Portugaliae Mathematica   EMIS ELibM Electronic Journals PORTUGALIAE
MATHEMATICA
Vol. 62, No. 1, pp. 35-54 (2005)

Previous Article

Next Article

Contents of this Issue

Other Issues


ELibM Journals

ELibM Home

EMIS Home

 

Stabilité des solutions périodiques ou anti-périodiques de certains systèmes différentiels

Daad Abou Saleh

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie,
Boite courrier 187, 75252 Paris Cedex 05 -- FRANCE
E-mail: daad.abousaleh@ccf.com

Abstract: We consider the non linear differential system in $\R^2$
$$ \left\{\begin{array}{l}
u'(t)+ku(t)\Bigl(u(t)^2+v(t)^2\Bigr)-\lambda u(t)=h_1(t),
v'(t)+kv(t)\Bigl(u(t)^2+v(t)^2\Bigr)-\lambda v(t)=h_2(t).
\end{array}\right.$$
In order to study the stability of anti-periodic solutions of this system, a result of Liapounov in the stability theory of autonomous nonlinear ODE is enlarged to diffenrentials systems of the form $u'=F(t,u)$ in the Hilbert space framework with finite dimension. On the other hand, a result of R. Bellman in the instability theory of autonomous nonlinear ODE is enlarged to diffenrentials systems where $L$, the linearized operator for $F$, is a nonautonomous periodic operator.

Keywords: periodic solutions; stability.

Classification (MSC2000): 34A34, 34D20, 34D23.

Full text of the article:


Electronic version published on: 7 Mar 2008.

© 2005 Sociedade Portuguesa de Matemática
© 2005–2008 ELibM and FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition