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EXISTENCE OF SOLUTIONS FOR SOME
NONLINEAR BEAM EQUATIONS *

P. AMSTER and P.P. CARDENAS ALZATE

Recommended by Luis Sanchez

Abstract: We study the existence of solutions for some nonlinear ordinary dif-
ferential equations under a nonlinear boundary condition which arise on beam theory.
Assuming suitable conditions we prove the existence of at least one solution applying
topological methods.

1 — Introduction

This work is devoted to the study of the existence of solutions for some
nonlinear ordinary differential equations under a nonlinear boundary condition.
In 1995 Rebelo and Sanchez [9] have considered the second order problem

W +gt,u)=0 0<t<T
(1) W' (0) = —f(u(0))
W(T) = f(u(T))

with g : [0,7] x R — R for g satisfying a sign condition or either nondecreasing
with respect to u, and f € C'(R,R) continuous and strictly nondecreasing. This
equation may be regarded as a mathematical model for the axial deformation
of a nonlinear elastic beam, with two nonlinear elastic springs acting at the
extremities according to the law u/(0) = —f(u(0)), u/(7) = f(u(rn)), and the
total force exerted by the nonlinear spring undergoing the displacement u given
by g(t, u).
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On the other hand, the following fourth order problem for the deflection
of a beam resting on elastic bearings was considered, among other authors, by
Grossinho and Ma (see [3], [6], and also [4] for asymmetric boundary conditions):

u® +gt,u)=0 0<t<T
u'(0)=u"(T)=0
u”(0) = —f(u(0))
u"(T) = f(u(T)) -
In section 2 we study (1) for g = g(t,u,u’). We remark that in this more
general situation the problem is no longer variational; for this reason we shall
apply instead topological methods. On the other hand, in order to find a priori

bounds for the derivative we shall assume as in [2] the following Nagumo type
condition:

(3) gt u, )| <P(fo])  V(tu,v) €.

Here £ is a subset of [0, 7] x R? to be specified, and 1 : [0, +00) — (0, +00) is a
continuous function satisfying the inequality
v ds > T
—— ds
r ()

for some constants M and r to be specified. Under these assumptions we shall
prove the existence of solutions by the method of upper and lower solutions.

Moreover, in section 3 we obtain an existence result under Landesman—Lazer
type conditions (see e.g. [8]) applying topological degree methods [7].

Finally, in section 4 we consider the fourth order problem (2) for g = g(t, u, v,
u”,u"). More precisely, we prove the existence of symmetric solutions, i.e. such
that u(t) = w(T — t), under appropriate Landesman—Lazer and Nagumo type
conditions.

2 — The second order case. Upper and lower solutions

In this section we prove an existence result for the following second order
problem:

(4) u'(0) = —f(u
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We shall assume the existence of an ordered couple of a lower and an upper
solution. Namely, we shall assume there exist «, 5 : [0,7] — R such that a(t) <

B(t)7

(5) a’(t) +g(t,a,a’) > 0,
(6) g't)+g(t,8,8) <0,
and

{ o/ (0) = =f((0)),  o(T) < f((T))
B(0) < =f(8(0)), B(T) = f(B(T)) -

In this context, set

. [a(0) = B(T)| |e(T) — B(0)]
"= mm{max{ T ’ T }’am),a(T)I??fﬁ(o)ﬂ(T) |f(s)} ’

fix a constant M > r such that

M > maX{HaIHC([O,T]v Hﬁ'HC([o,T]}
and define
Sz{mmw€DIVW:Mﬂ§u§MﬂJM§M}.

Theorem 2.1. With the previous notations, assume there exists an ordered
couple of a lower and an upper solution of (4). Furthermore, assume that g
satisfies the Nagumo condition (3). Then the boundary value problem (4) admits
at least one solution u, with

alt) <u(t) <pE), |W@)|<M Vtelo,T].

Proof: Set A > 0 and consider the functions P: [0,7] xR - R, @: R — R
given by
x a(t) <z < p(t)

P(tr) =4 B() x> B()
alt) z<alt),
T —M<z<M
Qz)=¢ M z>M
-M x<-M.
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We define a compact fixed point operator ¢ : C1([0,T]) — C([0,T]) in the
following way: for each v € C1([0,T]), let u = ¢(v) be the unique solution of the
linear Neumann problem

u’ — = g(t, P(t,v), Q) — AP(t,v) ,

u'(0) = —f(P(0,0(0))) ,  '(T) = f(P(T,v(T))) .

By standard results, ¢ is well defined and compact. Moreover, multiplying the
previous equation by w it follows that

T
—/ (u"—)\u)u < C|ul| g2
0
for some constant C'. Hence
[/ |72 + Allull72 < Cllullzz + f(P(T,(T))) u(T) + f(P(0,v(0))) u(0) ,

and it follows that ||ul| g1 < C for some constant C. We conclude that ||u||c1 < C
for some constant C, and by a straightforward application of Schauder Theorem
it follows that ¢ has a fixed point u. We claim that

alt) Sult) <AW), @B <M Vteo,T],

and hence u is a solution of the problem. Indeed, if for example (u — 3)(tg) > 0
for some ty € (0,7) maximum, then P(t,u(to)) = B(to), v (to) = B'(to), and

(u—B)"(to) — Mu — B)(to) > g(to, P(to, u(to)), Qv (t0))) — X P(to, u(to))
~ [9(to, B(t0), B'(t0)) = A(to)| = 0,

a contradiction. Now, if u — 3 attains an absolute positive maximum for example
at t = 0, then (u — 3)(0) < 0. Moreover, as P(0,u(0)) = 3(0) we deduce that
(u—B)'(0) = —f(P(0,u(0))) — #'(0) > 0, and hence (u — 3)'(0) = 0. On the
other hand, in a neighborhood of 0 we have that u(t) > £(¢) and then

(u—=B)"=Nu—B) = g(t, P(t,u), Q(u)) = AP(t,u) — [g(t, 3,5") — Af]

= 9(t, 8. Q) = g(t. 8.5) -
As 4/ (0) = #(0) € [-M, M], the right-hand term vanishes at ¢ = 0, meanwhile

u(0)—5(0) > 0. It follows that (u—03)" > Au—0)+g(t,3,Q(u))—g(t,5,5") >0
in (0, §) for some ¢ > 0, which contradicts the fact that 0 is an absolute maximum
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of u — . In the same way, it follows that u — 8 cannot attain a positive absolute
maximum at 7. We deduce in a similar way that u(t) > «(t) for every t € [0, T].
Next, assume for example that u/(tg) = M for some t.
If r = maxq(0),a(1)<s<6(0),8(T) |f(s)|, then |/ (0)], |/ (T')| < r; otherwise there
exists ¢ such that

S uT) = u(0) _ BT —af0) _
T - T -
In both cases, we deduce the existence of ¢; such that u/(t1) = r. We may assume

that r < u/(t) < M for any ¢ between ¢; and tp, and hence

M t " t /
1 0 u'(t) ° g(t,u, ) ‘
T</ds: ) at < TOD ) gl <t — 1]
O R AT ) Rl AT ) Ml I
a contradiction. The proof is analogous if u/(tg) = —M. »

Remark 2.2. In particular, the conditions of the previous theorem hold if
there exist two constants a < 3 such that

g(t,a,0) > 0 > g(t,3,0)

and

fla) 20 = f(B)

0
provided that ¢ satisfies [g(t,u,v)] < ¢(jv]) for a<u<B, |v|]< M and
M 1
fo m ds > T. o

Remark 2.3. When f is nondecreasing, a more general result is proved
in[1]. o

3 — Landesman—Lazer type conditions

In this section we prove the existence of solutions of (4) under Landesman—
Lazer type conditions. We shall assume that f is one-side globally bounded, i.e.
f <ror f > —r for some positive constant r, and that g satisfies the Nagumo
condition (3) over the set

£ = {(t,u,v) € [0,7] x R?: || SM}

for some M > r.
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Moreover, we shall assume that the limits

limsup g(t,u,v) = g1
u— 300

and
limiinfg(t,u, v) = gF(t)

U— 100

exist, and that they are uniform for [v| < M. We also define the (possibly infinite)
quantities

limsup f(u) = fF

u—F00

and
liminf f(u) == fF .

u—=+oo ¢

Then we have:

Theorem 3.1. Under the previous assumptions, problem (4) admits at least
one solution, provided that one of the following conditions holds:

T T
8 2 fF () d 0<2f" ~(t)d
(8) ﬂ+A%@t< <L+A%mt

T T
9 2 f- “(t)d 0 < 2f" () dt .
(9) Qa+A%@t< < ﬁ*ﬁﬁ“)t

Remark 3.2. Conditions of this kind are known in the literature as Landes-
man—Lazer type conditions after the pioneering paper of E. Landesman and
A. Lazer [5]. In particular, taking f = 0 in Theorem 3.1 we obtain standard
Landesman—Lazer conditions for the Neumann problem. o

For the sake of completeness, we summarize the main aspects of coincidence
degree theory. Let V and W be real normed spaces, L : Dom(L) C V — W a linear
Fredholm mapping of index 0, and N : V — W continuous. Moreover, set two
continuous projectors my : V. — V and myw : W — W such that R(my) = Ker(L)
and Ker(mw) = R(L), and an isomorphism J : R(mw) — Ker(L). It is readily
seen that

L., = L’Dom(L)mKer(w): Dom(L) N Ker(my) — R(L)
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is one-to-one; denote its inverse by K. If {2 is a bounded open subset of V,
N is called L-compact on Q if mywN(Q2) is bounded and K, (I — mw)N : Q -V
is compact.

The following continuation theorem is due to Mawhin [7]:

Theorem 3.3. Let L be a Fredholm mapping of index zero and N be
L-compact on a bounded domain ) C V. Suppose that:

1. Lz # ANz for each X € (0,1] and each x € 0S.

2. mwNz # 0 for each x € Ker(L) N 0S.

3. d(JmwN,Q N Ker(L),0) # 0, where d denotes the Brouwer degree.

Then the equation Lx = Nz has at least one solution in Dom(L) N . u

Proof of Theorem 3.1: Set V = C*([0,T]), W = L?(0,T) x R?, and the
operators L : H?(0,T) — W, N : V — W given by

Lu = (u”,u/(O), UI(T)) ) Nu = ( - g('? u7ul)7 —f(u(O)), f(u(T))) :

It is easy to verify that
B-A
Ker(L) =R, R(L):{(cp,A,B)EW: cp:} ,

where © denotes the usual average given by » = % fOT ©(t)dt. Then, we may
define my(X) = @, mw(p, A, B) = (g — B—:FA,O,O), and J : R(mw) — R given by
J(C,0,0) = C. In this case, for (¢, A, B) € R(L), the function U = K, (¢, A, B)
is defined as the unique solution of the problem

U'=¢, U0)=A, U(T)=B

that satisfies U = 0. Writing U’(t) = A + fg ¢ and using Wirtinger inequality,
L-compactness of N follows.

We claim there exists a constant R such that if Lu = ANu with 0 < X\ <1
then |lul|c1 < R. Indeed, suppose by contradiction that Lu,, = A\,Nu,, with
0 < Ay <Tland ||upllcr — 00, Asull = =X,g(t, up,ul) and ul, (0) = =\, f(u,(0)),
ul, (T) = An.f (un(T)), by the Nagumo condition and using the fact that

min {u;,(0),u,(T)} <r and max{u},(0),u,(T)} > —r,

it follows as in the previous section that |luy,[|c (o) < M for every n. Hence
|unlleqo,m) — o0, and |lup — Wnllc(or)) < C for some constant C. Taking
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a subsequence, assume for example that u, — oo and that (8) holds; then
integrating the equation we obtain the equality

T

Fun(T)) + F(un(0) = — / Ar'S

0

and thus

0 < limsup f(un(T)) + limsup f(u,(0)) + /Tg;r(t) dt < 0
0

n—~oo n—oo

a contradiction. The proof is similar for the other cases; hence, taking 2 = Br(0)
for R large enough, the first condition in Theorem 3.3 is fulfilled.
Further, the function JWWmeKer(L) = [—R, R] is given by

1 T
JTFWN(S) = _T </ g(t,s,O)dt + 2f(8)) )
0
and in the same way as before it follows that for R large enough
JrwN(R) JrwN(—R) < 0 .

Thus, deg (Jﬂ'wN, QnNKer(L), 0) = 41, and the proof is complete. n

4 — Symmetric solutions for the general fourth order case

In this section we study the existence of symmetric solutions for the problem
u® 4+ g(t,u v W) =0 0<t<T
u’(0) =u"(T)=0
u”(0) = —f(u(0))
u"(T) = f(u(T)) .

We shall assume that g is symmetric with respect to ¢, namely:

(10)

(11) g(t,u,v,w,x) = g(T—t,u,’U,w,:r) .
Our Nagumo condition for this problem reads:

(12) lg(t,u,v,w,2)| <W(lzf) Y (tu,v,w,2) €E
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with € = [0, T|xR3x[—M, M], and 1 : [0, +00) — (0, 40c) continuous, with

/OM (18)ds>T.

Moreover, assume that the limits

limsup g(t, 5,0, w,2) := g5 (t)

s—too

and
liminf g(¢, s, v, w, x) = gz;t(t)
s—+00

exist, and that they are uniform over the set
2

T T
C = {(v,w,az) eR3: || < ZM’ lw| < §M and |z| < M}
The quantities f and fijE are defined as before. Then we have:

Theorem 4.1. Under the previous assumptions, problem (10) admits at
least one symmetric solution, provided that one of the conditions (8) or (9) holds.

Proof: We proceed as in the proof of Theorem 3.1. Let
V = {u e 03(10,T)): w(t) = w(T —t), u"(0) = 0} ,

W = {u e L2(0,7): u(t) = u(T — t)} xR
and define the operators L : H*(0,7) NV — W, N : V — W by
Lu= (u(4),u’”(0)) . Nu=—(g(,u,,u",u"), f(u(0))) .

Again, it is easy to verify that

Ker(L)=R, R(L)= {(cp,c) eW: /OTgo(t) dt + 2¢ = O}.

Then, we may define my(u) = u, mw(p, c) = (¢+2¢,0), and J : R(mw) — R given
by J(C,0) = C. For (¢,c) € R(L), the function U = K, (¢, c) is defined as the
unique solution of the problem
Uu’0)=0, U"(0)=c
Ult)=U(T—1)
U=0.
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As before, it is easy to prove that IV is L-compact. Next, if Lu, = A\, Nu,, with
0 < Ap <1 and |uy| s — oo, by the Nagumo condition and using the fact that

ul () =0, it follows that [|u||c (jo,7)) < M for every n. Moreover, for ¢ <Z
have:
‘ < / ‘u///’ < =
and
5 T2
: 4

As uy, is symmetric, we conclude that (u, (¢), ul (t),u)(t)) € C for every t € [0, T].
Then [Jun|c(or) — o0, and  ||up — Unllcs(ory) < C for some constant C.

The rest of the proof follows as in the second order case. n

Some examples and remarks

Example 4.2. As an example of Theorem 4.1 we may consider a symmetric
function g such that

g(tauﬂv?w?x) = go(t,U) +7(u) gl(tvrM,v?w)x) 5

where gg is bounded, |g1 (¢, u, v, w,x)| < A+ B|z| and y(u) — 0 as |u| — oo.

Then |g(t,u,v,w,x)| < C + D|z| for some positive constants C' and D and
the Nagumo condition is satisfied taking i (z) = C' + Dx and M large enough.
Moreover,

limsup go(t,u) = gi"(t) ,  liminf go(t,u) = g;"(t) ,
u—=+oo

u—=+0o0o

and the assumptions of Theorem 4.1 are fulfilled if (8) or (9) holds. For example,
it suffices to assume that

lim f(u) sgn(u) =+oco0 or lim f(u) sgn(u) = —oo . 0O

Remark 4.3. In the situation of Theorem 4.1, if gF :g;t :=¢T and

fS:t = fii := f*, integrating the equation it follows that if for example

g ) <g<g (t) and fT<f<[fT
or
g (t)<g<g™(t) and [fT<f<[fT

then the respective conditions (8) and (9) are also necessary. o
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Remark 4.4. The Nagumo condition (12) can be dropped if we assume
that ¢g has a linear growth of the type

lg(t,u,v,w,x)| < A+ Blu| + Clv| + D|w| + E|z|

(with B,C, D and E small enough), and that the limits gz?t and gF are uniform

on R3. Indeed, in this case if Lu, = A\Nu,, with 0 < A\, < 1, then using the

fact that u]) = A\, fi g(s, up,ul,ul w
2

naur ul)ds, we deduce:

TE

T
(1T )ty < 5 (4+ Blunlloqom + Clléllqoay + oo ) -

Integrating twice, as E, D and C are small, we obtain:

lun oy < 0(A+ Bllunlleom))

for some constant §. By the mean value theorem, for B < § we conclude that
if for example %, — +o0 then inf,c(y ) un(t) — +o00, and the rest of the proof
follows as before. In particular, for g = g(¢,u) it suffices to take B < %—2. o

Remark 4.5. In [3], Theorem 2, it is proved by variational methods that if
g = g(t,u) is symmetric on ¢, and f, g(t,-) are nondecreasing, then problem (10)
admits a symmetric solution if and only if

T
2f(a)+/ g(t,a)dt =0  for some a€R.
0

By monotonicity, this condition is equivalent to (9), unless f(u) = f(a) and
g(t,u) = g(t,a) for all u > a or for all u < a. Note that, in this last case,
existence of solutions can be easily proved; thus, taking into account the previous
remarks 4.3 and 4.4, when |g(t,u)| < A + Blu| (with B < 75) we may conclude
that Theorem 4.1 is essentially equivalent to Theorem 2 in [3].

Moreover, without the monotonicity condition the authors prove (see [3], The-

orem 5) the existence of a symmetric solution of (10) for g and f sublinear, i.e.

g(t,u)

—0 as |ul — o0

uniformly in ¢, and

fw)

— =0 as |ul— o0,
u

assuming a growth condition for f and g, and that one of the following hypotheses
holds:
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i) g(t,u) — +oo as u — +oo uniformly in ¢ and f bounded by below.
ii) f(u) — o0 as u — +oo and g bounded by below.

It is clear that the sublinearity condition implies that |g(t,u)| < A + B|u| for
some B < %—6 and some A, and that if i) or ii) holds then the second inequality
in condition (9) is fulfilled. Thus, some cases of Theorem 5 in [3] are covered by
Theorem 4.1; in particular, if f is bounded by above for u < 0 in i) or if g is
bounded by above for u < 0 in ii).

However, the first inequality in (9) does not necessarily hold under assump-
tions i) or ii): one may consider for instance the (sublinear) functions f(u) =
lu['/? and g(t,u) = u'/3. o
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