Portugaliae Mathematica   EMIS ELibM Electronic Journals PORTUGALIAE
MATHEMATICA
Vol. 63, No. 2, pp. 227-250 (2006)

Previous Article

Contents of this Issue

Other Issues


ELibM Journals

ELibM Home

EMIS Home

 

A class of kinetic models for chemotaxis with threshold to prevent overcrowding

Fabio A.C.C. Chalub and José Francisco Rodrigues

Centro de Matemática e Aplicaç\ oes Fundamentais, Universidade de Lisboa,
Av. Prof. Gama Pinto 2, P-1649-003, Lisboa -- PORTUGAL
E-mail: chalub@cii.fc.ul.pt
Centro de Matemática da Universidade de Coimbra,
and FCUL/Universidade de Lisboa, c/o CMAF,
Av. Prof. Gama Pinto 2, P-1649-003, Lisboa -- PORTUGAL
E-mail: rodrigue@fc.ul.pt

Abstract: We introduce three new examples of kinetic models for chemotaxis, where a kinetic equation for the phase-space density is coupled to a parabolic or elliptic equation for the chemo-attractant, in two or three dimensions. We prove that these models have global-in-time existence and rigorously converge, in the drift-diffusion limit to the Keller--Segel model. Furthermore, the cell density is uniformly-in-time bounded. This implies, in particular, that the limit model also has global existence of solutions.

Full text of the article:


Electronic version published on: 7 Mar 2008.

© 2006 Sociedade Portuguesa de Matemática
© 2006–2008 ELibM and FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition