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ON A CLASS OF MONGE–AMPÉRE PROBLEMS WITH
NON-HOMOGENEOUS DIRICHLET BOUNDARY CONDITION

L. Ragoub and F. Tchier

Abstract: We assume in the plane that Ω is a strictly convex domain, with its

boundary ∂Ω sufficiently regular. We consider the Monge–Ampére equations in its gen-

eral form detuij = g(|∇u|2)h(u), where uij denotes the Hessian of u, and g, h are some

given functions. This equation is subject to the non-homogeneous Dirichlet boundary

condition u = f . A sharp necessary condition of solvability for this equation is given

using the maximum principle in R2. We note that this maximum principle is extended

to the N-dimensional case and two different applications have been given to illustrate

this principle.

1 – Introduction

Let u be a classical solution of the following Monge–Ampére equations

det(u,ij) = F (x, u, |∇u|2) in Ω ,(1)

where Ω is assumed to be a bounded domain, strictly convex. In this note, we

derive a new maximum principle for the general Monge–Ampére equations (1)

with F (x, u, |∇u|2) = g(|∇u|2)h(u) in RN , N ≥ 2, which generalizes a recent

result of Ma [11] (the particular case when g.h = const. in Ω).

In order to prove this maximum principle, we assume in the sequel that the

functions g and h are subject to some appropriate conditions. These condi-

tions lead to some differential inequality, which will be investigated in Section 2.
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Then employing the second maximum principle of E. Hopf [10], we conclude that

the corresponding maximum value is attained on the boundary ∂Ω of Ω.

For the first application, we shall treat the following non-homogeneous Dirich-

let boundary condition

u = f on ∂Ω ,(2)

where ∂Ω denotes the boundary of Ω sufficiently regular and f is a positive func-

tion of class C1. Monge–Ampére equations in conjunction with Dirichlet and

Neumann conditions were investigated in [1,2,4,5,6,7,8]. For the second appli-

cation, we consider the particular Dirichlet case f = 0. Ma [11] showed that

the combination P = |∇u|2 − 2
√
cu is a constant, u is radial and Ω is a ball.

We extend this result for more general combination and prove for some particular

values of g, that Ω is an N-ball and u is radial.

Some applications are given involving different situations, where various bounds

for u and its gradient |∇u| are obtained. The maximum principle for Monge–

Ampére equations was already used by Ma [11, 12] and Safoui [13].

In the case of the Neumann boundary condition

∂u

∂n
= cos(θ(x, u)) (1 + |∇u|2) 1

2 on ∂Ω ,(3)

where n is the outward normal vector and the wetting angle θ is an element of

(0, π
2
), Ma in [11], proved the following result, by assuming that the bounded

domain Ω is strictly convex, the constant c is positive and, the angle θ is an

element of (0, π
2
)

Theorem 1. Under the above hypotheses on Ω, c, θ0, if u is a strictly convex

solution of (1), (3) then the following relation is satisfied

k0 ≤ max
{

c
1
2 cos(θ0), c

1
2 tan(θ0)

}

,(4)

where k0 := min
x∈∂Ω

k(x) and k(x) is the curvature of the boundary ∂Ω of Ω at x.

In the case when F := const. and f(x) = 0, he showed the following theorem

(see [11])

Theorem 2. Under the above hypotheses on the domain Ω and constant c,

if u is a strictly convex solution for the boundary value problems (1)–(2) then we

have the following estimates

max
x∈Ω̄

|∇u|2 ≤ c

k0
2
,(5)
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−
√
c

2k0
≤ u ≤ 0 in Ω̄ ,(6)

where k0 := minx∈∂Ω k(x), k(x) is the curvature of ∂Ω at x.

For the proof of Theorem 2, he used the maximum principle [9,10] in R2 for

the following combination

Φ := |∇u|2 − 2 c
1
2u ,(7)

and the expression of the Monge–Ampére equations (1) in normal coordinates

(see Section 3, (40)).

The purpose of this paper is, firstly, to generalize this maximum principle in

RN for a general combination of the form

Φ := g(|∇u|2) + h(u) ,(8)

where g and h are supposed to be positive. Secondly, to consider a more general

equation

det(u,ij) = g(|∇u|2)h(u) in Ω̄ ,(9)

with non-homogeneous boundary condition (2). This generalization gives us an

upper bound for u and its gradient |∇u| in function of the geometry of Ω and

the first and second derivatives of f .

Throughout the paper, we shall be concerned with a bounded domain Ω of

RN , strictly convex. A comma will be used to denote differentiation. We make

use the summation convention with repeated Latin indices running from 1 to N .

u,i :=
∂u

∂xi
,(10)

u,iju,ij :=
i=N
∑

i=1

j=N
∑

j=1

[

∂2u

∂xi ∂xj

]2

,

un :=
∂u

∂n
,

us :=
∂u

∂s
,

(us)n :=
∂

∂n

(

∂u

∂s

)

,

(us)n := (un)s −Kus ,

unn :=
∂

∂n

(

∂u

∂n

)

,

uss :=
∂

∂s

(

∂u

∂s

)

.
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2 – On a maximum principle

Hereafter, we shall assume that the solution u of the Monge–Ampère equations

defined by (8) is at least of class C2(Ω̄)∩C3(Ω) in a bounded domain Ω described

in Section 1. In this Section, we will show, that the maximum principle of the

combination Φ defined by the following equation

Φ := g(u,iu,i) + h(u) in Ω̄ ,(11)

attains its maximum value on the boundary ∂Ω, where the functions h and g are

subject to some conditions. For the differential equation of the form

∆u+ f(u) = 0 in Ω̄ ,

the corresponding function constructed for this type of equation depends essen-

tially on the dimension N and the imposed boundary conditions, for which in

general the treatment in R2 differs from that of RN , where N ≥ 3, since some

differential equalities are valid in R2 and unfortunately not valid in RN , as

|∇u|2 u,ij u,ij = |∇u|2(∆u)2 + u,i u,ik u,j u,jk − 2 (∆u)u,i u,j u,ij .

It is already known that, the combination Φ attains its maximum principle at

three different places for an arbitrary g and f (see R. Sperb [14]). Assuming

that Φ is nonconstant, the corresponding maximum is attained on the boundary

∂Ω as first possibility, at a critical point as second possibility and finally at an

interior point of the domain Ω. In our context, we choose g and h such that, the

elliptic differential inequality formed is strictly positive.

Theorem 3. Let u be a strictly convex solution of (9) and Φ the combination

defined by (8), then

1

2
uij Φ,ij + · · · = g′(|∇u|2)

(

−h′

g
+

h′

h
− h′g′′

(g′)2
− h′′

h′

)

+ 2 g′∆u+Nh′(12)

where the dots stand for terms of the form V,kΦ,k with specific vector fields V,k

which are bounded except at critical points of u.

To start the proof of Theorem 3, we construct an appropriate differential

inequality for Φ, except at a critical value of the solution u. Let Φ defined by (8)

then

Φ,i = 2u,ik u,k g
′ + u,i h

′ ,(13)

Φ,ij = 2 g′(u,ijk u,k + u,jk u,ik) + 4(u,jl u,l u,ik u,k) g
′′ + u,ij h

′ + u,i u,j h
′′ .(14)
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Let uij be the inverse of the Hessian matrix H := uij . As u is strictly convex

solution of (9), the matrix uij is positive definite and consequently by computing

uijΦ,ij = 2 g′(uiju,ijk u,k + uiju,jk u,ik) + 4(uiju,jl u,l u,ik u,k) g
′′(15)

+ uiju,ij h
′ + uiju,i u,jh

′′ ,

we claim that uijΦ,ij is strictly positive in Ω̄. Knowing that the following

identities uiju,ij u,jl = ∆u, uiju,ij = N , uiju,il u,l u,jk u,k = u,kl u,k u,l and

(gh)[uiju,ijk u,k] = (gh),ju,j are valid in RN , then we are able to prove that Φ

satisfies an appropriate differential inequality. For this, we compute

uijΦ,i u,j = uij{2u,ju,ik u,k g′ + u,iu,jh
′} ,(16)

uiΦ,i = 2 g′u,i u,ik u,k + u,i u,i h
′ .(17)

From (16) and (17), we obtain

− uiju,i u,jh
′ + uijΦ,i u,j = 2 g′uiju,j u,ik u,k = 2u,i u,i g

′ ,(18)

2u,ij u,j u,i g
′ − u,iΦ,i = −u,i u,i h′ .(19)

Hence by (18) and (19), we conclude that

uijΦ,ij + · · · = 2 g′
(

|∇u|2
)

(

−h′

g
+

h′

h
− h′g′′

(g′)2
− h′′

h′

)

+ 2 g′∆u+Nh′ .(20)

Using the following arithmetic-geometric inequality

∆u ≥ N(gh)
1
N

(or simply ∆u > 0 since g′ is positive), we obtain

uijΦ,ij+ · · · ≥ 2 g′
(

|∇u|2
)

(

−h′

g
+

h′

h
− h′g′′

(g′)2
− h′′

h′

)

+2 g′N(gh)
1
N +Nh′ ,(21)

where g, h, g′ and h′ satisfy the following conditions

g′ > 0 , h′ > 0 ,(22)

and

− h′

g
+

h′

h
− h′g′′

(g′)2
− h′′

h′
> 0 .(23)

Then the maximum of Φ is attained on the boundary ∂Ω of Ω at some point P .

If inequalities (22) and (23) are reversed, then we conclude that the minimum

value of Φ occurs on the boundary ∂Ω, or at a critical point of u.

We have then established the following theorem which extend the result of

Ma [11,12] to the N dimensional case.
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Theorem 4. Let Φ be defined by (8) where g, h, g′ and h′ satisfy (22),

(23) and u supposed to be strictly convex. Then the maximum principle of the

combination Φ is attained on the boundary ∂Ω of Ω at some point P .

3 – Estimates of the solution u and its gradient |∇u| for the Dirichlet

boundary condition

In this Section, we investigate in dimension 2 the following result which

illustrates Theorem 4. The bounds obtained for u and its gradient |∇u| seems

appear for the first time in the non-homogeneous Dirichlet case.

Theorem 5. We assume that u is a classical solution of the non-homogeneous

Dirichlet problem (2), (9), strictly convex, at least of class C2(Ω̄) ∩ C3(Ω).

Let Ω be a bounded domain, convex in R2. Then we have

max
Ω̄
|∇u|2 ≤ 1

K

{

h′

2g′
+M +

1

2
M̃2 +

1

2
fs

2 + |fss|
}

,(24)

− h(umin) + h(f) ≤ g

(

1

K

{

h′

2g′
+M +

1

2
M̃2 +

1

2
fs

2 + |fss|
})

in Ω̄ .(25)

For the proof of Theorem 5, we need to use in dimension 2 some differential

equality valid in R2. This fact consists on the computation of the normal deriva-

tive of the combination Φ in function of the mean curvature K, the first us and

second uss tangential derivatives of u in the plane. This result will be established

as follows.

We begin by computing the normal derivative of Φ in R2

∂Φ

∂n
= 2 g′

{

u,1(u,11n1 + u,12n2) + u,2(u,21n1 + u,22n2)

}

+ h′un

= 2 g′un

{

∆u+ u,2
∂

∂s
u,1 − u,1

∂

∂s
u,2

}

+ h′un

= 2 g′un
{

∆u+ usuns − uss −K|∇u|2
}

+ h′un ,(26)

where s denotes differentiation in the tangential direction on the boundary ∂Ω

and K stands for curvature of ∂Ω at some point P̂ .

In the terms ∂
∂s
u,1 and ∂

∂s
u,2 we have broken u,1 and u,2 into normal and

tangential derivative components and used the identities

∂u,1

∂s
= −Kn2 and

∂u,2

∂s
= Kn1 .(27)
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Since the maximum of the combination Φ defined by (11) is attained on the

boundary ∂Ω at P̂ , we must have

∂Φ

∂s
(P̂ ) = g′

∂

∂s
(|∇u|2) + h′us

= 2 g′(ununs + ususs) + h′us = 0 .(28)

Now we need to use the differential equality (28) in order to eliminate the product

ununs in (26). In fact, involving (28) we deduce

ununs =
h′us

2g′
− ususs .(29)

The Monge–Ampére equations (9) can be rewritten in R2 as

unn(Kun + uss) = gh+ [usn]
2 .(30)

In this case, by using (26), (28), (29), and making use of the following inequality

uns = usn −Kus ,(31)

we obtain

max
Ω̄
|∇u|2 ≤ 1

K

{

h′

2g′
+M +

1

2
M̃2 +

1

2
fs

2 + |fss|
}

,(32)

where M and M̃ are two positive bounds of Laplace u and the mixed derivative

usn since u is assumed to be of class C2.

For this last differential inequality (32), we have only considered the case when

the normal derivative of the solution u is non-equal to zero. Since for the nullity

case, we are conducted to the triviality of the solution u. We are concerned now

with the estimation of the solution u, which will be illustrated by applying the

statement of Theorem 4. We know that

− h(u) ≤ g(A)− h(u) + g(|∇u|2) ,(33)

where A is defined by

A :=
1

K

{

h′

2g′
+M +

1

2
M̃2 +

1

2
fs

2 + |fss|
}

,(34)

At a critical point of u, we obtain

0 < −h(umin) ≤ g(A)− h(f) ,(35)
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from which we deduce

− h(umin) + h(f) ≤ g(A) .(36)

Finally, we have explicitly

− h(umin) + h(f) ≤ g

(

1

K

{

h′

2g′
+M +

1

2
M̃2 +

1

2
fs

2 + |fss|
})

.(37)

4 – On an over-determined Monge–Ampére problem

Ma in [11] proved in R2 the following result

Theorem 6. Under the same hypothesis of c, Ω and u(x) as in Theorem 2,

if P (x) := |∇u|2 − 2
√
cu attains its maximum in Ω, then

Ω = BR(0) ,(38)

u =

√
c (x21 + x22)

2
−
√
cR2

2
,(39)

P = cR2 ,(40)

where R is a positive constant.

Our goal is to extend this result to the N -dimensional space for more general

Monge–Ampére equations (9). In the next theorem, we establish our result.

Theorem 7. We assume that u is a classical solution of (2), (9) with f = 0.

If Φ = g(|∇u|2) + h(u), where gg′ = 1 and h(0) > 0, attains its maximum on

the boundary ∂Ω, then

Ω = Br(0) ,(41)

u =

(

h′(0)

2h(0)

)
N−1

2
(

|x|2 − h(0)
)

N−1
2 −

(

h′(0)

2h(0)

)
N−1

2
(

r2 − h(0)
)

N−1
2

,(42)

Φ =

(

2h(0)

h′(0)K

)
2

N−1

+ h(0) = const. on ∂Ω ,(43)

where r is a positive constant.
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In order to establish this statement, we compute the normal and tangential

derivatives of Φ and we use the fact that its maximum is attained on the boundary

∂Ω, we then obtain

∂Φ

∂n
= 2 g′

(

ununn + (∇su)(∇su)n
)

+ h′un = 0 ,(44)

where ∇su denotes the tangential gradient of u on the boundary ∂Ω.

From (44), we deduce that the second normal derivative of u can be evaluated

explicitly on the boundary ∂Ω as

unn = − h′

2g′
,(45)

which is non-positive by the hypothesis on h′ and g′ (see (22)).

The general Monge Ampère equations (9) with f = 0 takes the form

K(P ) |∇u|N−1 unn(P ) = g(un
2)h(0) .(46)

In fact, this is due to the following Lemma investigated by Safoui in [13]

Lemma 1 (Lemma 1.5 p:16 [13]). Let u be a function of class C2 strictly

convex in Ω̄ and constant on ∂Ω, and let P0 be an element of ∂Ω where |∇u|2
realizes its maximum.

We have then at this point the relation

det(u,ij) = Γ(P0)u
N−1
n unn ,

where Γ(P0) denotes the curvature of Gauss of ∂Ω at the point P0.

This last differential equality (46) becomes in view of Lemma 2

unn =
g(un

2)h(0)

K|∇u|N−1 .(47)

Combining (45) and (47), we get

∂u

∂n
=

(

2h(0)

h′(0)K

)
1

N−1

.(48)

Then we have

Φ =

(

2h(0)

h′(0)K

)
2

N−1

+ h(0) = const. on ∂Ω .(49)
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From (49), we obtain the value of the mean curvature K of the boundary ∂Ω as

follows

K =

(

h′(0)

2h(0)

)

(

r2 − h(0)
)

N−1
2

,(50)

where r is a positive constant.

To this end, the solution u takes the form

u =

(

h′(0)

2h(0)

)
N−1

2
(

|x|2 − h(0)
)

N−1
2 −

(

h′(0)

2h(0)

)
N−1

2
(

r2 − h(0)
)

N−1
2

,(51)

which achieves the proof of our theorem.

We remark that the statement of Theorem 7 is also valid if we have gg ′ =

A.|∇u|2N , where A is a positive constant. In the special case when A = N = 1,

we obtain the result of Ma [11] in R2.
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