m)• can also be identified with the simplicial path space PK(R,m)•
and d with the projection map p followed by inclusion. Kristensen [7] gave a rep-

resentation of stable primary cohomology operations by cochain operations which

we generalized in [6] to the unstable case and also for higher order cohomology

operations. We recall from [6] the representation result for primary unstable

cohomology operations:

Theorem 3. Any unstable primary cohomology operation α of type

(R,m, S, n) is represented by a cochain operation a ∈ O(R,m, S, n) such that

d ◦ a ◦ d = 0 .

For a cohomology class ξ ∈ Hm(X•;R), we have α(ξ) = a(x) modBn(X•;S),

where x ∈ Zm(X•;R) represents ξ. There is an isomorphism

A(R,m, S, n)=

{

a ∈ O(R,m, S, n) | d ◦ a ◦ d = 0
}

{

a∈O(R,m, S, n) | d ◦ a = 0
}

+
{

a∈O(R,m, S, n) | a ◦ d = 0
} .

We remark that the condition d ◦ a ◦ d = 0 is equivalent to the existence of a

cochain operation a′ ∈ O(R,m− 1, S, n− 1) such that

a ◦ d = d ◦ a′ ,

see [6]. Up to sign, the operation a′ represents the cohomology suspension Ωα of

α, i.e. the action of α on a suspension of a space. We are mainly interested in the

case where the coefficients R and S are a finite field F. From our representation

result of cochain operations by polynomials in coface operators, we get

Corollary 1. Any unstable primary cohomology α operation of type

(F,m,F, n) has a representation on the cochain level by a polynomial a in coface
operators, i.e. for any cohomology class ξ ∈ Hm(X;F), we have

α(ξ) = a(x) modBn(X;F) ,

where x ∈ Zm(X;F) is any cocycle representing ξ.
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This allows us to define an algebraic filtration also on the set of primary

cohomology operations:

Definition 4. Define F≤sA(F,m,F, n) to be set of cohomology operations

which have a representation by some polynomial in coface operators of filtra-

tion ≤ s. This filtration behaves multiplicative with respect to composition of

cohomology operations.

By the results of Serre and Cartan [13], the structure of

A(Z/p,m,Z/p, n) = Hn(K(Z/p,m);Z/p)

is well-known (given by certain polynomials in Steenrod operations). It would

be interesting to compute the filtration explicitely for these operations, at least

in the stable range n < 2m where it defines a filtration on the Steenrod algebra.

Now we come to the representation of higher cohomology operations. We use the

construction of these operations by cochain operations which we have proved in

[6]. Here we need to consider also themulti-variable case of cochain operations.

For example, consider natural transformations O from the product Cm(−;R) ×

Cm′(−;R′) to the product Cn(−;S) × Cn′(−;S′). From the representability of

cochains, we get

O = mor
(

L(R,m+ 1)• × L(R′,m′ + 1)•, L(S, n+ 1)• × L(S′, n′ + 1)•
)

= Cn
(

L(R,m+1)•× L(R′,m′+1)•;S
)

× Cn′
(

L(R,m+1)•× L(R′,m′+1)•;S
′
)

.

Thus the case of several output variables can be reduced to the one variable case.

For the input variables, we have to be more careful. We have

Cn
(

L(R,m+ 1)• × L(R′,m′ + 1)•;S
)

⊂

⊂ map
(

L(R,m+ 1)n × L(R′,m′ + 1)n, S
)

but the normalization condition (cochains have to vanish on degenerate simplices)

does not decompose as the degenerate simplices of a product of simplicial sets

are not given by pairs of degenerate simplices of the factors. The arrangements

which arise in this way are combinatorially more involved. Nevertheless, if all

coefficients R, R′ and S are a finite field F, it holds

map
(

L(F,m+ 1)n × L(F,m′ + 1)n,F
)

=

= map(L(F,m+ 1)n,F)⊗map(L(F,m′ + 1)n,F) .
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It is straightforward to see that our proof concerning the representability of

cochain operations by polynomials of coface operators also works here, giving

that any multi-variable cochain operation with coefficients in F also has a rep-

resentation as a polynomial in coface operators. The difference from the one

variable case is that we have to label the coface operators in order to know to

which cochain variable they have to be applied, and that mixed products may

occur. Indeed, the cochain formula for the cup-i product in the introduction is

a typical example. Clearly, all we have said also holds for more than two vari-

ables (as long as the number of variables is finite). We need some notation for

multi-variable operations [6]. We consider series M = (mk)k≥0 of natural num-

bers mk ∈ N where mk 6= 0 for only finitely many k. The number mk counts the

number of variables we need in dimension k. For such series M , N , let

LM• :=
∏

k≥0

L(F, k + 1)mk
• , KM

• :=
∏

k≥0

K(F, k)mk
• ,

hence

CM (X•;F) :=
∏

k≥0

Ck(X•;F)mk = mor(X•, L
M
• ) ,

ZM (X•;F) :=
∏

k≥0

Zk(X•;F)mk = mor(X•,K
M
• ) ,

HM (X•;F) :=
∏

k≥0

Hk(X•;F)mk = [X•,K
M
• ] ,

and

ON
M := mor(LM• , L

N
• ) = CN (LM• ;F) .

Be careful with the index shift in LM• which we introduced in order to make

notation for the representation of multi-variable cochains more convenient.

We also need some notation for manipulation of series: for a series M = (mk)k≥0

let M ′ := (mk+1)k≥0, i.e. shift M down by one step. For example, the suspension

isomorphism in reduced cohomology reads as

H̄M (ΣX•;F) = H̄M ′

(X•;F) .

Furthermore, the sum of two seriesM and N is defined asM+N := (mk+nk)k≥0.

In [6] we have showed

Theorem 4. Let φ be an unstable higher cohomology operation of order s

which is defined on a subset ofHM (X•;F) and takes values inHN (X•;F) (modulo
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indeteminacy, i.e. values are subsets ofHN (X•;F)). Then φ can be represented by
a system of cochain operations a1, a2, . . . as and a

′
1, a

′
2, . . . , a

′
s living in ai ∈ O

Ni

Mi

and a′i ∈ O
N ′

i

M ′
i
with Mi := M +N ′

1 +N ′
2 + . . .+N ′

i−1 for some series N1, N2, . . . ,

Ns := N . In particular, M1 = M . The cochain operations have to satisfy the

following system (∗) of equations for 1 ≤ i ≤ s− 1:

(∗) : ai
(

dx1, dx2 + a′1(x1), dx3 + a′2(x1, x2), dx4 + a′3(x1, x2, x3), . . .

. . . , dxi + a′i−1(x1, x2, . . . , xi−1)
)

= da′i(x1, x2, ..., xi) .

Here, x1 ∈H
M ′

(−;F) and xi ∈H
N ′′

i (−;F) for i > 1 denote variables (arbitrary

cochains on any space). Equivalently, the system (∗) has to be satisfied for

the universal cochains x1= ιM ′ ∈ HM ′

(LM
′

• ;F) and xi = ιN ′′
i
∈ HN ′′

i (L
N ′′

i
• ;F) for

i>1. Conversely, any system of cochain operations a1, a2, . . . as and a
′
1, a

′
2, . . . , a

′
s

satisfying these equations defines an unstable higher cohomology operation. Eval-

uation of φ on a cohomology class ξ ∈ HM (X•;F) with representing cocycle
x1 ∈ ZM (X•;F) is given by the set of cocycles z ∈ ZN (X•;F) modulo cobound-
aries with

z = as(x1, x2, . . . , xs)

where the cochains xi ∈ CN ′
i (X•;F) for 1 ≤ i ≤ s− 1 have to satisfy the system

(∗∗) of equations

(∗∗) : ai(x1, x2, . . . , xi) = dxi+1 .

With some care concerning the non-linear character of these systems of equa-

tions, condition (∗) can also be formulated in matrix notation

ai ◦

















d 0 0 . . . 0
a′1 d 0 . . . 0
a′2 d . . . 0
...

