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Abstract: The aim of this paper is to study Hopf bifurcation with S3-symmetry as-

suming Birkhoff normal form. We consider the standard action of S3 on R
2 obtained from

the action of S3 on R
3 by permutation of coordinates. This representation is absolutely

irreducible and so the corresponding Hopf bifurcation occurs on R
2⊕R

2. Golubitsky,

Stewart and Schaeffer (Singularities and Groups in Bifurcation Theory: Vol. 2. Applied

Mathematical Sciences 69, Springer-Verlag, New York 1988) and Wood (Hopf bifurca-

tions in three coupled oscillators with internal Z2 symmetries, Dynamics and Stability of

Systems 13, 55–93, 1998) prove the generic existence of three branches of periodic solu-

tions, up to conjugacy, in systems of ordinary differential equations with S3-symmetry,

depending on one real parameter, that present Hopf bifurcation. These solutions are

found by using the Equivariant Hopf Theorem. We describe the most general possible

form of a S3×S1-equivariant mapping (assuming Birkhoff normal form) for the standard

S3-simple action on R
2⊕ R

2. Moreover, we prove that generically these are the only

branches of periodic solutions that bifurcate from the trivial solution.

1 – Introduction

The object of this paper is to study Hopf bifurcation with S3-symmetry as-

suming Birkhoff normal form. We consider the standard action of S3 on the

two-dimensional irreducible space

U =
{

(x1, x2, x3) ∈ R
3 : x1 + x2 + x3 = 0

}
∼= R

2
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defined by

σ · (x1, x2, x3) =
(
xσ−1(1), xσ−1(2), xσ−1(3)

) (
σ ∈ S3, (x1, x2, x3) ∈ U

)
.

Note that any S3-irreducible space is S3-isomorphic to U . Moreover the stan-

dard action of D3 on C is isomorphic to the above action of S3 on U .

Since U is S3-absolutely irreducible, the corresponding Hopf bifurcation

occurs on

V =
{

(z1, z2, z3) ∈ C
3 : z1 + z2 + z3 = 0

}
∼= U⊕ U ∼= R

2⊕ R
2 .

Suppose we have a system of ordinary differential equations (ODEs)

(1.1) ẋ = f(x, λ)

where x ∈ V, λ ∈ R is the bifurcation parameter, and f : V ×R → V is smooth

and commutes with S3:

f(σ · x, λ) = σ · f(x, λ) (σ ∈ S3, x ∈ V, λ ∈ R) .

With these conditions

f(0, λ) ≡ 0 .

Assume that (df)(0,0) has an imaginary eigenvalue, say i, after rescaling time

if necessary. Golubitsky et al. [3] and Wood [7] prove the generic existence of

three branches of periodic solutions, up to conjugacy, of (1.1) bifurcating from

the trivial solution. These solutions are found by using the Equivariant Hopf

Theorem (Golubitsky et al. [3] Theorem XVI 4.1). They thus correspond to three

(conjugacy classes of) isotropy subgroups of S3×S1 (acting on V ), each having a

two-dimensional fixed-point subspace. In this paper we prove in Theorem 5.2 that

if we assume (1.1) satisfying the conditions of the Equivariant Hopf Theorem and

f is in Birkhoff normal form then the only branches of small-amplitude periodic

solutions of period near 2π of (1.1) that bifurcate from the trivial equilibrium are

the branches of solutions guaranteed by the Equivariant Hopf Theorem.

This paper is organized in the following way. In Section 2 we start by review-

ing a few concepts and results related with the general theory of Hopf bifurcation

with symmetry — we follow the approach of Golubitsky et al. [3]. In Section 3

we recall the conjugacy classes of S3× S1 (with action on V ) obtained by Golu-

bitsky et al. [3] (see also Wood [7]). There are five conjugacy classes and three

of them correspond to isotropy subgroups with two-dimensional subspaces.
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The next step is to find the general form of the vector field f of (1.1). We assume

that f is in Birkhoff normal form to all orders and so f commutes also with S1.

Specifically, we choose coordinates such that

θ · z = eiθz (θ ∈ S1, z ∈ V ) .

We show in Section 4.1 that the standard action of D3× S1 on C
2 considered by

Golubitsky et al. [3] is isomorphic to the action of S3× S1 on V (Lemma 4.1).

In that way we can use an appropriate isomorphism between C
2 and V and con-

vert the invariant theory of D3× S1 on C
2 (obtained by Golubitsky et al. [3])

into the invariant theory of S3× S1 on V (Proposition 4.2). We describe then

in Theorem 4.4 and Corollary 4.6 the most general possible form of a S3× S1-

equivariant mapping f in (1.1): we obtain generators for the ring of the invariants

and generators for the module of the equivariants over the ring of the invariants.

Finally, in Theorem 5.2 of Section 5, we prove that generically the only branches

of small-amplitude periodic solutions of (1.1) that bifurcate from the trivial equi-

librium are those guaranteed by the Equivariant Hopf Theorem. The proof of

this theorem relies mostly in the general form of f and the use of Morse Lemma.

We end this introduction by pointing out a few remarks. The main results

of this paper are Theorem 4.4 and Theorem 5.2. The first one describes the

S3 × S1-invariant theory and relied upon the establishment of an appropriate

isomorphism between S3 and D3-simple spaces. The second result proves the

nonexistence of branches of periodic solutions of S3-bifurcation problems that

are not guaranteed by the Equivariant Hopf Theorem. For n > 3, the groups Dn

and Sn are not isomorphic. However, we hope that our approach for S3 will be

useful when considering Sn, for n > 3. In particular, we predict that the methods

of the proof of Theorem 5.2 can be followed once the fifth order truncation of

the Taylor series of a general Sn-bifurcation problem in Birkhoff normal form is

obtained. Finally, the proof of Theorem 5.2 relied upon Morse Lemma and the

general form of the vector field. Both of these ingredients are available in the

Dn-case, for n ≥ 3. Thus the method we followed should work for n = 3 using

the appropriate coordinates for the D3-simple space, and we believe that can be

adapted to the Dn case for general n.

2 – Background

We say that a system of ordinary differential equations (ODEs)

(2.1) ẋ = f(x, λ) , f(0, 0) = 0
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where x ∈ R
n, λ ∈ R is the bifurcation parameter and f : R

n×R → R
n is a

smooth function, undergoes a Hopf bifurcation at λ = 0 if (df)0,0 has a pair of

simple purely imaginary eigenvalues. Here (df)0,0 denotes the n×n Jacobian ma-

trix of derivatives of f with respect to the variables xj , evaluated at (x, λ) = (0, 0).

Under additional hypotheses of nondegeneracy, the standard Hopf Theorem im-

plies the occurrence of a branch of periodic solutions. See for example Golubitsky

and Schaeffer [1] Theorem VIII 3.1. However the presence of symmetry in (2.1)

imposes restrictions on the corresponding imaginary eigenspace that may com-

plicate the analysis, and in general the standard Hopf Theorem does not apply

directly. We outline the concepts and results involved in the study of (2.1) in

presence of symmetry. We follow Golubitsky et al. [3] Chapter XVI. See also

Golubitsky and Stewart [2] Chapter 4.

Let Γ be a compact Lie group with a linear action on V = R
n and suppose

that f commutes with Γ (or it is Γ-equivariant):

f(γ · x, λ) = γ · f(x, λ) (γ ∈ Γ, x ∈ V, λ ∈ R) .

We are interested in branches of periodic solutions of (2.1) where f commutes with

a group Γ occurring by Hopf bifurcation from the trivial solution (x, λ) = (0, 0).

Conditions for imaginary eigenvalues

Let W be a subspace of V . We say that W is Γ-invariant if γw ∈ W for

all γ ∈ Γ and for all w ∈ W . Moreover, if the only Γ-invariant subspaces of W

are {0} and W , then W is said to be Γ-irreducible. The space V is Γ-absolutely

irreducible if the only linear mappings on V that commute with Γ are the scalar

multiples of the identity. It is a well-known result that the absolute irreducibility

of V implies the irreducibility of V ([3] Lema XXII 3.3).

Let V and W be real vector spaces of the same dimension, and Γ and ∆

isomorphic Lie groups. Suppose we have an action denoted by · of Γ on V and

an action of ∆ on W denoted by ∗ . We say that these actions are isomorphic if

there exists a linear isomorphism L : V → W such that for all γ ∈ Γ there exists

a unique γ′ ∈ ∆ such that

(2.2) L(γ · x) = γ′ ∗ L(x)

for all x ∈ V .

We are interested in periodic solutions of (2.1) when (df)(0,0) has a pair of

imaginary eigenvalues +ωi. As we said before the symmetry Γ of f imposes
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restrictions on the corresponding imaginary eigenspace Eωi. Specifically, it must

contain a Γ-simple subspace W of V ([3] Lemma XVI 1.2) that is either:

(a) W ∼= W1 ⊕ W1 where W1 is absolutely irreducible for Γ; or

(b) W is irreducible but non-absolutely irreducible for Γ.

Moreover, generically the imaginary eigenspace itself is Γ-simple and coincides

with the corresponding real generalized eigenspace of (df)(0,0). By rescaling time

and choosing appropriate coordinates we may assume that ω = 1 and

(df)0,0

∣∣
Ei

=

(
0 −Idm×m

Idm×m 0

)
≡ J

where 2m = dim Ei. See [3] Proposition XVI 1.4 and Lemma XVI 1.5.

Spatio-temporal symmetries

The method for finding periodic solutions to such a system rests on prescribing

in advance the symmetry of the solutions we seek. Before we describe precisely

what we mean by a symmetry of a periodic solution we recall a few definitions.

The orbit of the action of Γ on x ∈ V is defined to be

Γx =
{

γ · x : γ ∈ Γ
}

and the isotropy subgroup of x ∈ V is the subgroup Σx of Γ defined by

Σx =
{

γ ∈ Γ: γ · x = x
}

.

Points on the same group orbit have isotropy subgroups that are conjugate.

Later we use this property to simplify the calculations of the isotropy lattice of

(an action of) a group.

Note that if f as above is Γ-equivariant and if x(t) is a solution of (2.1), then

γ · x(t) is also a solution of (2.1). In particular, if f vanishes on x ∈ V , then it

vanishes on the orbit Γx. Further, if the fixed-point subspace of Σ ∈ Γ is

Fix(Σ) =
{

x ∈ V : γ · x = x, ∀ γ ∈ Σ
}

,

then

f
(
Fix(Σ)

)
⊆ Fix(Σ) .

To see this, note that if x ∈ Fix(Σ) and σ ∈ Σ then σ ·f(x) = f(σ ·x) = f(x) and

so f(x) ∈ Fix(Σ). As a consequence if x(t) is a solution of (2.1) then the isotropy
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subgroup of x(t) is the isotropy subgroup of x(0) for all t ∈ R. In particular

we can find an equilibrium solution with isotropy subgroup Σ by restricting the

original vector field f to the subspace Fix(Σ).

We describe now what we mean by a symmetry of a periodic solution x(t) of

(2.1). Suppose that x(t) is 2π-periodic in t (if not, we can rescale time to make

the period 2π). Let γ ∈ Γ. Then γ · x(t) is another 2π-periodic solution of (2.1).

If γ · x(t) and x(t) intersect then the uniqueness of solutions implies that the

trajectories must be identical. So either the two trajectories are identical or they

do not intersect.

Suppose that the trajectories are identical. Then uniqueness of solutions

implies that there exists θ ∈ S1 (we identify the circle group S1 with R/2πZ)

such that

γ · x(t) = x(t − θ) .

We call (γ, θ) ∈ Γ×S1 a spatio-temporal symmetry of the solution x(t). Denote

the space of 2π-periodic mappings by C2π. Note that S1 acts on C2π. This action

of S1 is usually called the phase-shift action. The collection of all symmetries of

x(t) forms a subgroup

Σx(t) =
{

(γ, θ) ∈ Γ×S1 : γ · x(t) = x(t − θ)
}

.

Moreover if we consider the natural action of Γ×S1 on C2π given by

(γ, θ) · x(t) = γ · x(t − θ)

where the Γ-action is induced from its spatial action on V and the S1 action is

by phase shift, then Σx(t) is the isotropy subgroup of x(t) with respect to this

action.

The Equivariant Hopf Theorem

We consider (2.1) where f commutes with a compact Lie group Γ and we

assume the generic hypothesis that L = (df)0,0 has only one pair of imaginary

eigenvalues, say +i. Taking into account that we seek periodic solutions with pe-

riod approximately 2π, we can apply a Liapunov–Schmidt reduction preserving

symmetries that will induce a different action of S1 on a finite-dimensional space,

which can be identified with the exponential of L|Ei
= J acting on the imaginary

eigenspace Ei of L. Moreover the reduced equation of f commutes with Γ×S1.

See [3] Lemma XXVI 3.2. The basic idea is that small-amplitude periodic so-

lutions of (2.1) of period near 2π correspond to zeros of a reduced equation
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φ(x, λ, τ) = 0 where τ is the period-perturbing parameter. To find periodic solu-

tions of (2.1) with symmetries Σ is equivalent to find zeros of the reduced equation

restricted to Fix(Σ). See [3] Chapter XVI Section 4.

Consider (2.1) where f : R
n×R → R

n is smooth and commutes with a com-

pact Lie group Γ and make the generic hypothesis that R
n is Γ-simple. Choose

coordinates so that

(df)(0,0) = J

where m = n/2. The eigenvalues of (df)0,λ are σ(λ)+ iρ(λ) where σ(0) = 0 and

ρ(0) = 1 ([3] Lemma XVI 1.5). Suppose that

(2.3) σ′(0) 6= 0 .

Consider the action of S1 on R
n defined by:

θ · x = eiθJx (θ ∈ S1, x ∈ R
n) .

The following result states that for each isotropy subgroup of Γ×S1 with two-

dimensional fixed-point subspace there exists a unique branch of periodic solu-

tions of (2.1) with that symmetry:

Theorem 2.1 (Equivariant Hopf Theorem). Let the system of ordinary dif-

ferential equations (2.1) where f : R
n×R → R

n is smooth, commutes with a com-

pact Lie group Γ and satisfies

(2.4) (df)0,0 =

(
0 −Idm×m

Idm×m 0

)
≡ J

and (2.3) where σ(λ)+iρ(λ) are the eigenvalues of (df)0,λ. Suppose that Σ⊆Γ×S1

is an isotropy subgroup such that

dim Fix(Σ) = 2 .

Then there exists a unique branch of small-amplitude periodic solutions to (2.1)

with period near 2π, having Σ as their group of symmetries.

Proof: See Golubitsky et al. [3] Theorem XVI 4.1.

A tool for seeking periodic solutions that are not guaranteed by the Equivari-

ant Hopf Theorem and also for calculating the stabilities of the periodic solutions

is to use a Birkhoff normal form of f : by a suitable coordinate change, up to
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any given order, the vector field f can be made to commute with Γ and S1 (in

the Hopf case). This result is the equivariant version of the Poincaré–Birkhoff

Normal Form Theorem ([3] Theorem XVI 5.1).

Throughout this paper, we assume that the original vector field is in Birkhoff

normal form (it commutes with Γ×S1 where Γ= S3). Under this hypothesis

is valid the following result:

Theorem 2.2. Let the system of ordinary differential equations (2.1) where

the vector field f : R
n×R → R

n is smooth, commutes with a compact Lie group Γ

and satisfies (df)0,0 = J as in (2.4). Suppose that f in (2.1) is in Birkhoff normal.

Then it is possible to perform a Liapunov–Schmidt reduction on (2.1) such that

the reduced equation φ has the form

φ(v, λ, τ) = f(v, λ) − (1 + τ)Jv

where τ is the period-scaling parameter.

Proof: See [3] Theorem XVI 10.1.

Invariant theory

We finish this section by recalling a few results about invariant theory of

compact groups. Let Γ be a compact Lie group and V a finite-dimensional (real)

vector space. A function f : V → R is said to be Γ-invariant if

f(γ · x) = f(x) (γ ∈ Γ, x ∈ V ) .

The Hilbert–Weyl Theorem ([3] Theorem XII 4.2) implies that there always exist

finitely many Γ-invariant polynomials u1, ..., us such that every Γ-invariant poly-

nomial function f has the form

f(x) = p
(
u1(x), ..., us(x)

)
(x ∈ V )

for some polynomial function p. We denote by P(Γ) the set of all Γ-invariant

polynomials from V to R. This is a ring under the usual polynomial operations

and the set {u1, ..., us} is said to be a Hilbert basis of that ring. Schwarz [6]

proves that if {u1, ..., us} is a Hilbert basis for the ring P(Γ) and f : V → R

is a smooth Γ-invariant function then there exists a smooth function h : R
s → R

such that

f(x) = h
(
u1(x), ..., us(x)

)
(x ∈ V )
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(see [3] Theorem XII 4.3). The set of all Γ-equivariant polynomial mappings is a

module over the ring P(Γ) and the Hilbert–Weyl Theorem also implies that there

exists a finite-set of Γ-equivariant polynomial mappings X1, ...,Xt that generate

the module over the ring P(Γ). That is, every Γ-equivariant polynomial mapping

g : V → V has the form

g = f1X1 + · · · + ftXt

where each polynomial function fj : V→R is Γ-invariant. See [3] Theorem XII 5.2.

The generalization of this result to the module of the smooth Γ-equivariant map-

pings is due to Poénaru [4]. See [3] Theorem XII 5.3.

3 – The action of S3×S1

Let Γ= S3 be the group of bijections of the set {1, 2, 3} under composition

and let us consider the natural action of S3 on C
3. That is,

(3.1) σ · (z1, z2, z3) =
(
zσ−1(1), zσ−1(2), zσ−1(3)

) (
σ ∈ S3, (z1, z2, z3) ∈ C

3
)

.

The decomposition of C
3 into irreducible subspaces for this action of S3 is

C
3 ∼= C

3
0 ⊕ V1

where

C
3
0 =

{
(z1, z2, z3) ∈ C

3 : z1 + z2 + z3 = 0
}

and

V1 =
{

(z, ..., z) : z ∈ C

}
∼= C .

Note that the space C
3
0 is S3-simple:

C
3
0
∼= R

3
0 ⊕ R

3
0

where

R
3
0
∼= R

2

is S3-absolutely irreducible and the action of S3 on V1 is trivial.

Throughout this paper let V = C
3
0. Suppose we have a system of ODEs

(3.2) ẋ = f(x, λ)
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where x ∈ V , λ ∈ R is the bifurcation parameter and f : V ×R → V is smooth

and commutes with S3. Note that since Fix(S3) = {0} then

f(0, λ) ≡ 0 .

We suppose that (df)0,0 has eigenvalues + i. Our aim is to study the generic

existence of branches of periodic solutions of (3.2) near the bifurcation point

(x, λ) = (0, 0). We assume that f is in Birkhoff normal form and so f also com-

mutes with S1, where θ ∈ S1 acts on V by

(3.3) θ · z = eiθz (θ ∈ S1, z ∈ V ) .

Remarks 3.1.

(i) Note that any (real) two-dimensional S3-irreducible space is isomorphic

to R
3
0.

(ii) We show in Section 4.1 that the action of D3×S1 on C
2 considered in [3]

is isomorphic to the above action of S3 ×S1 on V = C
3
0 (see Lemma 4.1).

Along this paper we often make reference to the results obtained by

Golubitsky et al. [3] Chapter XVIII where they study Hopf bifurcation

with Dn× S1 (the case we are interested is n = 3) and to the results

obtained by Wood [7] related to Hopf bifurcation with S3× S1.

We continue by studying the (conjugacy classes of) isotropy subgroups for

the above action of S3× S1 on V .

The isotropy lattice

Consider the subgroups of S3× S1 defined by

(3.4) Z̃3 =
〈(

(123), 2πi/3
)〉

, Z̃2 =
〈(

(12), π
)〉

, S1× S2 =
〈(

(23), 0
)〉

.

In the next proposition we describe the isotropy subgroups of S3× S1 and the

respective fixed-point subspaces.

Proposition 3.2 ([3, 7]). Let V = C
3
0 and consider the action of S3× S1

on V given by (3.1) and (3.3). Then there are five conjugacy classes of isotropy

subgroups for the action of S3× S1 on V . They are listed, together with their

orbit representatives and fixed-point subspaces in Table 1.
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Proof: See Golubitsky et al. [3] (p. 368–370) (and recall Remark 3.1) or

Wood [7] (Proposition 3.2.1, p. 19).

Table 1 – Orbit representatives, isotropy subgroups and fixed-point sub-
spaces of S3×S1 acting on V . The groups Z̃3, Z̃2 and S1×S2

are defined in (3.4).

Orbit

representative

Isotropy

subgroup

Fixed-point

subspace

(0, 0, 0) S3× S1
{
(0, 0, 0)

}

(a, ei
2π

3 a, ei
4π

3 a), a>0 Z̃3

{
(w, ei

2π

3 w, ei
4π

3 w) : w ∈ C

}

(a,−a, 0), a>0 Z̃2

{
(w,−w, 0) : w ∈ C

}

(2a,−a,−a), a>0 S1× S2

{
(2w,−w,−w) : w ∈ C

}

(
a, b,−(a + b)

)
, a>b>0 1

{(
w1, w2,−(w1 + w2)

)
: w1, w2 ∈ C

}

Up to conjugacy, we have three isotropy subgroups with two-dimensional

fixed-point subspaces: Z̃3, Z̃2 and S1× S2. It follows from the Equivariant

Hopf Theorem (Theorem 2.1), that there are (at least) three branches of pe-

riodic solutions occurring generically in Hopf bifurcation with S3-symmetry (or

equivalently, with D3-symmetry). That is, to each isotropy subgroup Σ of S3×S1

with two-dimensional fixed-point subspace corresponds a unique branch of peri-

odic solutions of (3.2) with period near 2π and with symmetry Σ, obtained by

bifurcation from the trivial equilibrium (assuming that f satisfies the conditions

of the cited theorem). Let us notice, however, that the periodic solutions whose

existence is guaranteed by the Equivariant Hopf Theorem are not necessarily the

only periodic solutions that bifurcate from (0, 0). In the Section 5 we prove in

Theorem 5.2. that generically these are the only branches of periodic solutions

of (3.2) assuming that f is in Birkhoff normal form.

4 – Invariant theory for S3× S1

In order to look for periodic solutions of (3.2) we calculate now the general

form of a S3× S1-equivariant bifurcation problem. In Theorem 4.4 we obtain a

Hilbert basis for the ring of the invariant polynomials V → R and a module basis
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for the equivariant mappings V → V with polynomial components for the action

of the group S3×S1 on V considered in Section 3. For that we show in Section 4.1

that the action of D3× S1 on C
2 considered in [3] is isomorphic to the action of

S3× S1 on V — Lemma 4.1. In particular we can use the isomorphism between

C
2 and V obtained in this lemma to convert the invariant theory of D3× S1 on

C
2 into the invariant theory of S3× S1 on V (Proposition 4.2). We then recall

the invariant theory for D3 × S1 obtained in [3] and conclude with Theorem 4.4.

4.1. Isomorphic actions of D3× S1 and S3× S1

Consider the action of D3× S1 on C
2 defined by

(4.1)

γ · (z1, z2) = (eiγz1, e
−iγz2) (γ ∈ Z3) ,

k · (z1, z2) = (z2, z1) ,

θ · (z1, z2) = (eiθz1, e
iθz2) (θ ∈ S1)

for (z1, z2) ∈ C
2. Here Z3 = 〈2π

3 〉 and D3 = 〈2π
3 , k〉.

The following results (Lemma 4.1 and Proposition 4.2) are presumably well

known, but we provide a simple self-contained proof.

Lemma 4.1. The action of D3× S1 on C
2 as in (4.1) is isomorphic to the

action of S3× S1 on V = C
3
0 as defined in (3.1) and (3.3).

Proof: Consider the following bases B1 and B2 of C
2 and V , respectively,

over the field C:

(4.2)
B1 =

(
(1, 0), (0, 1)

)
,

B2 =
((

ei 2π

3 , 1, ei 4π

3

)
,
(
1, ei 2π

3 , ei 4π

3

))

and define the C-linear isomorphism L : C
2→ V by

L(1, 0) =
(
ei 2π

3 , 1, ei 4π

3

)
,

L(0, 1) =
(
1, ei 2π

3 , ei 4π

3

)
.

Let z = (z1, z2) ∈ C
2 and let us denote the actions of D3× S1 on C

2 and S3× S1

on V by · and ∗ respectively. Then for θ ∈ S1 we have

L
(
(2π

3 , θ) · (z1, z2)
)

=
(
(123), θ

)
∗ L(z1, z2) ,

L
(
(k, θ) · (z1, z2)

)
=

(
(12), θ

)
∗ L(z1, z2) .

Therefore the actions of D3× S1 on C
2 and S3× S1 on V are isomorphic

(recall (2.2)).
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Let

(4.3) B3 =
(
(1, 0,−1), (0, 1,−1)

)

be another basis of V (over the complex field). Then the matrix of the C-linear

isomorphism L : C
2→ V with respect to the bases B1 and B3 is

(4.4) A =

[
ei 2π

3 1

1 ei 2π

3

]

and the matrix of L−1 with respect to the bases B3 and B1 is

(4.5) A−1 = −
√

3

3

[
ei π

2 ei 5π

6

ei 5π

6 ei π

2

]
.

Proposition 4.2. Consider A and A−1 as in (4.4) and (4.5) and let us

denote by Z ≡
[

Z1

Z2

]
and z ≡

[
z1

z2

]
the coordinates of Z ∈ C

2 and z ∈ V with

respect to the bases B1 and B3 defined by (4.2) and (4.3), respectively. Then:

(i) A polynomial P : C
2→ R is D3× S1-invariant if and only if the poly-

nomial P ′ : V → R defined by

(4.6) P ′(z) ≡ P (A−1z)

is S3× S1-invariant.

(ii) A function f : C
2→ C

2 with polynomial components is D3×S1-equivariant

if and only if f̃ : V → V defined by

(4.7) f̃(z) ≡ Af(A−1z)

is S3× S1-equivariant.

Proof: If we take Z ≡
[

Z1

Z2

]
, the action of the elements (2π

3 , θ) and (k, θ) of

D3× S1 on C
2 is given by

(
2π

3
, θ

)
· Z = M1Z , where M1 = eiθ

[
ei 2π

3 0

0 ei 4π

3

]
,(4.8)

(k, θ) · Z = M2Z , where M2 = eiθ

[
0 1
1 0

]
.(4.9)
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Similarly, if z ≡
[

z1

z2

]
, the action of the elements ((123), θ) and ((12), θ) of S3×S1

on V is defined by

(
(123), θ

)
∗ z = N1z, where N1 = eiθ

[
−1 −1
1 0

]
,(4.10)

(
(12), θ

)
∗ z = N2z, where N2 = eiθ

[
0 1
1 0

]
.(4.11)

With this notation, by Lemma 4.1 the following equalities are valid:

(4.12) AM1 = N1A and AM2 = N2A .

Consequently

(4.13) M1A
−1 = A−1N1 and M2A

−1 = A−1N2 .

Let us prove (i). Let P : C
2 → R be a D3× S1-invariant polynomial and let

us define P ′ : V → R by P ′(z) ≡ P (A−1z). Then for i = 1, 2 we have

P ′(Niz) = P
(
A−1(Niz)

)
= P

(
Mi(A

−1z)
)

= P (A−1z) = P ′(z)

and so P ′ is S3× S1-invariant. Suppose now that the polynomial P : C
2→ R

is such that P ′ defined as in (4.6) is S3× S1-invariant. As

P (Z) = P (A−1AZ) ,

then for i = 1, 2 it follows that

P (MiZ) = P
(
A−1A(MiZ)

)
= P

(
A−1(NiAZ)

)
= P ′

(
Ni(AZ)

)
= P ′(AZ) = P (Z)

and P is D3× S1-invariant.

The proof of (ii) is similar.

4.2. Invariant theory for D3× S1

Recall the action of D3× S1 on (z1, z2) ∈ C
2 defined by (4.1). In the next

proposition we get a Hilbert basis for the ring of the D3×S1-invariant polynomials

and a module basis for the D3× S1-equivariant smooth mappings (over the ring

of the D3× S1-invariant smooth functions):
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Proposition 4.3 ([3]).

(a) Every smooth D3× S1-invariant function f : C
2→ R has the form

f(z1, z2) = h(P1, P2, P3, P4)

where

(4.14)
P1 = |z1|2 + |z2|2 , P2 = |z1|2 |z2|2 , P3 = (z1z2)

3 + (z1z2)
3 ,

P4 = i
(
|z1|2 − |z2|2

) (
(z1z2)

3 − (z1z2)
3
)

and h : R
4 → R is smooth.

(b) Every smooth D3× S1-equivariant function f : C
2 → C

2 has the form

f(z1, z2) = A

[
z1

z2

]
+ B

[
z2
1z1

z2
2z2

]
+ C

[
z2
1z

3
2

z2
2z

3
1

]
+ D

[
z4
1z

3
2

z4
2z

3
1

]

where A,B, C, D are complex-valued D3×S1-invariant smooth functions.

Proof: See Golubitsky et al. [3] Proposition XVIII 2.1 when n = 3.

4.3. Invariant theory for S3× S1

We can use now Proposition 4.2 and Proposition 4.3 to describe the invariant

theory for S3× S1:

Theorem 4.4. Let z ≡
[

z1

z2

]
denote the coordinates of z ∈ V with respect

to the basis B3 (recall (4.3)). Then:

(i) Every S3× S1-invariant polynomial f : V → R has the form

f(z) = h(N, P, S, T )
where

N = 2|z1|2 + 2|z2|2 + z1z2 + z1z2 ,

P = |z1|4 + |z2|4 + |z1|2 |z2|2 + 2 Re(z1z2)
(
|z1|2 + |z2|2

)
+ 2 Re(z2

1z
2
2) ,

S = 6 Re(z2
1z

2
2)

(
|z1|2 + |z2|2

)
+ 4 Re(z3

1z
3
2) + 9|z1|4 |z2|2 + 9|z1|2 |z2|4

− 2|z1|6 − 2|z2|6 + 6 Re(z1z2)
[
6|z1|2 |z2|2 − |z1|4 − |z2|4

]
,

T = Im(z1z2)
(
|z2|2−|z1|2

) [
2 Re(z1z2)

(
|z1|2+|z2|2

)
+ 2 Re(z1z2)

2 + 3|z1|2 |z2|2
]

and h : R
4→ R is polynomial.
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(ii) Every S3×S1-equivariant function with polynomial components g : V→V

has the form

g(z) = Ag1(z) + Bg2(z) + Cg3(z) + Dg4(z)

where

g1(z) =

[
z1

z2

]
, g2(z) =

[
|z1|2z1 + z2

1z2 + 2z1|z2|2 − z1z
2
2

|z2|2z2 + z1z
2
2 + 2|z1|2z2 − z2

1z2

]
,

g3(z) =

[
z1(z1+ 2z2) (z3

2 − z3
1) + 3z2

1z2(z
2
2 − z2

1) + 3z1z
2
2z2(2z1+ z2)

z2(2z1+ z2) (z3
1 − z3

2) + 3z1z
2
2(z

2
1 − z2

2) + 3z2
1z1z2(z1+ 2z2)

]
,

g4(z) =

[
g̃4(z1, z2)

g̃4(z2, z1)

]
,

g̃4(z1, z2) = (z3
1 − z3

2) (6z2
1z

2
2 + 4z1z

3
2 − z4

1) + 3z1z2

(
z2(z

4
1 − z4

2) − z1z
4
2

)

+6|z1|2|z2|2
(
3|z1|2z2 − 2|z2|2z2 + 2z2

1(z1 + z2)
)

and A, B, C, D are S3× S1-invariant polynomials from V to C.

Proof: We begin by proving (i). By Proposition 4.3 the polynomials P1, P2,

P3, P4 as in (4.14) form a Hilbert basis for the ring of the D3× S1-invariant

polynomials. By Proposition 4.2 (i), the polynomials defined by

N = 3P1(A
−1z) , P = 9P2(A

−1z) ,

S = 27P3(A
−1z) and T = −9

2 P4(A
−1z)

are S3×S1-invariants and form a Hilbert basis for the ring of the S3×S1-invariant

polynomials (for the action on V ). Taking A−1 as in (4.5) we obtain the polyno-

mials N, P, T, S as stated in the proposition.

The proof of (ii) is analogous. Again, we use Proposition 4.2 (ii) and Propo-

sition 4.3.

Remark 4.5. A function f = (f1, f2, f3) from V to V that commutes with

S3× S1 has the form

f(z1, z2, z3) =




f1(z1, z2, z3)

f1(z2, z1, z3)

f1(z3, z2, z1)


 .
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Note that from f((1i) · (z1, z2, z3)) = (1i) · f(z1, z2, z3) for i = 2, 3 and for all

(z1, z2, z3) ∈ V , it follows that f2(z1, z2, z3) = f1(z2, z1, z3) and f3(z1, z2, z3) =

f1(z3, z2, z1).

Corollary 4.6. Let z = (z1, z2, z3) ∈ V and so z3 = −z1 − z2, and let

u1 = z1z1 , u2 = z2z2 and u3 = z3z3 .

Then:

(i) Every smooth function f̃ : V → R invariant under S3× S1 has the form

f̃(z1, z2, z3) = h̃(Ñ , P̃ , S̃, T̃ )

where

(4.15)

Ñ = u1 + u2 + u3 ,

P̃ = u2
1 + u2

2 + u2
3 ,

S̃ = u3
1 + u3

2 + u3
3 + 6u1u2u3 ,

T̃ = Im(z1z2)
[
u1u2(u2 − u1) + u2u3(u3 − u2) + u1u3(u1 − u3)

]

and h̃ : R
4→ R is smooth.

(ii) Every S3×S1-equivariant and smooth function g̃ : V → V can be written

as

g̃(z) = AX1 + BX2 + CX3 + DX4

where

X1=




z1

z2

z3


, X2 =




2z1u1 − (z2u2 + z3u3)

2z2u2 − (z1u1 + z3u3)

2z3u3 − (z2u2 + z1u1)


, X3 =




2z1u
2
1 − (z2u

2
2 + z3u

2
3)

2z2u
2
2 − (z1u

2
1 + z3u

2
3)

2z3u
2
3 − (z2u

2
2 + z1u

2
1)


,

(4.16)

X4 =




(z3

1
−z3

2
)(6z2

1
z2

2
+4z1z

3

2
−z4

1
)+ 6u1u2(3u1z2−2z2

1
z3−2u2z2)+ 3z1z2(z

4

1
z2+z4

2
z3)

(z3

2
−z3

1
)(6z2

1
z2

2
+4z3

1
z2−z4

2
)+ 6u1u2(3u2z1−2z2

2
z3−2u1z1)+ 3z1z2(z1z

4

2
+z4

1
z3)

(z3

3
−z3

2
)(6z2

2
z2

3
+4z3

2
z3−z4

3
)+ 6u2u3(3u3z2−2z2

3
z1−2u2z2)+ 3z2z3(z2z

4

3
+z4

2
z1)




and A, B, C, D are S3× S1-invariant and smooth functions from V to C.
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Proof: By Schwarz and Poénaru Theorems (see Schwarz [6] or [3] Theo-

rem XII 4.3 and Poénaru [4] or [3] Theorem XII 5.3) we may suppose that

f̃ is polynomial and g̃ has polynomial components. As |z3|2 = |z1 + z2|2 =

|z1|2 + |z2|2 + z1z2 + z1z2 then

(4.17)

2 Re(z1z2) = z1z2 + z1z2 = |z3|2 − |z1|2 − |z2|2 = u3 − u1 − u2 ,

2 Re(z2
1z

2
2) = z2

1z
2
2 + z2

1z
2
2 = u2

1 + u2
2 + u2

3 − 2u1u3 − 2u2u3 ,

2 Re(z3
1z

3
2) = z3

1z
3
2 + z3

1z
3
2 = u3

3 − u3
1 − u3

2 − 3u1u
2
3 − 3u2u

2
3

+ 3u2
1u3 + 3u2

2u3 + 3u1u2u3 .

Consider the polynomials N , P , S and T as defined in Theorem 4.4. Using the

equalities (4.17) we obtain

N = u1 + u2 + u3 ,

P = u2
1 + u2

2 + u2
3 − u1u2 − u1u3 − u2u3 ,

S = 2u3
1 + 2u3

2 + 2u3
3 − 3u1u2(u1 + u2) − 3u2u3(u2 + u3)

− 3u1u3(u1 + u3) + 12u1u2u3 ,

T = Im(z1z2)
[
u1u2(u2 − u1) + u2u3(u3 − u2) + u1u3(u1 − u3)

]
.

Let Ñ , P̃ , S̃, T̃ be the S3× S1-invariant polynomials defined in (4.15). Then

N = Ñ , P =
3

2
P̃ − 1

2
Ñ2 , S = 3S̃ − Ñ3 , T = T̃ .

By Theorem 4.4 the polynomials N, P, S, T form a Hilbert basis for the ring

of the S3× S1-invariant polynomials. Therefore Ñ , P̃ , S̃, T̃ also form a Hilbert

basis for this ring.

We prove now (ii). Let g1, g2, g3, g4 be as in Theorem 4.4. Replacing −z1−z2

by z3 in each one of the gi we obtain through routine calculations

g1 =

[
z1

z2

]
, g2 =

[
2z1u2 − z2

1z3 − z1z
2
2

2u1z2 − z2
2z3 − z2

1z2

]
,

g3 =

[
(z2

3 − z2
2)(z

3
2 − z3

1) + 3z2z
2
1(z

2
2 − z2

1) + 3z1z
2
2(z

2
3 − z2

1)

(z2
3 − z2

1)(z
3
1 − z3

2) + 3z1z
2
2(z

2
1 − z2

2) + 3z2z
2
1(z

2
3 − z2

2)

]

and

g4 =

[
(z3

1
−z3

2
)(6z2

1
z2

2
+4z1z

3

2
−z4

1
) + 6u1u2(3u1z2−2z2

1
z3−2u2z2) + 3z1z2(z

4

1
z2+z4

2
z3)

(z3

2
−z3

1
)(6z2

1
z2

2
+4z2z

3

1
−z4

2
) + 6u1u2(3u2z1−2z2

2
z3−2u1z1) + 3z1z2(z

4

2
z1+z4

1
z3)

]
.
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We obtain the S3× S1-equivariant functions X̃i from gi (for i = 1, 2, 3, 4) keep-

ing the components of gi and considering the third component as described in

Remark 4.5:

X̃1 =




z1

z2

z3


 , X̃2 =




2z1u2 − z2
1z3 − z1z

2
2

2z2u1 − z2
2z3 − z2z

2
1

2z3u2 − z2
3z1 − z3z

2
2


 ,

X̃3 =




(z2
3 − z2

2)(z
3
2 − z3

1) + 3z2z
2
1(z

2
2 − z2

1) + 3z2
2z1(z

2
3 − z2

1)

(z2
3 − z2

1)(z
3
1 − z3

2) + 3z1z
2
2(z

2
1 − z2

2) + 3z2
1z2(z

2
3 − z2

2)

(z2
1 − z2

2)(z
3
2 − z3

3) + 3z2z
2
3(z

2
2 − z2

3) + 3z2
2z3(z

2
1 − z2

3)




and

X̃4 =




(z3

1
−z3

2
)(6z2

1
z2

2
+4z1z

3

2
−z4

1
)+ 6u1u2(3u1z2−2z2

1
z3−2u2z2)+ 3z1z2(z

4

1
z2+z4

2
z3)

(z3

2
−z3

1
)(6z2

1
z2

2
+4z3

1
z2−z4

2
)+ 6u1u2(3u2z1−2z2

2
z3−2u1z1)+ 3z1z2(z1z

4

2
+z4

1
z3)

(z3

3
−z3

2
)(6z2

2
z2

3
+4z3

2
z3−z4

3
)+ 6u2u3(3u3z2−2z1z

2

3
−2u2z2)+ 3z2z3(z2z

4

3
+z1z

4

2
)


.

Consider Ñ , P̃ , S̃, T̃ , X1, X2, X3 and X4 as in (4.15) and (4.16). Note that

X̃1 = X1 and X̃4 = X4. Routine calculations show that

X̃2 = 2ÑX1 − X2 , X̃3 = (2Ñ2 − 3P̃ )X1 − 2ÑX2 + 3X3 .

By Theorem 4.4 the S3× S1-equivariant functions Xj : V → V and iXj : V → V

for j = 1, ..., 4, generate the module of the S3×S1-equivariant functions over the

ring of the S3× S1-invariants.

5 – Hopf bifurcation with S3-symmetry

In Section 3 we determined the conjugacy classes of isotropy subgroups for

the action of S3× S1 on V = C
3
0 (Proposition 3.2). Up to conjugacy, we have

three isotropy subgroups with two-dimensional fixed-point subspaces: Z̃3, Z̃2 and

S1× S2. It follows from the Equivariant Hopf Theorem, that there are (at least)

three branches of periodic solutions corresponding to each one of these isotropy

subgroups of S3×S1 occurring generically in Hopf bifurcation with S3-symmetry.

We prove in Theorem 5.2 that generically these are the only branches of periodic

solutions obtained through bifurcation from the trivial equilibrium in bifurcation

problems with S3-symmetry and assuming Birkhoff normal form.
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Suppose that the function f : V×R → V is S3× S1-equivariant and smooth,

and satisfies the conditions of the Equivariant Hopf Theorem. Thus we assume

that

(5.1) (df)0,λ(z) = µ(λ)z

where µ is a smooth function from R to C such that

(5.2) µ(0) = i ∧ Re
(
µ′(0)

)
6= 0 .

From Theorem 2.2 the small-amplitude periodic solutions of the equation

(5.3) ż = f(z, λ)

of period near 2π are in one to one correspondence with the zeros of the equation

(5.4) g(z, λ, τ) = 0

where g = f−(1+τ)iz and τ is the period-scaling parameter. From Corollary 4.6

and Remark 4.5 the general form of f = (f1, f2, f3) is

(5.5)

f1(z1, z2, z3, λ) = µ(λ)z1 + Az1 + BX2,1 + CX3,1 + DX4,1 ,

f2(z1, z2, z3, λ) = f1(z2, z1, z3, λ) ,

f3(z1, z2, z3, λ) = f1(z3, z2, z1, λ)

where

X2,1 = 2z1u1 − (z2u2 + z3u3) ,

X3,1 = 2z1u
2
1 − (z2u

2
2 + z3u

2
3) ,

X4,1 = (z3
1 − z3

2) (6z2
1z

2
2 + 4z1z

3
2 − z4

1) + 6u1u2(3u1z2 − 2z2
1z3 − 2u2z2)

+ 3z1z2(z
4
1z2 + z4

2z3)

and A, B, C and D are smooth S3×S1-invariant functions from V×R to C (thus

they may depend on λ). Since we are assuming (5.1) it follows that A(0, λ) ≡ 0.

Recall that uj = zjzj for j = 1, 2, 3.

Lemma 5.1. Consider f as in (5.5). Let z3 = −z1 − z2 where (z1, z2) =

(r1e
iφ1 , r2e

iφ2) with r1, r2 ∈ R and φ = φ2 − φ1. Then we can write the first two

components of f as [
r1e

iφ1h(r1, r2, φ, λ)

r2e
iφ2h(r2, r1,−φ, λ)

]

where h is a smooth function from R
4 to C.
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Proof: Let Ñ , P̃ , S̃, T̃ , X1, X2, X3 and X4 be as in the Corollary 4.6.

