PORTUGALIAE MATHEMATICA Vol. 61, No. 4, pp. 479-499 (2004) |
|
On the validity of Chapman--Enskog expansions for shock waves with small strengthN. Bedjaoui, C. Klingenberg and P.G. LeFlochINSSET, Université de Picardie,48 rue Raspail, 02109 Saint-Quentin -- FRANCE E-mail: bedjaoui@cmap.polytechnique.fr Applied Mathematics Department, Würzburg University, Am Hubland, 97074 Würzburg -- GERMANY E-mail: klingen@mathematik.uni-wuerzburg.de Laboratoire Jacques-Louis Lions & Centre National de la Recherche Scientifique, U.M.R. 7598, Université Pierre et Marie Curie, 75252 Paris -- FRANCE E-mail: lefloch@ann.jussieu.fr Abstract: We justify a Chapman--Enskog expansion for discontinuous solutions of hyperbolic conservation laws containing shock waves with {\sl small} strength. Precisely, we establish pointwise uniform estimates for the difference between the traveling waves of a relaxation model and the traveling waves of the corresponding diffusive equations determined by a Chapman--Enskog expansion procedure to first- or second-order. Keywords: conservation law; hyperbolic; shock wave; traveling wave; relaxation; diffusion; Chapman--Enskog expansion. Classification (MSC2000): 35L65, 76N10. Full text of the article:
Electronic version published on: 7 Mar 2008.
© 2004 Sociedade Portuguesa de Matemática
|