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Abstract: This paper deals with the existence of solutions of a first-order viability

problem of the type
.

x ∈ f(t, x) + F (x) , x(t) ∈ K

where K a closed subset of R
n, F is upper semicontinuous with compact values contained

in the subdifferential ∂V (x) of a convex proper lower semicontinuous function V and f

is a Carathéodory single valued map.

1 – Introduction

Bressan, Cellina and Colombo [1] proved the existence of solutions of the prob-

lem
.
x ∈ F (x), x(0) = x0 ∈ K, where F is an upper semicontinuous multifunction

contained in the subdifferential of a convex proper lower semicontinuous func-

tion in the finite dimensional space. This result has been generalized by Ancona

and Colombo [2] by proving the existence of solutions of the perturbed problem
.
x ∈ F (x) + f(t, x), x(0) = x0, with f satisfying the Carathéodory conditions.

The proof is based on approximate solutions; to overcome the weak convergence

of derivatives of such solutions, the authors use the following basic relation:

d

dt
(V (x(t)) =

∥

∥

.
x(t)

∥

∥

2
.

The aim of the present paper is to prove a viability result of the following

problem:

(1.1)











.
x ∈ f(t, x) + F (x) a.e. t ∈ [0, T ] ,

x(0) = x0 ∈ K ,

x(t) ∈ K ∀ t ∈ [0, T ] .
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where F is an upper semicontinuous with compact valued multifunction such

that F (x) ⊂ ∂V (x), for some convex proper lower semicontinuous function V and

f is a Carathéodory function.

This paper is a generalization of the work of Rossi [5]. Our argument is

different from the one appearing in Rossi’s paper.

2 – The result

Let R
n be the n-dimensional Euclidean space with scalar product 〈., .〉 and

norm ‖.‖. Let K be a closed subset of R
n. Let F be a multifunction from R

n

into the set of all nonempty compact subsets of R
n. Let f be a function from

R×R
n into R

n. Assume that F and f satisfy the following conditions:

A1) F is upper semicontinuous, i.e. for all x ∈ R
n and for every ε > 0, there

exists δ > 0 such that if ‖x − x′‖ ≤ δ then F (x′) ⊆ F (x) + εB, where B

is the unit ball of R
n.

A2) There exists a convex proper and lower semicontinuous function

V : R
n → R such that F (x) ⊂ ∂V (x), where ∂V is the subdifferential of

the function V .

A3) f : R×R
n → R

n is a Carathéodory function, i.e. for every x ∈ R
n,

t → f(t, x) is measurable and for all t ∈ R, x → f(t, x) is continuous.

A4) There exists m ∈ L2(R) such that

‖f(t, x)‖ ≤ m(t) ∀ (t, x) ∈ R×R
n .

A5) (Tangential condition) ∀ (t, x) ∈ R×K, ∃ v ∈ F (x) such that

lim
h→0+

inf
1

h
dK

(

x + hv +

∫ t+h

t

f(s, x) ds

)

= 0 .

Let x0 ∈ K, let f and F satisfying assumptions A1, ...,A5, then we shall prove

the following result:

Theorem 1. There exist T > 0 and x : [0, T ] → R
n such that











.
x(t) ∈ f(t, x(t)) + F (x(t)) a.e. on [0, T ] ,

x(0) = x0 ∈ K ,

x(t) ∈ K ∀ t ∈ [0, T ] .
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3 – Proof of the main result

Lemma 2. Let V be a convex proper lower semicontinuous function such

that for all x ∈ R
n, F (x) ⊂ ∂V (x). Then there exist r = rx > 0 and M = Mx > 0

such that ‖F (x)‖ = supz∈F (x) ‖z‖ ≤ M and V is lipschitz continuous with

constant M on B(x, r).

For the proof, see [1].

Let r be the real given by Lemma 2 associated to x0. Choose T > 0 such that

∫ T

0

(

m(s) + M + 1
)

ds <
r

2
.

In all the sequel, denote by K0 the compact subset K ∩ B(x0, r).

Lemma 3. Assume that F and f satisfy A1,...,A5. Then for all ε > 0, there

exists η > 0 (η < ε) with the following properties:

for all (t, x) ∈ [0, T ]×K0, there exist u ∈ F (x) +
ε

T
B and ht,x ∈ [η, ε] such that

x + ht,xu +

∫ t+ht,x

t

f(s, x) ds ∈ K .

Proof: Let (t, x) ∈ [0, T ]×K0, let ε > 0. Since F is upper semicontinuous,

then there exists δx > 0 such that

F (y) ⊂ F (x) + εB , ∀ y ∈ B(x, δx) .

Let (s, y) ∈ [0, T ]×K. By the tangential condition there exist hs,y ∈ ]0, ε] and

v ∈ F (y) such that

dK

(

y + hs,yv +

∫ s+hs,y

s

f(τ, y) dτ

)

< hs,y

ε

4T
.

Consider the subset

N(s, y) =

{

(t, z) ∈ R×R
n
/

dK

(

z + hs,yv +

∫ t+hs,y

t

f(τ, z) dτ

)

< hs,y

ε

4T

}

.

Since

‖f(s, z)‖ ≤ m(s) a.e. on [0, T ], ∀z ∈ R
n



14 RADOUAN MORCHADI and SAÏD SAJID

then, the dominated convergence theorem applied to the sequence of functions
(

χ[t,t+hs,y ] f(., .)
)

t
shows that the function

(l, z) → z + hs,yv +

∫ l+hs,y

l

f(τ, z) dτ

is continuous. So that, the function

(l, z) → dK

(

z + hs,yv +

∫ l+hs,y

l

f(τ, z) dτ

)

is continuous and consequently the subset N(s, y) is open.

Moreover, since (s, y) belongs to N(s, y), there exists a ball B((s, y), ητ,y) of

radius η(τ,y) < δx contained in N(s, y). Therefore, the compact subset [0, T ]×K0

can be covered by q such balls B((si, yi), ηsi,yi
). For simplicity, we set hsi,yi

= hi,

i = 1, ..., q. Put η = min
i=1,...,q

hi > 0.

Let (t, x) ∈ [0, T ] × K0 be fixed. Since (t, x) ∈ B((si, yi), ηsi,yi
) which is

contained in N(si, yi), then there exist xi ∈ K and ui ∈ F (yi) such that
∥

∥

∥

∥

ui −
1

hi

(

xi − x −

∫ t+hi

t

f(s, x) ds

)∥

∥

∥

∥

≤

≤
1

hi

dK

(

x + hiui +

∫ t+hi

t

f(τ, z) dτ

)

+
ε

4T
≤

ε

2T
.

Set

u =
1

hi

(

xi − x −

∫ t+hi

t

f(s, x) ds

)

hence

x + hiu +

∫ t+hi

t

f(s, x) ds ∈ K

and

‖ui − u‖ ≤
ε

2T
.

Since

‖x − yi‖ < η(τ,y) < δx

then

F (yi) ⊂ F (x) +
ε

2T
B

so that

u ∈ F (x) +
ε

T
B .

Hence the Lemma 3 is proved.

Now, our purpose is to define on [0, T ] a family of approximate solutions and

show that a subsequence converges to a solution of the problem (1.1).
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4 – Construction of approximate solutions

Let x0 ∈ K0 and ε < T . By Lemma 3, there exist η > 0, h0 ∈ [η, ε] and

u0 ∈ F (x0) +
ε

T
B such that

x1 = x0 + h0u0 +

∫ h0

0
f(s, x0) ds ∈ K

then if h0 ≤ T we have

‖x1 − x0‖ =

∥

∥

∥

∥

h0u0 +

∫ h0

0
f(s, x0) ds

∥

∥

∥

∥

≤

∥

∥

∥

∥

∫ T

0

(

M + 1 + m(s)
)

ds

∥

∥

∥

∥

≤
r

2

and thus x1 ∈ K0. Hence for (h0, x1) there exist h1 ∈ [η, ε] and u1 ∈ F (x1)+
ε

T
B

such that

x2 = x1 + h1u1 +

∫ h0+h1

h0

f(s, x1) ds ∈ K

we have

‖x2 − x0‖ =

∥

∥

∥

∥

h0u0 +

∫ h0

0
f(s, x0) ds + h1u1 +

∫ h0+h1

h0

f(s, x1) ds

∥

∥

∥

∥

then if h0 + h1 < T we have

‖x2 − x0‖ ≤

∥

∥

∥

∥

∫ T

0

(

M + 1 + m(s)
)

ds

∥

∥

∥

∥

≤
r

2

thus x2 ∈ K0.

Set h−1 = 0, by induction, since hi belongs to [η, ε], then there exists

an integer s such that
s−1
∑

i=0
hi < T ≤

s
∑

i=0
hi. Hence we construct the sequences

(hp)p ⊂ [η, ε], (xp)p ⊂ K0, and (up)p such that for every p = 0, ..., s−1, we have














xp+1 = xp + hpup +

∫ hp−1+hp

hp−1

f(s, xp) ds ∈ K

up ∈ F (xp) +
ε

T
B .

By induction, for all p ≥ 2 we have

xp = x0 +

i=p−1
∑

i=0

hiui +

i=p−1
∑

i=1

∫

iP
j=0

hj

i−1P
j=0

hj

f(τ, xi) dτ

up ∈ F (xp) +
ε

T
B
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and the estimates

‖xp − x0‖ =

∥

∥

∥

∥

∥

i=p−1
∑

i=0

hiui +

i=p−1
∑

i=0

∫

iP
j=0

hj

i−1P
j=0

hj

f(τ, xi) dτ

∥

∥

∥

∥

∥

≤ (M + 1)

i=p−1
∑

i=1

hi +

∫ T

0
m(τ) dτ .

Since
i=p−1
∑

i=0
hi ≤ T , then we obtain ‖xp − x0‖ ≤

r

2
.

For any nonzero integer k and for every integer q = 0, ..., s, denote by hk
q a

real associated to ε =
1

k
and x = xq given by Lemma 3, consider the sequence

(τ q
k )k

{

τ0
k = 0 , τ s

k = T

τ
q
k = hk

0 + · · · + hk
q−1

and define on [0, T ] the sequence of functions (xk(.))k by

xk(t) = xq−1 + (t − τ
q−1
k )uq−1 +

∫ t

τ
q−1

k

f(s, xq−1) ds ∀ t ∈ [τ q−1
k , τ

q
k ]

xk(0) = x0

then for all t ∈ [τ q−1
k , τ

q
k ]

ẋk(t) = uq−1 + f(t, xq−1) .

5 – Convergence of approximate solutions

Observe that the sequence (xk(.))k satisfies the following relations

1) ‖ẋk(t)‖ ≤ ‖uq−1‖ + ‖f(t, xq−1 )‖ ≤ M + 1 + m(t) ,

2) ‖xk(t)‖ =

∥

∥

∥

∥

xk(τ
q−1
k ) +

∫ t

τ
q−1

k

ẋk(τ) dτ

∥

∥

∥

∥

≤ ‖xq−1‖ +

∥

∥

∥

∥

∫ T

0

(

M + 1 + m(t)
)

dτ

∥

∥

∥

∥

≤ ‖x0‖ +
r

2
+

r

2
≤ ‖x0‖ + r .
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Hence
∫ T

0
‖ẋk(t)‖

2 dt ≤

∫ T

0

(

M + 1 + m(t)
)2

dt

the sequence (
.
xk(.))k is bounded in L2([0, T ], Rn) and therefore (xk(.))k is equi-

uniformly continuous. Hence there exists a subsequence, still denoted by (xk(.))k

and an absolutely continuous function x(.) : [0, T ] → R
n such that xk(.) converges

to x(.) uniformly and
.
xk(.) converges weakly in L2([0, T ], Rn) to

.
x(.).

The family of approximate solutions xk(.) has the following property:

Proposition 4. For every t ∈ [0, T ] there exists q ∈ {1, ..., s} such that

lim
k→∞

dgrF

(

xk(t),
.
xk(t) − f

(

t, xk(τ
q−1
k )

)

)

= 0 .

Proof: Let t ∈ [0, T ]. By construction of τ
q
k there exists q such that t ∈

[τ q−1
k , τ

q
k [ and (τ q

k )k converges to t.

Since
.
xk(t) − f

(

t, xk(τ
q−1
k )

)

= uq−1 ∈ F
(

xk(τ
q−1
k )

)

+
1

kT

then

lim
k→∞

dgr(F )

(

xk(t),
.
xk(t) − f

(

t, xk(τ
q−1
k )

)

)

≤ lim
k→∞

(

∥

∥xk(t) − xk(τ
q−1
k )

∥

∥+
1

kT

)

hence

lim
k→∞

dgr(F )

(

xk(t),
.
xk(t) − f

(

t, xk(τ
q−1
k )

)

)

= 0 .

This completes the proof.

Since the sequences xk(.)→x(.) uniformly,
.
xk(.)→

.
x(.) weakly in L2([0,T ], Rn),

(

f(., xk(τ
q
k )
)

k
converges to f(., x(.)) in L2([0, T ], Rn) and F is upper semi-con-

tinuous, then by theorem 1.4.1 in [3], x(.) is a solution of the following convexified

problem:
{ .

x(t) ∈ f(t, x(t)) + coF (x(t))

x(0) = x0 .

Consequently, for all t ∈ [0, T ] we have that

(5.1)
.
x(t) − f(t, x(t)) ∈ ∂V (x(t)) .

Proposition 5. The application x(.) is a solution of the problem (1.1).
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Proof: To begin with, we prove that (‖
.

xk‖2)k converges to ‖
.
x‖2. Since the

map x(.) and V (x(.)) are absolutely continuous, we obtain from (5.1) by applying

Lemma 3.3 in [4] that

d

dt
V (x(t)) =

〈

.
x(t),

.
x(t) − f(t, x(t))

〉

a.e. on [0, T ]

therefore

(5.2) V (x(T )) − V (x0) =

∫ T

0
‖

.
x(s)‖2 ds −

∫ T

0

〈

.
x(s), f(s, x(s))

〉

ds .

On the other hand, since for all q = 1, ..., s

.
xk(t) − f

(

t, xk(τ
q−1
k )

)

=
.
xk(t) − f(t, xq−1) ∈ ∂V

(

xk(τ
q−1
k )

)

+
1

kT
B .

there exists bq ∈ B such that

.
xk(t) − f(t, xq−1) +

1

kT
bq ∈ ∂V

(

xk(τ
q−1
k )

)

.

Moreover the subdifferential properties of a convex function imply that for

every z ∈ ∂V (xk(τ
q−1
k ))

(5.3) V (xk

(

τ
q
k )
)

− V
(

xk(τ
q−1
k )

)

≥
〈

xk(τ
q
k ) − xk(τ

q−1
k ), z

〉

particularly, for

z =
.
xk(t) − f(t, xq−1) +

1

kT
bq

we have

V
(

xk(τ
q
k )
)

− V
(

xk(τkq−1)
)

≥

〈
∫ τ

q

k

τ
kq−1

.
xk(s) ds,

.
xk(t) − f(t, xq−1) +

1

kT
bq

〉

thus

V
(

xk(τ
q
k )
)

− V
(

xk(τ
q−1
k )

)

≥

∫ τ
q

k

τ
q−1

k

〈

.
xk(s),

.
xk(s)

〉

ds +

∫ τ
q

k

τ
q−1

k

〈

.
xk(s),

1

kT
bq

〉

ds

−

∫ τ
q

k

τ
q−1

k

〈

.
xk(s), f

(

s, xk(τ
q−1
k )

)

〉

ds

hence, it is clear that

V (xk(T )) − V (x0) ≥

∫ T

0
‖

.
xk(s)‖

2 ds −
s
∑

q=1

∫ τ
q

k

τ
q−1

k

〈

.
xk(s), f

(

s, xk(τ
q−1
k )

)

〉

ds

(5.4)

+
s
∑

q=1

1

kT

∫ τ
q

k

τ
q−1

k

〈

.
xk(s), bq

〉

ds .
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Claim. The sequence
(

s
∑

q=1

∫ τ
q

k

τ
q−1

k

〈

.
xk(s), f

(

s, xk(τ
q−1
k )

)

〉

ds

)

k

converges to
∫ T

0

〈

.
x(s), f(s, x(s))

〉

ds .

Proof: We have
∥

∥

∥

∥

∥

s
∑

q=1

∫ τ
q

k

τ
q−1

k

〈

.
xk(s), f

(

s, xk(τ
q−1
k )

)

〉

ds −

∫ T

0

〈

.
x(s), f(s, x(s))

〉

ds

∥

∥

∥

∥

∥

=

=

∥

∥

∥

∥

∥

s
∑

q=1

∫ τ
q

k

τ
q−1

k

(

〈

.
xk(s), f(s, xk(τ

q−1
k ))

〉

−
〈

.
x(s), f(s, x(s))

〉

)

ds

∥

∥

∥

∥

∥

≤
s
∑

q=1

∫ τ
q

k

τ
q−1

k

∥

∥

∥

∥

〈

.
xk(s), f(s, xk(τ

q−1
k ))

〉

−
〈

.
x(s), f(s, x(s))

〉

∥

∥

∥

∥

ds

≤
s
∑

q=1

∫ τ
q

k

τ
q−1

k

∥

∥

∥

∥

〈

.
xk(s), f(s, xk(τ

q−1
k ))

〉

−
〈

.
xk(s), f(s, xk(s))

〉

∥

∥

∥

∥

ds

+
s
∑

q=1

∫ τ
q

k

τ
q−1

k

∥

∥

∥

∥

〈

.
xk(s), f(s, xk(s))

〉

−
〈

.
xk(s), f(s, x(s))

〉

∥

∥

∥

∥

ds

+
s
∑

q=1

∫ τ
q

k

τ
q−1

k

∥

∥

∥

∥

〈

.
xk(s), f(s, x(s))

〉

−
〈

.
x(s), f(s, x(s))

〉

∥

∥

∥

∥

ds

=
s
∑

q=1

∫ τ
q

k

τ
q−1

k

∥

∥

∥

∥

〈

.
xk(s), f(s, xk(τ

q−1
k ))

〉

−
〈

.
xk(s), f(s, xk(s))

〉

∥

∥

∥

∥

ds

+

∫ T

0

∥

∥

∥

∥

〈

.
xk(s), f(s, xk(s))

〉

−
〈

.
xk(s), f(s, x(s))

〉

∥

∥

∥

∥

ds

+

∫ T

0

∥

∥

∥

∥

〈

.
xk(s), f(s, x(s))

〉

−
〈

.
x(s), f(s, x(s))

〉

∥

∥

∥

∥

ds .

Since f is a Carathéodory function, xk(.) → x(.) uniformly, ‖
.
xk(s)‖ ≤ M +

1+m(s), m(.) ∈ L2([0, T ], Rn) and
.
xk(.) →

.
x(.) weakly in L2([0, T ], Rn) then the

last term converges to 0. This completes the proof of the claim.



20 RADOUAN MORCHADI and SAÏD SAJID

Since

lim
k→∞

s
∑

q=1

1

k

∫ τ
q

k

τ
q−1

k

〈

.
xk(s), bq

〉

ds = 0

then by passing to the limit for k → ∞ in (5.4) and using the continuity of the

function V on the ball B(x0, r), we obtain the following inequality

V
(

x(T ) − V (x0)
)

≥ lim
k→∞

sup

∫ T

0
‖

.
xk(s)‖

2 ds −

∫ T

0

〈

.
x(s), f(s, x(s)

〉

ds .

Moreover, by the equality (5.2) we have

‖
.
x‖2

2 ≥ lim
k→∞

sup ‖
.
xk‖

2
2

and by the weak lower semicontinuity of the norm, it follows that

‖
.
x‖2

2 ≤ lim
k→∞

inf ‖
.
xk‖

2
2 .

Finally, since (
.
xk)k converges to

.
x(.) strongly in L2([0, T ], Rn), then there

exists a subsequence denoted by
.
xk(.) which converges pointwisely to

.
x(.).

Therefore, we conclude, in view of Proposition 4, that

dgrF

(

x(t),
.
x(t) − f(t, x(t))

)

= 0 a.e. on [0, T ] .

Since the graph of F is closed we have

.
x(t) ∈ f(t, x(t)) + F (x(t)) a.e. on [0, T ] .

Finally, let t ∈ [0, T ]. Recall that there exists (τ q
k )k such that limk→∞ τ

q
k = t

for all t ∈ [0, T ]. Since

lim
k→∞

‖x(t) − xk(τ
q
k )‖ = 0

xk(τ
q
k ) ∈ K, K is closed, by passing to the limit we obtain x(t) ∈ K.

This completes the proof.
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