. . .
...

a′i−1 d

















= d ◦ a′i

for 1 ≤ i ≤ s. Evaluation (∗∗) is then given by the following set of cocycles:






























as(x1, x2, . . . , xs)

∣

∣

∣

∣

∣

















d 0 0 . . . 0
−a1 d 0 . . . 0
−a2 d . . . 0
...

. . .
...

−as−1 d

































x1

x2

x3
...
xs

















= 0































.

Thus we get:
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Corollary 2. For an unstable higher cohomology operation φ of order s with

F-coefficients, the representing cochain operations a1, a2, . . . as and a
′
1, a

′
2, . . . , a

′
s

in the theorem above are given by polynomials in coface operators. Evaluation

of φ on a cohomology class ξ is given by application of as to the set of solutions

of the sytem of algebraic equations (∗∗) for the cocycles x1, x2, . . . , xs.

6 – Cocycle operations and coordinate arrangements

In [6], we have showed that instead of cochain operations, we can also use

cocycle operations in order to construct higher cohomology operations. As we

will see here, cocycle operations have some combinatorial advantages compared

with cochain operations.

Definition 5. A cocycle operation is a natural transformation from

Zm(−;R) to Zn(−;S). Denote the set of these cocycle operations by

Z(R,m, S, n).

Using the representability theorem for cocycles [9]

Zn(X•;R) = mor(X•,K(R,n)•)

we get

Z(R,m, S, n) = mor(K(R,m)•,K(S, n)•) = Zn(K(R,m)•;S) .

For the Eilenberg–MacLane space, we will not use the explicit model K(R,m)n =

Zm(∆n
• ;R) but an equivalent one (see also [2]).

Definition 6. Let Sm• := ∆m
• /∂∆

m
• be the simplicial sphere which has

exactly two non-degenerate simplices: the base point ∗ in dimension 0 and the

top cell σ in dimensionm. Hence, for n < m, Smn only consists of the (degenerate)

base point ∗, but for n ≥ m, we have

Smn :=
{

∗, σI | I := (0 ≤ i1 < i2 < . . . < in−m < n)
}

,

where we have set σI := sin−m . . . si2si1σ. In particular, it holds #Smn =1+(nm).

Now we construct the Eilenberg–Maclane space by application of the Bousfield–

Kan reduced free R-module functor to the simplicial sphere [1]. Form the free
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simplicial R-modul R[Sm• ] on Sm• and reduce it by dividing out the simplicial

submodule R[∗] generated by the base point. Then it holds

K(R,m)• ≈ K ′(R,m)• := R[Sm• ]/R[∗] ,

where the isomorphism is given as follows. The set of m-simplices of R[Sm• ]/R[∗]

is the free R-module on σ, which gives a canonical m-cocycle z : R · σ → R by

the identity of R. The corresponding map

ζ : R[Sm• ]/R[∗]→ K(R,m)•

is our isomorphism. Hence, ζ is the R-linear extension of the map σI 7→ sin−m . . .

. . . si2si1 [{0, 1, . . .m}], with [{0, 1, . . . ,m}] ∈ K(R,m)m = L(R,m + 1)m =

R · [{0, 1, . . . ,m}] denoting the canonical generator. In the following, we de-

note K ′(F,m)• by Km
• . A basis of Km

n is given by the simplices σI , hence K
m
n

has rank (nm). The degenerate simplices form an arrangement

Wi := im
(

si : K
m
n−1 → Km

n

)

, 0 ≤ i ≤ n− 1 ,

of n subspaces W0, W1, . . . ,Wn−1 of rank (n−1
m ). By the fundamental lemma for

degenerate simplices, we have

Wi =
⊕

I:i∈I

F · σI ,

hence the Wi are spanned by basis vectors and the arrangement

A
n
m := W0 ∪W1 ∪ . . . ∪Wn−1 ⊂ Km

n

is a coordinate arrangement, i.e. the subspaces forming the arrangement

are spanned by subsets of basis vectors of a fixed basis. In the following, we

prove for Km
• and its cochains similar results as for L(F,m + 1)•. Note that

using the canonical isomorphism ζ, the set of n-cochains on Km
• can be iden-

tified with the natural transformations from Zm(−;F) to Cn(−;F), and with

mor(K(F,m)•, L(F, n+ 1)•).

Theorem 5. The intersection poset of the coordinate arrangement A
n
m is the

poset of subsets of [n− 1] truncated above the level n−m. The rank function is

given by (n−rm ) where r denotes the cardinality of the subset. The set Cn(Km
• ;F)

is an F-vector space of rank
n
∑

r=0

(−1)r(nr ) q
(n−r

m ) .
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Proof: We have

Wi1,12,...,ir := Wi1 ∩Wi2 ∩ . . . ∩Wir =
⊕

I:{i1,i2,...,ir}⊂ I

F · σI

where I runs over the (n−m)-subsets of {0, 1, . . . , n−1}. Thus, for 1 ≤ r ≤ n−m,

the r-fold intersections Wi1,12,...,ir correspond to the r-subsets of {0, 1, . . . , n−1},

and for r > n − m, the intersections are 0. The rank of Wi1,12,...,ir is equal to

the number of (n−m)-subsets I of {0, 1, . . . , n − 1} which contain i1, i2, . . . , ir.

This number is clearly given by ( n−r
n−m−r) = (n−rm ). Then the inclusion-exclusion

principle gives the rank of Cn(Km
• ;F).

As every cochain on a simplicial subset Y• of a simplicial set X• can be ex-

tended to a cochain on X•, a cocycle operation in Zn(Km
• ;F) ⊂ Cn(Km

• ;F) has
an extension to a cochain operation in Cn(L(F,m+1)•;F). Because the isomor-

phism ζ is linear, this implies that a cocycle operation also has a representation

as a polynomial in coface operators. The definition of algebraic filtration F≤s

and cross-effect filtration in Zn
m again make sense and coincide as in the case of

O(F,m,F, n). Here, in the case of cocycle operations, we are able to determine

explicitely a basis and the filtration quotients of Cn(Km
• ;F). We will need a

lemma concerning the vanishing ideal of coordinate arrangements.

Lemma 6. Let V be a finite dimensional vector space over some finite field

F of cardinality q and A ⊂ V be a coordinate arrangement with respect to a basis

v1, v2, . . . , vd of V . Denote the dual basis of V
∗ by x1, x2, . . . , xd. Then a linear

combination

f =
∑

ce1,e2,...,ed
xe11 xe22 · · · x

ed

d

of monomials with ei ≤ q − 1 vanishes on A if and only if each monomial

xe11 xe22 · · · x
ed

d vanishes on A.

Proof: In order to prove the assertion for the coordinate arrangement, it is

enough to prove it for a single coordinate subspace. Without loss of generality,

we take W to be generated by v1, v2, . . . , vh, with h ≤ d. Decompose the sum as

f = f ′ + f ′′, where f ′ contains the monomials in x1, x2, . . . , xh, i.e. with ei = 0

for i > h. Thus f ′ is a polynomial function from W to F expressed in the

basis monomials xe11 xe22 · · · x
eh

h that vanishes on W . As the basis monomials are

linearly independent, it follows that f ′ = 0. But any monomial in f ′′ contains

some factor xi with i > h, hence vanishes on W .
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We remark that the statement of the lemma is not true in the case of a

general (not coordinate) arrangement. Indeed, we have the example Am+1
m in

V := L(F,m+ 1)m+1, where

d =
∑

i

(−1)i di ∈ O(F,m,F,m+ 1) ⊂ map(V,F)

vanishes on Am+1
m , but not the single monomials di. Denote the dual basis of

σI by 〈I〉 ∈ Hom(Km
n ,F). By lemma 2, it holds that a basis of C̃n(Km

• ;F) =

map(Km
n ,F) is given by the monomials

〈I1〉
e1 〈I2〉

e2 · · · 〈Is〉
es

where I1, I2, ..., Is are pairwise different (n−m)-subsets of [n−1] = {0, 1, . . . , n−1}

and the exponents satisfy 1 ≤ ei ≤ q−1 with q being the cardinality of F.

Theorem 6. A basis of Cn(Km
• ;F) is given by the monomials as above

〈I1〉
e1 〈I2〉

e2 · · · 〈Is〉
es that satisfy I1 ∩ I2 ∩ . . . ∩ Is = ∅. The rank d(t) of the

finite-dimensional F-vectorspace
(

F≤tCn(Km
• ;F)

)/(

F≤t−1Cn(Km
• ;F)

)

is given by the identity

∑

t≥0

d(t)xt =
∑

s≥0

(x+ x2 + . . .+ xq−1)s
n
∑

r=0

(−1)r (nr )
(

(n−r
m )
s

)

.

Proof: By the preceding lemma, there is a basis of monomials. Let w =
∑

i∈I cI σI be some vector in the degenerate subspace Wi, where cI ∈ F. Then

(

〈I1〉
e1〈I2〉

e2 · · · 〈Is〉
es

)

(w) =

{

0 if there is some Ik with i /∈ Ik

cI1cI2 · · · cIr if all Ik satisfy i ∈ Ik
.

Thus the monomial vanishes on Wi if and only if i /∈
⋂

k Ik, and it vanishes on

all W0,W1, . . . ,Wn−1 if and only if
⋂

k Ik = ∅. Denote the number of s-systems

of (n−m)-subsets {I1, I2, . . . , Is} of [n−1] which satisfy I1 ∩ I2 ∩ . . . ∩ Is = ∅

by u(n, n−m, s). For any such s-system {I1, I2, . . . , Is}, we can form (q − 1)s

polynomials 〈I1〉
e1〈I2〉

e2 · · · 〈Is〉
es by choosing exponents between 1 and q − 1.

As we obtain any normalized monomial by suitable s, Ik and ek (k = 1, . . . s),

it follows
∞
∑

s=0

u(n, n−m, s) (q − 1)s =
n
∑

r=0

(−1)r (nr ) q
(n−r

m ) .
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Of course, we have u(n, n − m, s) = 0 for s > ( n
n−m) as the maximal s-system

consists of all (n−m)-subsets of [n− 1]. Inserting q = (q− 1) + 1 the right hand

side is equal to
∞
∑

s=0

n
∑

r=0

(−1)r (nr )
(

(n−r
m )
s

)

(q − 1)s .

Now we use the fact that we can choose the finite field F arbitrary, i.e. q runs

through the powers of prime numbers. Thus we can consider q − 1 as a variable

and the equation is an equality in the polynomial ring Z[q − 1] which is satisfied

for infinitely many values of q − 1. Hence we get

u(n, n−m, s) =
n
∑

r=0

(−1)r (nr )
(

(n−r
m )
s

)

.

Let v(q, t, s) be the number of monomials of total degree t for a fixed s-system.

It holds

v(q, t, s) = #

{

(e1, e2, . . . , es) | 1 ≤ ei ≤ q − 1,
∑

i

ei = t

}

which can be written in a generating series as

∑

t≥0

v(q, t, s)xt = (x+ x2 + . . .+ xq−1)s .

Clearly the dimension of the filtration quotient of degree t in the theorem is given

by

d(t) =
∑

s≥0

u(n, n−m, s) v(q, t, s) ,

which gives the identity for
∑

t≥0 d(t)x
t.

Corollary 3. For n > tm, it holds

F≤tCn(Km
• ;F) = F≤tZ(F,m,F, n) = 0 .

In particular, there are no linear cocycle operations for n > m, there are no

quadratic cocycle operations outside the stable range (i.e., for n > 2m), there

are no tertiary cocycle operations outside the metastable range (i.e., for n > 3m),

and so on.
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Proof: By the theorem above, a basis of monomials of filtration ≤ t is

given by 〈I1〉
e1〈I2〉

e2 · · · 〈Is〉
es with I1 ∩ I2 ∩ . . . ∩ Is = ∅ and

∑

i ei ≤ t. Since

ei ≥ 1, it follows s ≤ t, and the condition of empty intersection is equivalent to

Ī1∪ Ī2∪ . . .∪ Īs = [n−1], where Īj denotes the complement of the (n−m)-subset

Ij in [n− 1]. Since #[n− 1] = n, it follows t ·m ≥ s ·m ≥ n.

As the differential d is linear, it does not increase the filtration of a cochain:

d : F≤tCn(Km
• ;F)→ F≤tCn+1(Km

• ;F) .

Hence we have a filtered cochain complex for Km
• ≈ K(F,m)• and we can form

the associated spectral sequence [14]

Ep,q
0 =

(

F≤pCp+q(Km
• ;F)

)/(

F≤p−1Cp+q(Km
• ;F)

)

=⇒ Hp+q(Km
• ;F) ,

which converges as the filtration is bounded (here, q denotes an index and not the

cardinality of F, of course). Our theorem above gives the additive structure of

the E∗,∗0 -term. As the cup product on the cochain level behaves additively with

respect to algebraic filtration of cochain or cocycle operations, and defines the

cup product in cohomology, we see that our spectral sequence has a multiplicative

structure. The E∗,∗∞ -term is just the graded algebra associated to the algebraic

filtration of cohomology operations which we have defined in Section 5. It would

be interesting to understand this spectral sequence from a combinatorial point of

view because this could lead to an independent computation of the cohomology

of Eilenberg–MacLane spaces.

7 – Tables

We close with some tables of dimensions of filtration quotients, i.e., of the

initial term of the spectral sequence in low dimensions for the prime q = 2 which

we computed using the previous formulae. Here, the entries in the first tables are

the numbers rk(Ep,n−p
0 (Km

• ;Z/2)), which are given by

n
∑

r=0

(−1)r (nr )
(

(n−r
m )
p

)

.

They sum up over p (i.e., vertically) to

rk(Cn(Km
• ;Z/2)) =

n
∑

r=0

(−1)r (nr ) 2
(n−r

m ) .
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The second tables denote H∗(Km;Z/2), i.e., the limit term of the spectral se-

quence, which is known by the classical results of Serre. In the corresponding

dimensions we have indicated the additive generators which are formed by certain

products of admissible monomials in Steenrod squares applied to the fundamen-

tal class. Here, we also indicated the ‘naive filtration’ of these elements, i.e. the

filtration defined by assigning a monomial Sqa1Sqa2 ... Sqar ιm the filtration 2r and

assigning to a product the sum of filtrations of its factors. This naive filtration

clearly may be larger than the filtration defined above, thus the second tables may

differ from the E∞-term of the spectral sequence with respect to the vertical coor-

dinate. It would be interesting to know if there is some (explicit) example where

the naive filtration is larger than our filtration. From the tables we see that the

numbers rk(Ep,n−p
0 (Km

• ;Z/2)) grow much faster than rk(H∗(Km
• ;Z/2)), which

means that there are a lot of non-trivial differentials in the spectral sequence. The

case m = 1 (with q = 2, as this is not true for other cefficients than Z/2) is an

exception to this phenomenon insofar as there all differentials are zero, E0 = E∞,

because rk(Cn(K1
• ;Z/2)) =

∑n
r=0(−1)

r(nr ) 2
(n−r

1
) = (2− 1)n = 1.

The case m = 1, E∗∗0 (K1
• ;Z/2):

6 1
5 1
4 1
3 1
2 1
1 1
0 1

p/n 0 1 2 3 4 5 6

6 ι6

5 ι5

4 ι4

3 ι3

2 ι2

1 ι
0 1

p/n 0 1 2 3 4 5 6
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The case m = 2, E∗∗0 (K2
• ;Z/2):

6 1 205 3760 23604 71078
5 6 222 1581 4410 5880
4 15 135 330 315 105
3 1 16 30 15
2 3 3
1 1
0 1

p/n 0 1 2 3 4 5 6 7 8

6 Sq1ιSq2Sq1ι

5 ιSq2Sq1ι ι(Sq1ι)2

4 Sq2Sq1ι (Sq1ι)2 ι2Sq1ι ι4

3 ιSq1ι ι3

2 Sq1ι ι2

1 ι

0 1

p/n 0 1 2 3 4 5 6 7 8

The case m = 3, E∗∗0 (K3
• ;Z/2):

6 210 37500 1356250 20556676
5 252 13992 221396 1642760
4 1 205 3600 22820 72380
3 4 100 480 945 840
2 6 15 10
1 1
0 1

p/n 0 1 2 3 4 5 6 7 8

6
5
4 Sq2Sq1ι Sq3Sq1ι (Sq1ι)2

3 ιSq1ι ιSq2ι

2 Sq1ι Sq2ι ι2

1 ι

0 1

p/n 0 1 2 3 4 5 6 7 8
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The case m = 4, E∗∗0 (K4
• ;Z/2):

6 5005 1588125 ≈ 1.18 · 1021

5 1 2997 303632 9589986
4 5 1335 42910 535955
3 10 395 3570 14560
2 10 45 70 35
1 1
0 1

p/n 0 1 2 3 4 5 6 7 8

6
5
4 Sq2Sq1ι Sq3Sq1ι

3
2 Sq1ι Sq2ι Sq3ι ι2

1 ι

0 1

p/n 0 1 2 3 4 5 6 7 8

The case m = 5, E∗∗0 (K5
• ;Z/2):

6 1 54257 32034352
5 6 20307 3657192
4 15 5880 319830
3 20 1190 17640
2 15 105 280
1 1
0 1

p/n 0 1 2 3 4 5 6 7 8

6
5
4 Sq2Sq1ι

3
2 Sq1ι Sq2ι Sq3ι

1 ι

0 1

p/n 0 1 2 3 4 5 6 7 8
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We also note that we can compute from our results the number of simplicial

maps beetwen Eilenberg–MacLane spaces (i.e., the number of closed cocycle

operations). In fact, the short exact sequences 0 → Zn → Cn → Bn+1 → 0

and 0→ Bn → Zn → Hn → 0 give

rk(mor(Km
• ,K

n
• )) = rk(Zn(Km

• ))

= rk(Hn(Km
• )) + rk(Cn−1(Km

• ))− rk(Zn−1(Km
• ))

which can be used to recursively compute these numbers. We have

6 0 1 27449 1042642 32596 1
5 0 1 768 958 26 1
4 0 1 41 11 1 0
3 0 1 4 1 0 0

rk(Cn(Km
• )) = 2 0 1 1 0 0 0

1 0 1 0 0 0 0
0 2 1 1 1 1 1

n/m 0 1 2 3 4 5

6 0 1 2 2 1 1
5 0 1 2 1 1 1
4 0 1 1 1 1 0
3 0 1 1 1 0 0

rk[Km
• ,K

n
• ] = 2 0 1 1 0 0 0

1 0 1 0 0 0 0
0 2 1 1 1 1 1

n/m 0 1 2 3 4 5

which yields

6 0 1 731 949 26 1
5 0 1 39 11 1 1
4 0 1 4 1 1 0
3 0 1 1 1 0 0

rk(mor(Km
• ,K

n
• )) = 2 0 1 1 0 0 0

1 0 1 0 0 0 0
0 2 1 1 1 1 1

n/m 0 1 2 3 4 5
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We see in particular the ‘rigidity phenomenon’

Zm(K(R,m)•;R
′) = mor(K(R,m)•,K(R′,m)•)

= Hm(K(R,m)•;R
′) = [K(R,m)•,K(R′,m)•] = Hom(R,R′)

which holds for all m > 0 and arbitrary coefficients R,R′, and

Cn(K1
• ;Z/2) = Zn(K1

• ;Z/2) = mor(K1
• ,K

n
• )

= Hn(K1
• ;Z/2) = [K1

• ,K
n
• ] = Z/2 · ιn

which holds for all n and coefficients Z/2. There is a further rigidity phenomenon

for the Bockstein operator with coefficients Z/2:

Zm+1(Km
• ;Z/2) = mor(Km

• ,K
m+1
• ) = [Km

• ,K
m+1
• ]

= Hm+1(Km
• ;Z/2) = Z/2 · Sq1ι ,

which follows from the recursive formula as rk(Cm(Km
• )) = rk(Zm(Km

• )).
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