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A NONLOCAL FRICTION PROBLEM
FOR A CLASS OF NON-NEWTONIAN FLOWS

L. Consiglieri *

Abstract: In this work we study the flow for a class of non-Newtonian fluids with a

nonlocal friction condition obtained by the mollification of the normal stresses on part of

the boundary. Considering a reformulated problem using an abstract boundary operator,

we prove an existence result for the steady case. The mathematical framework of the

paper is mainly constituted by the duality theory of convex analysis and an application

of a fixed point theorem to multivalued mappings.

1 – Introduction and statement of the problem

The class of non-Newtonian fluids considered in this work includes the “power

law” of Ostwald and de Waele, the Carreau, Prandtl-Eyring, Williamson, Cross,

Ellis models (see [BAH]), the Ladyzenskaya model (see [L1,2]) and Bingham fluids

(see [DL]).

Here we suppose that the classical adherence of the fluid to the boundary en-

closing its flows does not hold everywhere and there exists a friction phenomenum

in part of it. We extend the previous result for Bingham fluids already obtained

in [Co].

The friction problem for fluids was proposed in [Se]. Serrin suggested to

introduce a local friction law on a part of the boundary of the domain. However

a local law does not give enough regularity to the normal stress tensor as it was

observed first in elastostatic problems ([DL] and [D]).

Nonlocal friction laws arising in elasticity have been considered by various

authors. References can be found in [DL], [KO], [M], [P] and in particular for
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elastodynamics problems (see [OM]). Roughly speaking, a nonlocal friction law

proposes that impending motion at a point of contact between two deformable

continuous media will occur when the shear stress at that point reaches a value

proportional to a weighted measure of the normal stresses in a neighborhood of

the point. The character of the effective local neighborhood and the manner in

which neighborhood stresses contribute to the sliding condition depends upon

features of the microstructure of the materials in contact.

Different simplifications were used to contourn the difficulty of lack of regu-

larity of the normal stress tensor, for instance, it is assumed nonpositive by [C],

[NJH] and [J], or even constant by [C1] and [EMS]. Here we extend the approach

of [D] and [P] for a class of non-Newtonian flows.

As examples of the effect of friction on the boundary for some stationary flows,

we refer the papers of [Mi] and [HP].

Let Ω be a bounded open set of Rn (n ≥ 2) with a sufficiently smooth

boundary Γ which consists of the union of the closure of two open subsets, e.g.,

Γ = Γ̄0 ∪ Γ̄1. The flow problem is formulated by the equations of motion for an

incompressible non-Newtonian fluid:

∇· u =
n
∑

i=1

∂ui
∂xi

= 0 in Ω ;

(u · ∇)u = ∇· σ + f in Ω .

Here u = (ui)i=1,...,n denotes the velocity vector and f the body forces. The

stress tensor σ = (σij)i,j=1,...,n satisfies the constitutive law (see [C2]):

τ = πI + σ ∈ ∂F(D(u)) ,

where D(u) = [Diju] = (1/2) [∂ui/∂xj + ∂uj/∂xi] is the symmetric part of ∇u,

π the pressure, I the identity matrix and the functional F is the sum of the

products of constant viscosities µl and arbitrary convex functions Fl (l = 1, ..., L):

F(τ) =
L
∑

l=1

µl Fl(|τ |) ,

reminding that 2DII = D :D = tr(D2) = |D|2. This law means that the viscous

part τ = (τij) of the stress tensor belongs to the subdifferential of the functional

F at the point given by the velocity of strain tensorD(u). This class of fluids have

been studied in particular in the papers [Co1] and [Co2] with classical boundary

conditions.
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We assume for sake of simplicity that the density ρ ≡ 1. The boundary

condition is prescribed on the part of the boundary where the fluid adheres to

the wall, i.e.,

u = 0 on Γ0 .

In the remaining part of the boundary we assume a friction condition on Γ1
(see [DL]):

uN = 0

and







|σT | < k |σN | =⇒ uT = 0 ,

|σT | = k |σN | =⇒ ∃λ ≥ 0, uT = −λσT .
(1)

We denote by k > 0 the coefficient of friction,

uT = u− uN n , uN = u · n on Γ1(2)

the tangential and normal velocities, where n represents the unit outward normal

to the boundary, and

σT = σ · n− σNn , σN = (σ · n) · n(3)

the tangential and normal stress tensors on the boundary, respectively.

Remark 1. Notice that (1) is equivalent to (see [DL] or [KO])

σT uT + k |σN | |uT | = 0 on a.e. Γ1 ;

which implies that, for arbitrary smooth v,

σT (vT − uT ) + k |σN | {|vT | − |uT |} ≥ 0 on a.e. Γ1 .

Instead the classical pointwise Coulomb law we shall adopt a non local friction

law introduced in [D]







|σT | < kΦ(σN ) =⇒ uT = 0 ,

|σT | = kΦ(σN ) =⇒ ∃λ ≥ 0: uT = −λσT .

One possible approach to the boundary operator Φ would consist of defining

it as the convolution of the given σN with a C∞
0 mollifier ρ, i.e.,

Φ(σN ) = |ρ ∗ σN | ,
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considering

ρ ∗ σN (x, t) =

∫

Γ1

ρ(|x− s|)σN (s, t) ds ,

where ds denotes the measure over the boundary Γ1.

Next section, we introduce the weak formulation of above problem and we

state the existence theorem. In section 3, we recall some preliminary results.

In section 4, we solve an auxiliary problem, its dual and we prove the continuous

dependence of the solutions. In section 5 we prove the main theorem.

2 – The weak formulation

Let be Ω ∈ C1,1. Concerning the variational formulation, we define the func-

tional spaces, for p, r > 1,

Vp =
{

v ∈ [W 1,p(Ω)]n : ∇· v = 0 in Ω, v = 0 on Γ0, vN = 0 on Γ1
}

;

Hr =
{

v ∈ [Lr(Ω)]n : ∇· v = 0 in Ω, vN = 0 on ∂Ω
}

;

Lpsym(Ω) =
{

τ = (τij) : τij = τji ∈ L
p(Ω)

}

;

equipped with their natural norms, assuming always that meas(Γ0) > 0, so that

the Poincaré’s inequality holds in Ω. We denote by 〈·, ·〉 every duality pairing.

We now state the variational formulation of the above problem.

(Pb) Find u ∈ Vp , σ ∈ L
p′
sym(Ω) and π ∈ Lp

′
(Ω) satisfying



























τ = πI + σ ∈ ∂F(D(u)) ;

〈(u · ∇)u,v − u〉+
∫

Ω
F(D(v)) dx−

∫

Ω
F(D(u)) dx +

+

∫

Γ1

kΦ(σN (u)) {|vT | − |uT |} ds ≥ 〈f ,v − u〉 , ∀v ∈ Vp .

Since the functional F is not differentiable, a variational inequality appears.

The main step of the proof of existence of solutions is to introduce Lagrange

multipliers with the purpose to replace the inequality by a system of equalities.

Hence, τ appears as a Lagrange multiplyer associated with the structure of the

problem. Then, the proof of the existence of solutions requires a fixed point

theorem for a suitable multivalued mapping.

In order to state the main result, some standard assumptions are presented.
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We assume that for each l = 1, ..., L:

µl ∈ R, µl > 0 ;(4)

Fl : R+0 → R+0 is a convex function such that Fl(0) = 0 ,(5)

∃ pl > 1, ∃Cl > 0: Fl(d) ≤ Cl(d
pl + 1) ∀ d > 0 ;(6)

and exists l0 ∈ {1, ..., L}, defining p = pl0 = max{pl : l = 1, ..., L}

∃α > 0: αdp ≤ Fl0(d) ∀ d ≥ 0 .(7)

We define as a positive cone for 1 ≤ s ≤ +∞

Ls+(Γ1) =
{

ψ ∈ Ls(Γ1) : ψ ≥ 0
}

,

and we assume

f ∈ [Lp
′

(Ω)]n and k ∈ L∞
+ (Γ1) .(8)

Theorem 1. If we assume (4)–(8), Fl0 is strictly convex and

Φ: Lp
′

(Γ1)→ Lp
′

+(Γ1) is a weakly continuous operator, i.e.,

τη ⇀ τ in Lp
′

(Γ1) =⇒ Φ(τη)⇀ Φ(τ) in Lp
′

(Γ1) ,(9)

then for p > 3n/(n+2) the problem (Pb) has at least one solution.

3 – Preliminary results

We recall some results that will be used later. First, a fixed point theorem for

multivalued mappings (see [BC], pages 218–220).

Theorem 2. Let E be a locally convex Hausdorff topological vector space

and let K be a non-empty convex compact set in E. If

Ψ: K−→
{

R ∈ P(K) : R 6= ∅, R closed convex
}

is an upper semi-continuous mapping then Ψ has at least one fixed point, i.e.,

e ∈ Ψ(e) for some e ∈ K.
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Remark 2. Notice that Ψ is upper semi-continuous iff GKK(Ψ) :=

{(x, y) ∈ K×K : y∈Ψ(x)} is closed inK×K with the product topology (see [BC],

page 413).

Next we summarize some existence results from the duality theory of convex

optimization in the following proposition (see [ET], pages 50–52).

Proposition 1. Let U and Z be locally convex Hausdorff topological vector

spaces and Υ: U×Z → R be a convex functional. If there exists u0 ∈ U such

that ς 7→ Υ(u0, ς) is finite and continuous at 0 (∈ Z), and Υ(u, 0) is finite where

u is a minimizer in U of the initial problem (ς = 0):

(Πς) inf
v∈U

Υ(v, ς) ;

then there exists, at least, a Lagrange multiplyer ς∗ ∈ Z ′ solution of the dual

problem

(Π∗) sup
ς∗∈Z′

[−Υ∗(0, ς∗)] ,

where the conjugate mapping Υ∗ : U ′×Z ′ → R is defined by

Υ∗(v∗, ς∗) = sup
(v,ς)∈D(Υ)

[

〈(v∗, ς∗), (v, ς)〉 −Υ(v, ς)
]

.

Moreover, u ∈ U and ς∗ ∈ Z ′ satisfy the relation

Υ(u, 0) + Υ∗(0, ς∗) = 0 .(10)

We recall now some properties of the convective term.

Lemma 1. The anti-symmetrical trilinear form:

b(w,u,v) := 〈(w · ∇)u,v〉 =

∫

Ω
w ⊗ v : (∇u)T dx

is well defined for u,v ∈ Vp with p > 1, and for w ∈ Hr with

r ≥
p n

n p+ p− 2n
if p < n, or r ≥ p′ if p ≥ n ;(11)

if wm → w in Lr(Ω) and um ⇀ u weakly in Vp then

b(wm,um,v) −→ b(w,u,v) .
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Let us introduce the existence of the pressure which proof can be found in

[G, pages 164 and 180].

Proposition 2. Let Ω be a bounded domain of Rn satisfying the cone con-

dition and g ∈ [W−1,p′(Ω)]n. If

〈g,v〉 = 0 ∀v ∈
{

v ∈ [W 1,p
0 (Ω)]n : ∇· v = 0 in Ω

}

then

∃1 π ∈ Lp
′

0 (Ω) =
{

π ∈ Lp
′

(Ω):

∫

Ω
π dx = 0

}

such that

〈g,v〉 =

∫

Ω
π∇· v dx ∀v ∈ [W 1,p

0 (Ω)]n ;

and the following estimate holds

∃ c > 0 : ‖π‖p′,Ω ≤ c sup
v∈[W 1,p

0
(Ω)]n

|〈∇π,v〉|

‖D(v)‖p,Ω
= c ‖∇π‖[W−1,p′(Ω)]n .

Finally we state a “decomposed” Green’s formula (see, for instance, [KO,

page 90] or [S]).

Proposition 3. Let be γi the restriction to Γi (i = 0, 1) of the trace operator

and
V =

{

v ∈ [W 1,p(Ω)]n : ∇· v = 0 in Ω, γ0v = 0
}

;

W =
{

γ1v : v ∈ V
}

;

Wp =
{

γ1v : v ∈ Vp
}

.

Then there exist uniquely determined linear continuous mappings $ from

Vσ :={σ∈L
p′
sym(Ω): ∇·σ ∈ V

′} intoW ′ and $T from {σ∈Lp
′

sym(Ω) : ∇·σ ∈ (Vp)
′}

into (Wp)
′ such that

i) $(σ) = σ|Γ1
· n and $T (σ) = σ|Γ1

· n− [(σ|Γ1
· n) · n]n if σ∈ [C1(Ω̄)]n×n;

ii) the Green’s formula is satisfied

〈σ,D(v)〉+ 〈∇· σ,v〉 = 〈$σ, γ1v〉W ′×W = 〈$T σ,vT 〉W ′
p×Wp

,

∀σ ∈ Lp
′

sym(Ω), ∀v ∈ Vp .

For simplicity, we use the notation (2)–(3).
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4 – An auxiliary problem

Let us introduce the auxiliary problem.

(Pb)
w,ψ: Given w ∈ Hr with (11) and ψ ∈ Lp

′

+(Γ1), find u = u(w, ψ) such

that, for all v ∈ Vp,

b(w,u,v−u) +

∫

Ω
{F(D(v))−F(D(u))} dx +

∫

Γ1

k ψ{|vT | − |uT |} ds ≥(12)

≥ 〈 f ,v − u〉 .

The existence and uniqueness of solution is proved in the following proposition.

Proposition 4. Under the previous conditions (4)–(8), for all p > 1, with

Fl0 being a strictly convex function, then there exists an unique solution u =

u(w, ψ) ∈ Vp of the problem (Pb)w,ψ such that

‖u‖pVp
≤
‖f‖p

′

p′,Ω

(µl0 α)
p′
.(13)

Proof: Taking into account that the functional

v ∈ Vp 7−→
∫

Ω
F(D(v)) dx +

∫

Γ1

k ψ |vT | ds

is strictly convex, continuous and coercive on Vp, the existence of an unique

solution to (12) is an consequence of a classical existence theorem (see [ET, pages

39 and 44], for instance).

Taking v = 0 in (Pb)w,τ , the estimate (13) easily follows.

The following proposition establishes that the dual problem of the auxiliary

problem (Pb)w,τ has at least a solution.

Proposition 5. For each solution u of (Pb)w,ψ, there exists a Lagrange mul-

tiplyer ς∗= (ς∗l )l=0,1,...,L ∈ [Lp
′
(Γ1)]

n × L
p′
1
sym(Ω) × ... × L

p′
L
sym(Ω) and a pressure

field π ∈ Lp
′
(Ω) such that the stress tensor is given by

σ = − πI −
L
∑

l=1

ς∗l ,
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satisfying

〈ς∗0− σT ,vT 〉 = 0 for all v ∈ Vp ;(14)
∫

Γ1

k ψ |uT | ds = 〈−ς
∗
0 ,uT 〉 and |ς∗0 | ≤ k ψ on Γ1 ;(15)

∫

Ω
µl Fl

(

|D(u)|
)

dx+

∫

Ω
µl F

∗
l

(
∣

∣

∣

∣

ς∗l
µl

∣

∣

∣

∣

)

dx = 〈−ς∗l , D(u)〉 , l = 1, ..., L ;(16)

(w · ∇)u +
L
∑

l=1

∇· (ς∗l ) = f −∇π in Ω .(17)

Moreover, for each l = 1, ..., L we have the following estimate

‖ς∗l ‖
p′

l

p′
l
,Ω ≤

2pl

pl − 1
(µl Cl pl)

p′
l ‖D(u)‖pl

pl,Ω
+

2

pl − 1
(µlClpl)

p′
l |Ω| .(18)

Conversely, if u ∈ Vp and ς
∗ ∈ [Lp

′
(Γ1)]

n ×
∏L
l=1 L

p′
l
sym(Ω) satisfy (14), (15), (16)

and (17) then u is the solution of (Pb)w,ψ.

Proof: The converse is straightforward. The existence of, at least, a La-

grange multiplyer such that satisfies (14)–(17) follows from Proposition 1 if we

set U := Vp, Z := [Lp(Γ1)]
n × Lp1sym(Ω)× ...× L

pL
sym(Ω) and

Υ(v, ς) = J(v) +G0(vT − ς0) +
L
∑

l=1

Gl
(

D(v)− ςl
)

,

where

J : v ∈ U 7−→ 〈(w · ∇)u− f ,v〉

G : ς ∈ Z 7−→ G(ς) =
L
∑

l=0

Gl(ςl) :=

∫

Γ1

k ψ |ς0| ds+
L
∑

l=1

∫

Ω
µl Fl(|ςl|) dx .(19)

Indeed, if we define

Λ(v) = (vT , D(v), ..., D(v))

then there exists ς∗ = (ς∗l )l=0,1,...,L ∈ [Lp
′
(Γ1)]

n × L
p′
1
sym(Ω) × ... × L

p′
L
sym(Ω) and

(10) is decomposed into the conditions:


















G0(γ1u) +G∗
0(−ς

∗
0 ) + 〈ς

∗
0 , γ1u〉 = 0 ,

Gl(D(u)) +G∗
l (−ς

∗
l ) + 〈ς

∗
l , D(u)〉 = 0 l = 1, ..., L ,

J(u) + J∗(Λ∗ς∗) + 〈Λ∗ς∗,u〉 = 0 .
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For each l = 1, ..., L the conjugate function G∗
l : Yp′l → R is expressed by

G∗
l (ς) =

∫

Ω
[µl Fl(|ς|)]

∗ dx =

∫

Ω
µl F

∗
l

(∣

∣

∣

∣

ς

µl

∣

∣

∣

∣

)

dx ;

while for l = 0, the computation of the conjugate function gives

G∗
0(v) =

{

0 if |v| ≤ k ψ

+∞ if |v| > k ψ .

Consequently, the relations (16) and (15) arises.

We observe that

J∗(Λ∗ς∗) =

{

0 if (17) and (14) hold

+∞ otherwise

because

J∗(Λ∗ς∗) = sup
v∈Vp

[

〈Λ∗ς∗,v〉 − J(v)
]

= sup
v∈Vp

[

〈ς∗,Λv〉 − J(v)
]

(20)

≥ sup
v∈V

[

〈ς∗,Λv〉 − 〈(w · ∇)u− f ,v〉
]

which permits to deduce (17).

Defining σ = −πI−
∑L
l=1 ς

∗
l ∈ L

p′
sym(Ω) and introducing it in (20), we obtain

J∗(Λ∗ς∗) = sup
v∈Vp

[

〈ς∗0 ,vT 〉+

〈 L
∑

l=1

ς∗l , D(v)

〉

− 〈∇· σ,v〉

]

.

Since ∇·σ∈(Vp)
′, (14) is a consequence of the Green’s formula (cf. Proposition 3).

Finally, for each l = 1, ..., L the estimate (18) follows from introducing in (16)

the conjugate inequality of (6)

(µl Cl pl)
1−p′

l

p′l

∫

Ω
|ς∗l |

p′
l dx− µl Cl |Ω| ≤

∫

Ω
µl F

∗
l

(
∣

∣

∣

∣

ς∗l
µl

∣

∣

∣

∣

)

dx ≤ ‖ς∗l ‖p′l,Ω ‖D(u)‖pl,Ω

and applying the Young inequality.

Remark 3. Notice that the set of solutions is convex if u is unique.

Some estimates are presented in the following proposition.
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Proposition 6. Under the same assumptions as before,

‖π‖p′,Ω ≤ ‖(w ·∇)u‖p′,Ω +
∥

∥

∥

L
∑

l=1

ς∗l

∥

∥

∥

p′,Ω
+ ‖f‖p′,Ω ,(21)

and consequently there exists a constant C = C(|Ω|, pl, µl0α, ‖f‖p′,Ω, µlClpl) such

that

‖σ‖p′,Ω ≤ ‖w‖s,Ω

{

‖f‖p′,Ω
µl0α

}1/(p−1)

+ C .(22)

Proof: It is consequence of Propositions 5 and 2.

Finally, we state the following continuous dependence result.

Proposition 7. Let {wm} and {ψm} be sequences in Hr and in Lp
′

+(Γ1),

respectively, such that wm → w in Lr(Ω) and ψm ⇀ ψ in Lp
′
(Γ1). If σm are

stress tensors associated to the solutions um of (Pb)wm,ψm
, for every m ∈ N,

as defined in Proposition 5, then

i) there exists u, the solution of (Pb)w,ψ, such that um⇀ u in Vp ;

ii) there exists a subsequence σm such that

σm⇀ σ = −πI −
L
∑

l=1

ς∗l in Lp
′

sym(Ω)(23)

where ς∗= (ς∗l )l=0,1,...,L is a Lagrange multiplyer of the solution of (Pb)w,ψ

and π is uniquely determined in the space Lp
′

0 (Ω).

Proof:

i) From the estimate (13), we can extract a subsequence of um, also denoted

um, weakly convergent to u in Vp. Passing to the limit (Pb)wm,ψm
, using Lemma1,

the sequential weak lower semicontinuity of the functional F , the compact imbed-

ding Vp ⊂⊂ [Lp(Γ1)]
n and Fatou’s lemma, we conclude that u is solution of

(Pb)w,ψ. By uniqueness, whole initial sequence converges.

ii) From the estimates (15) and (18) we can extract a subsequence of ς∗m,

denoted ς∗m0 and ς∗ml (l = 1, ..., L) respectively, weakly convergent to ς in

[Lp
′
(Γ1)]

n × L
p′
1
sym(Ω)× ...× L

p′
L
sym(Ω) satisfying

∃πm ∈ L
p′

0 (Ω): 〈ς
∗
m0,vT 〉+

〈

$T

(

πmI +
L
∑

l=1

(ς∗ml)

)

,vT

〉

= 0 ∀v ∈ Vp ;(24)
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∫

Γ1

k ψm |umT | ds = 〈−ς
∗
m0,umT 〉 and |ς∗m0| ≤ k ψm on Γ1 ;(25)

∫

Ω
µl Fl

(

|D(um)|
)

dx+

∫

Ω
µl F

∗
l

(∣

∣

∣

∣

ς∗ml
µl

∣

∣

∣

∣

)

dx = 〈−ς∗ml, D(um)〉 ;(26)

〈

(wm ·∇)um +∇·

(

πmI +
L
∑

l=1

ς∗ml

)

, v

〉

= 〈f ,v〉 , ∀v ∈ [D(Ω)]n .(27)

From (21), we can extract a subsequence such that πm⇀ π in Lp
′

0 (Ω). There-

fore, we pass to the limit (24), since $T is linear continuous. To the first expres-

sion of (25) we use the compact imbedding Vp ⊂⊂ [Lp(Γ1)]
n while to the second

one we take into account the sequential weak lower semicontinuity property.

Using Green’s formula we also pass easily to the limit (27).

Finally, the term 〈−ς∗ml, D(um)〉 of (26) can not pass directly to the limit

because we only have weak convergences.

Summing the relations from each component of Lagrange multiplyer and using

Green’s formula, for all v ∈ Vp

b(wm,um,v−um) = 〈f ,v−um〉+ 〈ς
∗
m0,vT 〉+

L
∑

l=1

〈ς∗ml, D(v)〉

+

∫

Γ1

k ψm |umT | ds+
∫

Ω
F(D(um)) dx

+
L
∑

l=1

∫

Ω
µl F

∗
l

(∣

∣

∣

∣

ς∗ml
µl

∣

∣

∣

∣

)

dx .

From the definition of conjugate function, it follows that the last term is also

weakly sequential lower semicontinuous and convex. Then, we are able to pass

to the limit as before, obtaining

b(w,u,v−u) ≥ 〈f ,v−u〉+ 〈ς0,vT 〉+
L
∑

l=1

〈ςl, D(v)〉

+

∫

Γ1

k ψ |uT | ds +

∫

Ω
F(D(u)) dx(28)

+
L
∑

l=1

∫

Ω
µl F

∗
l

(
∣

∣

∣

∣

ςl
µl

∣

∣

∣

∣

)

dx , ∀v ∈ Vp .

If we set v = u, applying (15) we deduce

∫

Ω
F(D(u)) dx+

L
∑

l=1

∫

Ω
µl F

∗
l

(
∣

∣

∣

∣

ςl
µl

∣

∣

∣

∣

)

dx ≤ −
L
∑

l=1

〈ςl, D(u)〉 .
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Since the opposite inequality always holds, this is a sufficient condition to obtain

(see [ET], page 21 and 26)

−
L
∑

l=1

ςl ∈ ∂
L
∑

l=1

∫

Ω
µl Fl(D(u)) dx =

L
∑

l=1

∂

∫

Ω
µl Fl(D(u)) dx .

Thus, we conclude that there exists ς∗= (ς∗l )l=0,1,...,L satisfying
∑L
l=1 ς

∗
l =

∑L
l=1 ςl

and (14)–(17).

5 – Proof of Theorem 1

Proof: Let us consider Vp and Lp
′
(Γ1) endowed with the weak topologies,

becoming locally convex Hausdorff topological vector spaces. The idea of the

proof is to apply the fixed point Theorem 2 to a multivalued mapping defined

on a compact convex set. To this aim we are going to define a ball which is a

compact convex subset of Vp×L
p′(Γ1) for the weak topologies:

K :=

{

w ∈ Vp : ‖w‖Vp ≤

{

‖f‖p′,Ω
µl0α

}1/(p−1)
}

×

×

{

τ ∈ Lp
′

(Γ1) : ‖τ‖p′,Γ1
≤ R

[{

‖f‖p′,Ω
µl0α

}2/(p−1)

+ C

]

}

,

where R is a positive constant due to the continuity of trace operator and C given

by (22). We define by Ψ the following multivalued mapping

Ψ: (w, τ) ∈ Vp × L
p′(Γ1) 7−→ {u} × S .

Since p > 3n/(n+ 2), we may choose r satisfying (11) such that Vp ⊂⊂ Hr and

u = u(w,Φ(τ)) is the solution of the auxiliary problem (12). From Proposition

5, the corresponding stress tensor σ satisfies

σ := −πI −
L
∑

l=1

ς∗l ∈ Lp
′

sym(Ω) and ∇· σ = (w · ∇)u− f ∈ [Lp
′

(Ω)]n .

Using the notations (3) and recalling Proposition 3, we define

S :=

{

σN = $

(

−πI −
L
∑

l=1

ς∗l

)

· n

}

⊂ Lp
′

(Γ1) .
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We pretend to apply Theorem 2 to the function Ψ. In fact Ψ is a well defined

multivalued mapping from K to 2Kck := {R ∈ P(K) : R 6= ∅, R closed convex}

because, for each (w, τ) ∈ K, Ψ(w, τ) is a non empty convex set. In addition

Ψ(w, τ) is closed and Ψ is an upper semicontinuous mapping if the set GKK(Ψ)

will be closed in K×K (see Remark 2).

Thus, it remains to prove that GKK(Ψ) = GKK(Ψ).

Taking ((w, τ), (u, ζ)) in (Vp × L
p′(Γ1))

2 such that there exist sequences

(wm, τm) from K and (um, ζm) from Ψ((wm, τm)) verifying

wm⇀ w , um⇀ u in Vp and τm⇀ τ , ζm⇀ ζ in Lp
′

(Γ1) ,

we deduce (w, τ) ∈ K by weak convergence property.

To prove that u is the required solution, we apply Proposition 7 consider-

ing the compact imbedding wm → w in Hr and the assumption (9) on Φ. So,

by uniqueness u = u(w,Φ(τ)). Next, by definition of Ψ there exist Lagrange

multipliers ς∗m and pressures πm such that

ζm = $

(

−πmI −
L
∑

l=1

ς∗ml

)

and we will prove that the weak limit ζ takes also this form.

Indeed, applying Proposition 7 we obtain

∃ ς∗, π : σm⇀ σ = −πI −
L
∑

l=1

ς∗l in Lp
′

sym(Ω) .

Since $ is linear continuous, the result ζ = $(σ) ∈ S follows from the uniqueness

of weak limit.

Finally, Theorem 2 garantees at least a fixed point of Ψ, that yields one

solution to the problem.
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