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Abstract: Let q be a power of an odd prime p. For r ∈ {1, 2} and p 6= 3, we give

bounds for the minimal non-negative integer gr(3, 2,Fq[t]) = g, such that every P ∈ Fq[t]

is a strict sum of g cubes and r squares. Similarly we study for p = 3, the number

g1(2, 3,Fq[t]) = g, such that every P ∈ Fq[t] is a strict sum of g squares and a cube.

All bounds are obtained using explicit representations. Precisely our main results are:

(i) 2 ≤ g1(3, 2,Fq[t]) ≤ 5 when p 6= 3 and q /∈ {7, 13}.

(ii) 1 ≤ g2(3, 2,Fq[t]) ≤ 4 when p 6= 3 and for all q 6= 7.

(iii) 2 ≤ g1(2, 3,Fq[t]) ≤ 3 for all q when p = 3.

The later item is of some interest since Serre gave an indirect proof of the fact that for

q 6= 3 every polynomial in Fq[t] is a strict sum of 3 squares, and that for q = 3 there are

some exceptions (8 as precised by Webb) that require 4 squares.

1 – Introduction

The Waring’s problem for cubes and squares for polynomials in F[t] over some

field F, is the analogue of the same problem over the integers Z. If n is any integer
we can represent it in the form

n = n3
1 + · · ·+ n3

g +m2
1 + · · ·+m2

h

for some non-negative integers g, h where the integers ni, mj for i = 1, ..., g and

j = 1, ..., h have the same sign as n. So that |n3
i | ≤ |n| for all i = 1, ..., g and

|m2
j | ≤ |n| for all j=1, ..., h.
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From Lagrange’s theorem we can always take h ≤ 4, and from Wieferich and

Scholz work (See [Wi] and [Sc]) we can always take g ≤ 9, so that we can say

that the Waring’s problem for cubes and squares over Z consists on determining
or at least bounding the minimal such g, say gh(3, 2,Z) when h ≤ 3 is fixed, or

vice versa, consists on determining or at least bounding the minimal such h, say

hg(2, 3,Z) when g ≤ 9 is fixed.

Let us pass now to our problem: For the polynomials the notion of “positive-

ness” of the integers it is naturally replaced by conditions on degrees. We want

to write all possible polynomials not barred by congruences as sums of cubes and

squares in such a manner that the minimum cancellation occurs.

Let F be a field, and let P ∈ F[t] be a polynomial such that

P = c31 + · · ·+ c3s + d2
1 + · · ·+ d2

k

for some polynomials c1, ..., cs, d1, ..., dk ∈ F[t] such that deg(c3i ) < deg(P ) + 3

for all i = 1, ..., s and deg(d2
i ) < deg(P ) + 2 for all i = 1, ..., k. We then say that

P is a strict sum of s cubes and k squares. For any A ∈ {c1, ...cs}, respectively

B∈{d1, ...dk}, we say that A
3, respectively B2 appear in the decomposition of P .

We also say that a polynomial Q ∈ F[t] is a strict sum of cubes and squares if

for some integers r, s ≥ 1, Q is a strict sum of r cubes and s squares.

We denote for a fixed non-negative integer k, by gk(3, 2,F[t]) = g, the min-

imal non-negative integer, if it exists, such that every P that is a strict sum of

cubes and squares is a strict sum of g cubes and k squares; otherwise we put

gk(3, 2,F[t]) =∞. Similarly, for a fixed non-negative integer s, we denote by

gs(2, 3,F[t]) = h the minimal non-negative integer, if it exists, such that every P

that is a strict sum of cubes and squares is a strict sum of s cubes and h squares;

otherwise we put gs(2, 3,F[t]) =∞.

Let q be a power of an odd prime p and let Fq be the finite field with q elements.

Set S(q) = {P ∈Fq[t] / P is a strict sum of cubes and squares in Fq[t]}.

From the celebrated result of Serre in [EH], see also Lemma 9.2, and from the

results in [G] concerning the cubes, one has h ≤ 3 when q 6= 3 and one has g ≤ 7

when p 6= 3 and q /∈ {7, 13} and a sligthly higher bound for the other such q, so

that the numbers gk(3, 2,Fq[t]) and gs(2, 3,Fq[t]) are well defined and bounded,

so that, in particular, S(q) equals the full ring Fq[t].
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We prove in this paper that for any power q of an odd prime p one has the

following results. We assume that p 6= 3 in results i) to iii)

i) 2 ≤ g1(3, 2,Fq[t]) ≤ 5 when q /∈ {7, 13}; and 2 ≤ g1(3, 2,Fq[t]) ≤ 6

otherwise. (See Theorem 7.1).

ii) 1≤ g2(3, 2,Fq[t]) ≤ 4 for all q 6=7 while 2 ≤ g2(3, 2,Fq[t])≤4 when q 6=7

and q ≡ 3 (mod 4). Moreover one has 2 ≤ g2(3, 2,Fq[t]) ≤ 5 when q=7.

(See Theorem 8.1).

iii) 1 ≤ g2(3, 2,Fq[t]) ≤ 3 when q ≡ 1 (mod 4). (See Theorem 8.2).

iv) 2 ≤ g1(2, 3,Fq[t]) ≤ 3 for all q when p=3; while g1(2, 3,Fq[t] = 3 when

p = 3 and Fq does not contain F9. (See Theorem 9.1).

The proof of the latest item shows how to explicitly represent every polynomial

in F3n [t], for all positive integers n, as a strict sum of 3 squares and a cube.

This is of some interest since Serre gave, in [EH], an indirect proof of the fact

that for q 6= 3, or for q = 3, in this latter case, with the exception of 2 polynomials

of degree 3 and of 6 polynomials of degree 4 that require 4 squares (as showed

by Webb in [We]), every polynomial in Fq[t] is a strict sum of 3 squares.

The analogue of our results (but without restrictions on degrees), i.e. the

analogue of the “easy” Waring’s problem over the integers Z, (see e.g. [HW]) is
trivial and can be represented by the identity in Lemma 3.2 a) that shows every

polynomial as a sum of 2 cubes and a square.

A word on some classic notation and conventions used: Given some field F,

we say that a polynomial P ∈ F[t] is monic if his leading coefficient equals 1. We

also put −∞ for the degree of the 0 polynomial so that deg(0)<n for all positive

integers n.

2 – Method of proof

We choosed a wholly elementary method (linear algebra and identities, see

here below) to get our results. Indeed, mathematically more interesting and

powerful methods as the circle method or a generalization of Serre’s method for

studying the strict sums of squares decomposition of the polynomials in Fq[t] for

q 6= 3, (see [EH]) seems to produce only weaker results on the particular problem

of the Waring’s problem for cubes and squares over Fq[t].
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The method (say a “descending” one) consists, for a given polynomial

P ∈ Fq[t], say of of degree 3n,

P = a3n t
3n + · · ·+ a0 ,

and with his leading coefficient a3n beeing a cube in Fq, roughly in:

a) Find a cube A3 such that P and A3 have a maximum of equal consecutive

coefficients beginning by the leading coefficient.

b) Repeat a) with P replaced by P −A3 till get a polynomial R which degree

be less than n+ 1. Care is taken so that this can be done.

c) Apply some polynomial identities to R that show R as a sum of cubes S3

and squares T 2 of polynomials with S, T of the same degree as R.

An “ascending” analogue method is also used in the paper.

3 – Identities

All results in this section are easily checked by a computation:

First of all, we have the identity of Serre, (see [V]) (slightly modified), and

just after that some more specific identities.

Lemma 3.1 (Serre). Let F be a field of characteristic not equal to 3, such

that the equation

1 = x3 + y3

has at least one solution x ∈ F, y ∈ F, such that xy 6= 0. Then for any nonzero

p ∈ F we have the identity

t =

(

p6(x3 + 1) + t

3x p4

)3

+

(

−p6(y3 + 1) + t

3 y p4

)3

+

(

p6(x3 − y3)− t

3x y p4

)3

.

Lemma 3.2. Suppose that F is a field of characteristic p. Then the following

identities hold.

a) t = (−3 t− 1/9)3 + (3 t− 2/9)3 + (3 t+ 1/9)2, when p 6= 3 and

b) t2 + 1/108 = (−t+ 1/6)3 + (t+ 1/6)3 when, furthermore, p 6= 2.
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c) uw2 = (u/6 + w)3 + (−u/6)3 + (u/6− w)3 + (−u/6)3 when p /∈ {2, 3}.

d) uw = (u/4 + w)2 + (u/(4s) + sw)2 when p 6= 2 and −1 = s2 for some

s∈F.

Lemma 3.3. One has the following identities in the ring F3[t]:

a) p1(t) = t3 + 2 t+ 1 = (t+ 1)3 + (t+ 1)2 + (t+ 1)2 + (t− 1)2.

b) p3(t) = t4 + t+ 1 = (2 t)3 + ((t+ 1)2)2.

and also six more deduced from them by the relations:

p2(t) = 2t
3 + t+ 1 = p1(−t) ;

p4(t) = t4 + 2t+ 1 = p3(−t) ;

p5(t) = t4 + t3 + 1 = p3(−t− 1) ;

p6(t) = t4 + 2t3 + 1 = p3(t− 1) ;

p7(t) = t4 + 2t3 + t = p3(−t+ 1) ;

p8(t) = t4 + t3 + 2t = p3(t+ 1) .

4 – Squares and cubes in Fq

Lemma 4.1. Let F be a finite field with q elements such that gcd(q, 6) = 1.

Then

a) Every element a of F is a sum of 2 cubes if q 6= 7; it is a sum of 2 cubes

if q = 7 and a /∈ {3, 4} and it is a sum of a nonzero square and a cube if

a ∈ {3, 4}.

b) 1 is a sum of two non-zero cubes if q /∈ {7, 13}.

Proof: The result for q = 7 is easily checked by direct computation. The

rest of the first result follows from [LN, p. 327] that refers to [S]. Another proof

of a) for q 6= 7, is obtained by specializing k to 3 in [LN, Example 6.38, p. 295].

The same specialization of k proves b).

5 – Ascent and descent

The proof of our first lemma is an “ascent one”:

Lemma 5.1. Let F be a field of characteristic p.
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a) Assume that every element in it is either a sum of 2 cubes or a sum of a

nonzero square and a cube, and assume also that p /∈ {2, 3}. Let n ≥ 0 be

an integer and let P be in F if n = 0 and let P ∈ F[t] be a polynomial of

degree d ∈ {3n, 3n−1, 3n−2} otherwise. Then there exist α,B,C, S ∈ F[t]

with α ∈ F when n 6= 1, respectively, deg(α) ≤ 1 when n = 1; such that

deg(A2) < d+ 2; deg(B3) < d+ 3; and

P − t2nS = α3 +A2 +B3

if p0=P (0) is a sum of 2 cubes, in which case one has also deg(S)=d−2n;

or if p0 is a sum of a nonzero square and a cube and n is even and d ∈

{3n, 3n− 1} in which case deg(S) = n. While

P − t2n−2S = α3 +A2 +B3 otherwise, in which case deg(S) = n .

b) Assume now that every element in F is a cube and that p 6= 2. Then

for any given polynomial H ∈ F[t] of degree e ∈ {2n, 2n + 1} there exist

A,R, S ∈ F[t] and γ ∈ F, such that

H = γ3 −A2 +RS ,

where deg(A) = n = deg(R) and deg(S) = e− n.

Proof: We prove the second affirmation first. First of all set β = H(0) + 1

and β = γ3 using the property of F, that also allow us to assume that n ≥ 1; so

that the polynomial G = H−γ3 satisfy G(0) = −1. Write A = 1+a1t+· · ·+ant
n,

in which the coefficients are to be determined by the condition deg(G+A2) ≥ n.

This results in a triangular linear system in the unknowns a1, ..., an corresponding

to make the coefficient of tr in G+A2 equal to zero for r = 1 to r = n− 1. The

system is soluble since A(0) = 1 6= 0 and p 6= 2. Setting R = tn this implies

H = γ3 −A2 +RS, for some S with deg(S) = e− n.

In order to prove the first affirmation a), set p0 = P (0) and let us consider

two cases: Case 1: p0 = a3 + b3 for some a, b ∈ F, b 6= 0; respectively, Case 2:

p0 = a3 + b2 for some a, b ∈ F, b 6= 0. Observe that if p0 = a3 + b3 for some

a, b ∈ F we can take b 6= 0, since if p0= 0 we take b = −1, a = 1 and if p0 6=0

one of a, b is nonzero. This allow us also to assume that n ≥ 1.

Case 1: First of all when n = 1, P has the form P = a + bt + t2(c + dt) for

some a, b, c, d ∈ F, so that the result follows from identity a) of Lemma 3.2 that
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shows a + bt as a sum of 2 cubes and 1 square of degree at most 1. So that we

assume that n > 1.

Write α = a and B = b+ b1t+ · · ·+ bnt
n, in which the n unknown coefficients

are determined by the condition deg(P − B3 − α3) > n − 2 if n ≥ 3 is odd,

respectively by the condition deg(P −B3 − α3) > n− 1 if n ≥ 2 is even plus the

supplementary condition that the coefficient of Q = P − B3 − α3 in tn−1 when

n is odd, respectively the coefficient of Q = P −B3 − α3 in tn be equal to 1 as

in the proof of b) above. The corresponding system of linear equations is now

soluble since B(0) = b 6= 0 and p 6= 3. So that we can set for some polynomial G

with constant term equal to 1:

Q = (t(n−1)/2)2G if n is odd , Q = (tn/2)2G if n is even .

It remains to write G = C2 + tnS, when n is even, respectively G = C2 + tn+1S,

when n is odd for some C, S ∈ F[t] where deg(C) ≤ n. This can be done as above

by setting C = 1 + c1t + · · · + cnt
n, and solving the linear system of equations

corresponding to the condition deg(G − C2) > n. The conditions G(0) = 1 and

p 6= 2 shows that the above system is soluble.

Setting now A = t(n−1)/2C when n is odd, respectively A = tn/2C when n is

even and S = (P − α3 −A2 −B3)/t2n, we get the desired equality

P − t2nS = α3 +A2 +B3 .

with α,A,B satisfying the desired conditions.

Case 2: The proof is similar to the above case. The main difference is that

first we choose A and in a second step we choose B and finally S. Write α = a

and A = b+a1t+ · · ·+ae t
e, in which the e unknowns coefficients are determined

such that the coefficients of P −α3 −A2 be all zero from the coefficient in t (the

constant one is already zero from the choice of A(0) = b) to the coefficient in

te−1 and such that the coefficient of te be equal to 1. This results on a linear

triangular system, soluble since b 6= 0 and p 6= 2. For the next step we need

also that e be a multiple of 3. The value of e depend on d and the parity of n

as follows: if d = 3n − 2 and n is even we take e = 3(n − 2)/2; if d = 3n − 2

and n is odd we take e = 3(n − 1)/2; while if d ∈ {3n − 1, 3n} then we take

e = 3n/2 if n is even and e = 3(n−1)/2 if n is odd. With this choice of e one has

deg(A2) < deg(P ) + 2 in all cases. It remains to find an G,S ∈ F[t] and integer

f such that for

P − α3 −A2 = (te/3)3 (G3 + tfS)
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and B = te/3G, one has deg(B3) < deg(P ) + 3, and one get the corresponding

formula in the lemma P − t2nS = α3 +A2 +B3, or P − t2n−2S = α3 +A2 +B3

with the right value of deg(S). We construct G in a similar manner as before,

i.e. we write G = 1 + g1t + · · · + gf t
f , in which the f unknowns coefficients

are determined such that the coefficients of (P − α3 − A2)/te − G3 be all zero

from the coefficient in t (the constant one is already zero from the choice of

G(0) = 1) to the coefficient in tf−1 and such that the coefficient of tf be equal to 1.

This determines also S = ((P − α3 −A2)/te −G3))/tf . As before, this results on

a linear triangular system, soluble since G(0) = 1 6= 0 and p 6= 3. One get the

following values of f = deg(G) and deg(S): f = (n+ 2)/2, deg(S) = n when

d=3n−2 and n is even; f =(n−1)/2, deg(S)=n when d=3n−2 and n is odd;

f = n/2, deg(S) = n when d ∈ {3n− 1, 3n} and n is even; f = (n− 1)/2,

deg(S)=n when d ∈ {3n−1, 3n} and n is odd; so that all conditions are sat-

isfied thereby finishing the proof of the lemma.

The proof of our second lemma is a “descent one”:

Lemma 5.2. Let F be a field of characteristic p, with p /∈ {2, 3}, in which

every element is a sum of 2 cubes; respectively the elements that are not sum

of 2 cubes are sums of 3 cubes. Let n ≥ 0 be an integer and let P ∈ F[t] be a

polynomial in F[t], that has degree d ∈ {3n, 3n − 1, 3n − 2} for n ≥ 1 and that

satisfy P ∈ F for n = 0. Then each of the following affirmations holds for some

A,B, S,C,R ∈ F[t] such that the showed representation of P −R is a strict one:

a) deg(R) ≤ 2n and P −R = A3 +B3 if every element in F is a sum of

2 cubes; respectively P −R = A3 +B3 + S3 if the elements in F that are

not sum of 2 cubes are sums of 3 cubes.

b) deg(R) ≤ n and P−R =A3+B3+C2 if every element in F is a sum of

2 cubes, respectively P − R = A3 + B3 + S3 + C2 if the elements in F

that are not sum of 2 cubes are sums of 3 cubes.

c) For d 6= 4 one has deg(R2) < d + 2 and P − R = A3 + B3 + C3 if every

element in F is a sum of 2 cubes, respectively P −R = A3+B3+S3+C3

if the elements in F that are not sum of 2 cubes are sums of 3 cubes. While

for d = 4 one has furthermore a W ∈ F[t] such that deg(W ) ≤ 2 while

deg(R) = 2 and where deg(A) ≤ 1 and B,S ∈ F in such a manner that

P = RW +A3 +B3 if every element in F is a sum of 2 cubes, respectively

P = RW +A3+B3+S3 if the elements in F that are not sum of 2 cubes

are sums of 3 cubes.
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Proof: For n = 0 all results are trivially true so that we assume that n ≥ 1.

Write P = pd t
d+ · · ·+ p0. Assume that 3 does not divide d. We define A = −t

n

so that Q = P−A3 has degree 3n and it is monic. Assume that d ≡ 0 (mod 3), so

that by hypothesis the leading coefficient pd of P satisfy pd = a3 + b3 + s3 where

we can always choose a 6= 0 and one has s = 0 if every element in F is a sum of

2 cubes; define A = (bt)n and S = (st)n and set Q = P − A3 − S3. In all cases

Q has degree 3n and its leading coefficient c ∈ {1, a3} is a nonzero cube in F.

Let B = c tn + bn−1t
n−1 + · · ·+ b0, with unknowns bn−1, ..., b0 in F to determine

in such a manner that all coefficients of R = Q − B3, from the coefficient of

t3n−1, to those of t2n+1 if any, be equal to zero. This results on a triangular

linear system of n − 1 equations over F in n unknowns bn−1, ..., b0 soluble since

c 6= 0, and p 6= 3, thereby finishing the proof of a).

To prove c) first of all we study the special case when d = 4: Set p0 = P (0) =

a3 + r3 + s3 with a, r, s ∈ F and a 6= 0. We can determine b ∈ F such that for

the polynomial A = a+ bt one has P − r3− s3 = A3+ q2t
2+ q3t

3+ q4t
4 for some

q2, q3, q4 ∈ F since A3 = a3+3 a2bt+3 ab2t2+ b3t3 and a 6= 0 and p 6= 3. Setting

R = t2 and W = q2 + q3t+ q4t
2 and setting B = r, S = s, one obtain the result.

So that we assume d 6= 4 for the rest of the proof of c).

Observe that for n ∈ {1, 2} the proof above of a) proves also c) provided d 6= 4

that is true, so that we take n > 2. Take A,Q, S, c as above and set now 3r equal

to the least multiple of 3 that exceeds 2n−1 and let B = c tn+bn−1t
n−1+ · · ·+b0,

with unknowns bn−1, ..., b0 in F to determine in such a manner that all coefficients

of R1= Q − B3, from the coefficient of t3n−1, to those of t3r+1 if any, be equal

to zero and such that the coefficient of t3r in R1 be equal to 1. This results on a

triangular linear system over F in at most n unknowns bn−1, ..., b0 soluble since

c 6= 0 and p 6= 3. Similarly we determine C as a monic polynomial of degree r

such that all coefficients of R = R1− C3, from the coefficient of t3r, to those of

t2r if any, be equal to zero. This proves c). For example in the worst case, say

3r = 2n + 2 and d = 3n − 2 one has deg(C3) = 2n + 2 < 3n + 1 = d + 3 and

deg(R2) ≤ 4r − 2 = (8n+ 2)/3 < 3n = d+ 2.

To prove b) take A,Q, S, c as in the proof of a), let as above B = c tn +

bn−1t
n−1+ · · ·+b0, with unknowns bn−1, ..., b0 in F to determine in such a manner

that all coefficients of R1= Q−B3, from the coefficient of t3n−1, to those of t2n+1

if any, be equal to zero and such that the coefficient of t2n in R1 be equal to 1.

This results on a triangular linear system of n linear equations over F in at most

n unknowns bn−1, ..., b0 soluble since c 6= 0 and p 6= 3. Similarly we determine C
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as a monic polynomial of degree n such that that all coefficients of R = R1−C2,

from the coefficient of t2n, to those of tn+1 be equal to zero. This finishes the

proof of the lemma.

6 – Trivial lower bounds for gr(a, b,Fq[t])

Proposition 6.1. Let q be a power of a prime p and n > 2, an integer. Then

there exists a polynomial P ∈ Fq[t] of degree 6n such that P is not a strict sum of

a cube and a square. So that one has: g1(a, b,Fq[t]) ≥ 2 for (a, b) ∈ {(3, 2), (2, 3)}.

Proof: Observe that there are q5n+2 couples (a, b) of polynomials such that

deg(a) ≤ 2n and deg(b) ≤ 3n. Therefore there are at most q5n+2 sums a3 + b2

with deg(a) ≤ 2n and deg(b) ≤ 3n. Hence, for (q, n) 6= (2, 2), among the

(q − 1)q6n polynomials of degree 6n, some of them are not strict sums of a cube

and a square.

In the special case of a field of characteristic 3 we can say more:

Proposition 6.2. Let F be a field of characteristic 3. Then any element

of the infinite family {td6} where d is any nonzero polynomial in F[t] cannot be

expressed as a square plus a cube in F[t]; in particular one has g1(2, 3,F[t]) ≥ 2.

Proof: We assume that td6 = a2 + b3 for some polynomials a, b ∈ F[t].

Take derivative; then d6 = −aa′. It cannot be the case that a is a cube for

then a2+b3 is a cube and t is a cube, a contradiction. Therefore some irreducible

factor f of a occurs to a power n prime to 3. Then aa′ is exactly divisible by

f2n−1, a contradiction since 2n− 1 is not a multiple of 6.

Proposition 6.3. Let q be a power of an odd prime p. One has g2(3,2,Fq[t])≥1.

Furthermore, one has g2(3, 2,Fq[t])≥2 and g1(2, 3,Fq[t])≥3 when q≡3 (mod 4).

Proof: Assume that q ≡ 3 (mod 4) so that −1 is not a square in Fq. Then the

polynomial t cannot be written as a strict sum of 2 squares, necessarily of degree 1,

and a cube, necessarily constant. This implies the two latest affirmations. On

the other hand when q ≡ 1 (mod 4) any irreducible polynomial P ∈ Fq[t] cannot

be a strict sum of 2 squares A2 + B2 = (A + Bi)(A − Bi), with i2 = −1 in Fq,

so that we obtain the first affirmation.
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7 – Representation by a square and cubes

It is not known if every positive integer n is a sum of a square and 5 cubes.

However, G.L. Watson proved in [Wa] that this is true for every sufficiently large

integer n and R.C. Vaughan showed in [Vg] that the number of such represen-

tations is À n7/6. No value is given in these two papers for the minimal large

integer d such that for all n ≥ d one has that n is a sum of a square and five

cubes.

For the far less demanding analogue problem, where the integer n is replaced

by a polynomial P with coefficients in a finite field Fq, and the representation is

a strict one, one has:

Theorem 7.1. Let Fq be a finite field of characteristic p /∈ {2, 3}, and let

P ∈ Fq[t]. Then P is a strict sum of 5 cubes and a square if q /∈ {7, 13}. A supple-

mentary cube is required for q ∈ {7, 13}. Indeed one has: 2 ≤ g1(3, 2,Fq[t]) ≤ 5

when q /∈ {7, 13} and 2 ≤ g1(3, 2,Fq[t]) ≤ 6 when q ∈ {7, 13}.

Proof: The lower bounds came from Proposition 6.1. Set d=deg(P ). First

of all assume that q /∈ {7, 13}. Lemma 4.1 and Lemma 5.2 b) tell us that there is

an R ∈ Fq[t] such that deg(R
3) < d+3 for which one has the strict decomposition:

P −R = A3 +B3 + C2. Finally Lemma 4.1 b) allow us to apply Serre’s identity

in Lemma 3.1 to R, to yield 3 more cubes; this yields the claimed 5 cubes and

1 square for the strict representation of P . For q = 13 the proof is similar, the

only change consists in using the identity c) of Lemma 3.2 with u = R and w = 1

to get 4 more cubes, instead of applying Serre’s identity. An analogue proof

for q = 7 yields 7 cubes in the representation of P . In order to get instead 6

cubes, our proof below for q = 7 is slightly different since it require the use of

the “ascent” in Lemma 5.1. In more detail, the Lemma 4.1 a) allows us to apply

Lemma 5.1 a) to P to get P = α3 + A2 + B3 + t2nS where deg(S) = d − 2n;

or P = α3 + A2 + B3 + t2n−2S where deg(S) = n; and always deg(A2) < d+ 2;

deg(B3) < d+ 3; in which d = deg(P ) satisfies d = 0 or d ∈ {3n, 3n− 1, 3n− 2}

otherwise. By setting u = S and w = tn, respectively w = tn−1, in identity c) of

Lemma 3.2 we obtain a strict decomposition of t2nS, respectively of t2n−2S, as a

sum of 4 cubes. It follows that this yields the claimed 6 cubes and a square for

the strict representation of P when q = 7.
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8 – Representation by 2 squares and cubes

In 1931 Stanley (see [St]) proved that every large integer is a sum of 4 non-

negative cubes and 2 squares. We study here below the analogue decomposition

of any polynomial in Fq[t].

Theorem 8.1. Let Fq be a finite field of characteristic p /∈ {2, 3}, and

let P ∈ Fq[t]. Then P is a strict sum of 4 cubes and 2 squares when q 6= 7

and P is a strict sum of 5 cubes and 2 squares when q = 7. Indeed one has:

1 ≤ g2(3, 2,Fq[t]) ≤ 4 for q 6= 7; while 2 ≤ g2(3, 2,Fq[t]) ≤ 4 when q 6= 7 and

q ≡ 3 (mod 4); respectively 2 ≤ g2(3, 2,Fq[t]) ≤ 5 for q = 7.

Proof: The lower bounds came from Propositions 6.1 and 6.3. From Lemma

4.1 and from Lemma 5.2 a), (replacing R by R + 1/108) we obtain the following

strict decompositions P −R− 1/108 = a3+ b3 when q 6= 7, and P −R− 1/108 =

a3 + b3 + c3 when q = 7. We will show two strict decompositions of P , the first

one is non-effective since uses Serre’s Lemma 9.2 to give a strict decomposition

of R, say R = d2 + e2 + f2 in which Lemma 3.3 gives f 2 + 1/108 = (f + 1/6)3 +

(−f + 1/6)3. So that we have the strict decomposition of P

P = a3 + b3 + (f + 1/6)3 + (−f + 1/6)3 + d2 + e2, when q 6= 7

and similarly we obtain the strict decomposition of P

P = a3 + b3 + c3 + (f + 1/6)3 + (−f + 1/6)3 + d2 + e2, when q = 7 .

To obtain our explicit second strict decomposition of P first of all we get

a polynomial R with deg(R)3 < deg(P ) + 3 from Lemmas 4.1 and 5.2 b).

The following decompositions of P −R are strict ones

P −R = A3 +B3 + C2 for q 6= 7, and

P −R = A3 +B3 + S3 + C2 for q = 7 .

The proof is finished by applying the identity a) of Lemma 3.2 to R. For example

when q 6= 7 one get the following strict decomposition of P :

P = A3 +B3 + C2 + (−3R− 1/9)3 + (3R− 2/9)3 + (3R+ 1/9)2 .
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In the special case when q ≡ 1 (mod 4), i.e. when −1 is a square in Fq the

upper bounds above are improved by 1 as follows:

Theorem 8.2. Let Fq be a finite field of characteristic p /∈ {2, 3}, such that

q≡1 (mod 4) and let P ∈ Fq[t]. Then P is a strict sum of 3 cubes and 2 squares.

Indeed one has: 1 ≤ g2(3, 2,Fq[t]) ≤ 3 for all such q.

Proof: Assume d = deg(P ) 6= 4. From Lemma 5.2 c), that applies by Lemma

4.1, it follows that for some R ∈ Fq[t] with deg(R
2) < deg(P ) + 2 one has that

P − R is a strict sum of 3 cubes. Finally identity d) in Lemma 3.2 shows R as

a sum of two squares of the same degree that R. The lower bound follows from

Proposition 6.3. The same proof works when d=4 but replacing R by RW where

deg(R) = 2 and deg(W ) ≤ 2.

Question 8.1: Is g2(3, 2,Fq[t]) bounded above by 3 when gcd(q, 6) = 1 and

q ≡ 3 (mod 4)?

9 – Representation by squares and a cube when q is a power of 3

Let q be a power of 3. We will study here the number g1(2, 3,Fq[t]) = g,

namely the least positive integer g such that every polynomial in Fq[t] is a strict

sum of a cube and g squares.

First of all we recall two results proved in [EH]. The first is a classic lemma:

Lemma 9.1. The quadratic forms yz − x2 and x2 + y2 + z2 are equivalent

over a finite field of odd characteristic.

The second is a celebrated result of Serre (see Theorem 1.14 in [EH]) and

Webb (see [W]):

Lemma 9.2 (Serre–Webb). Let q be be a power of an odd prime number.

Except for the 2 polynomials p1(t), p2(t) of degree 3 and the 6 polynomials

pi(t), i = 3, ..., 8 of degree 4 in F3[t] listed in Lemma 3.3 that require 4 squares,

every P ∈ Fq[t] is the strict sum of 3 squares.

In particular one has:

Corollary 9.1. Assume that q is a power of 3. Let P ∈ Fq[t], be any

polynomial. Then P is a strict sum of 3 squares and a cube.
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Proof: Follows from Lemma 9.2 for all polynomials but the 8 polynomials

pi[t] ∈ F3[t] in Lemma 3.3. This same lemma shows each of them as a strict sum

of 3 squares plus a cube.

Since the proof of the Serre–Webb’s Lemma 9.2 is an indirect one, we show

here below a constructive version of Corollary 9.1.

Theorem 9.1. Assume that q is a power of 3. Let P ∈ Fq[t] be any polyno-

mial. Then P is a strict sum of 3 squares and a cube. Moreover, the coefficients

of the cubes and squares appearing in the decomposition of P can explicitly be

given in terms of the coefficients of P . Indeed one has:

2 ≤ g1(2, 3,Fq[t]) ≤ 3 for all q

and g1(2, 3,Fq[t]) = 3 when Fq does not contain the finite field F9.

Proof: The lower bound follows from Proposition 6.1; (it also follows from

Proposition 6.2). Assume that e = deg(P ) ∈ {2n, 2n + 1}. From Lemma 5.1 b)

there are A1, R1, S1 ∈ F[t] and γ ∈ F, such that P − γ3 = −A2
1 + R1S1, where

deg(A) = n = deg(R1) and deg(S1) = e− n. This together with Lemma 9.1

applied to the right hand side of the above equality shows P − γ3 as a strict

sum of 3 squares.

Assume that Fq does not contain the finite field F9 holds, so that q ≡ 3

(mod 4). It follows from Proposition 6.3 together with the later result, that one

has g1(2, 3,Fq[t]) = 3.

Question 9.1: What is the value of g1(2, 3,Fq[t]) when Fq does contain

the finite field F9?
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