Taking z3 = −z1 − z2, (z1, z2) = (r1e
iφ1 , r2e

iφ2) and φ = φ2 − φ1 we can write

each of the invariant polynomials in the form

Ñ = 2r2
1 + 2r2

2 + 2r1r2 cos φ ,

P̃ = r4
1 + r4

2 + (r2
1 + r2

2 + 2r1r2 cos φ)2 ,

S̃ = r6
1 + r6

2 + (r2
1 + r2

2 + 2r1r2 cos φ)3 + 6r2
1r

2
2(r

2
1 + r2

2 + 2r1r2 cos φ) ,

T̃ = r1r
2
2 sinφ

(
2r4

1r2(1+2 cos2 φ) − r2
1(r1r2 + r2

2)(r1 + 2r2 cos φ)2

+
(
2r5

1 + 4r3
1r

2
2 − 2r4

1r
2
2(r1 + 2r2 cos φ)3

)
cos φ

)

and the first two components of Xj for j = 2, 3, 4 as

(5.6)

[
Xi,1

Xi,2

]
=

[
r1e

iφ1hi(r1, r2, φ)

r2e
iφ2hi(r2, r1,−φ)

]

where

h2(r1, r2, φ) = 3r2
1 +

(
i sin(2φ) + 2 + cos(2φ)

)
r2
2 + (3 cos φ + i sinφ)r1r2 ,

h3(r1, r2, φ) =
(
9 cos φ + 3i sinφ + cos(3φ) + i sin(3φ)

)
r1r

3
2 + 3r4

1

+ (5 cos φ + i sinφ)r3
1r2 +

(
6 + 4 cos(2φ) + 2i sin(2φ)

)
r2
1r

2
2

+
(
3 + 2 cos(2φ) + 2i sin(2φ)

)
r4
2 ,

(5.7)

h4(r1, r2, λ) =
(
30 cos φ + i

(
3 sin(3φ) + 6 sinφ

)
+ 5 cos(3φ)

)
r3
1r

3
2 − r6

1

− (21 cos φ + 9i sinφ)r1r
5
2 −

(
3i sin(2φ) + 4 + 3 cos(2φ)

)
r6
2

+
(
9 cos(2φ) + 12 + 3i sin(2φ)

)
r4
1r

2
2 .

It follows the result if we consider (5.5).

Theorem 5.2. Consider the system (5.3) with f as in (5.5) where A(0,λ) ≡ 0

and µ : R → C is smooth and satisfies (5.2). Generically (5.3) admits only branches

of periodic solutions that bifurcate from (0, 0) with symmetry (conjugate to)

S1×S2, Z̃2, Z̃3.
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Proof: Consider the Taylor expansion of f as in (5.5) around z = 0 and

recall Corollary 4.6. Then we can write f in the form

f1(z1, z2, z3, λ) =
[
µ(λ) + a

(
|z1|2+|z2|2+|z3|2

)]
z1

+ b
(
2|z1|2z1−|z2|2z2−|z3|2z3

)
+ terms of degree ≥ 5 ,

(5.8)

f2(z1, z2, z3, λ) = f1(z2, z1, z3, λ) ,

f3(z1, z2, z3, λ) = f1(z3, z2, z1, λ) ,

where µ(0)= i, Re(µ′(0)) 6=0 and a, b are smooth complex-valued functions of λ.

Consider g = f−(1+τ)iz as in (5.4) and so the first two coordinates of g are:

(5.9)

g1(z, λ, τ) =
[
ν + a

(
|z1|2+|z2|2+|z3|2

)]
z1

+ b
(
2|z1|2z1−|z2|2z2−|z3|2z3

)
+ terms of degree ≥ 5 ,

g2(z, λ, τ) =
[
ν + a

(
|z1|2+|z2|2+|z3|2

)]
z2

+ b
(
2|z2|2z2−|z1|2z1−|z3|2z3

)
+ terms of degree ≥ 5 ,

where ν = µ(λ) − (1+τ)i.

We have that FixV (S3) = {0}, consequently f(0, λ) ≡ 0. Therefore (0, λ)

is an equilibrium point of (5.3) for all values of λ. Since we are assuming that

(df)0,λ(z) = µ(λ)z, where µ(0) = i and Re(µ′(0)) 6= 0, the stability of this equi-

librium varies when λ crosses zero.

The space V is S3-simple and we are assuming (5.1) and (5.2) and so the

conditions of the Equivariant Hopf Theorem are satisfied. Since the isotropy

subgroups S1×S2, Z̃2 and Z̃3 have two-dimensional fixed-point subspaces, by the

Equivariant Hopf Theorem the system (5.3) admits branches of periodic solutions

with symmetry S1×S2, Z̃2, Z̃3 and conjugate to these groups by bifurcation from

(z, λ) = (0, 0). Moreover, these correspond to zeros of (5.4) with the correspond-

ing symmetry. We study now the existence of branches of periodic solutions

of (5.3) with trivial symmetry that bifurcate from (0, 0). For that we look for

branches of zeros (z1, z2) of (5.9) with z1z2 6= 0. These satisfy

(5.10)

g1(z, λ, τ)

z1
= 0 ,

g2(z, λ, τ)

z2
= 0 .
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Taking z3 = −z1 − z2, (z1, z2) = (r1e
iφ1 , r2e

iφ2) and φ = φ2 − φ1, by Lemma 5.1

we can write the first two components of f in the form

[
r1e

iφ1h(r1, r2, φ, λ)

r2e
iφ2h(r2, r1,−φ, λ

]

and so (5.10) can be written as

(5.11)





ν +
(
(2a + 3b) cos φ + ib sinφ

)
r1r2 + (2a + 3b)r2

1

+
(
2a + 2b + b cos(2φ) + ib sin(2φ)

)
r2
2 + P1(r1, r2, φ, λ) = 0

ν +
(
(2a + 3b) cos φ − ib sinφ

)
r1r2 + (2a + 3b)r2

2

+
(
2a + 2b − ib sin(2φ) + b cos(2φ)

)
r2
1 + P1(r2, r1,−φ, λ) = 0 ,

where P1 is smooth (whose Taylor expansion around (r1, r2) = (0, 0) has terms

(in r1 and r2) of degree greater or equal to 4). Recall (5.9).

Taking the difference of the equations of (5.11) we obtain

(5.12)
b
[(

2 sin2 φ + i sin(2φ)
)
r2
1 +

(
i sin(2φ) − 2 sin2 φ

)
r2
2 + 2i sinφ r1r2

]
+

+ P1(r1, r2, φ, λ) − P1(r2, r1,−φ, λ) = 0 .

Consider the generic hypothesis

b(0) 6= 0

and let

P2(r1, r2, φ, λ) =
P1(r1, r2, φ, λ) − P1(r2, r1,−φ, λ)

2b
.

Then equation (5.12) is equivalent to

(5.13) sin2 φ(r2
1 − r2

2) + i sinφ
(
cos φ(r2

1 + r2
2) + r1r2

)
+ P2(r1, r2, φ, λ) = 0

and so the real and imaginary parts of (5.13) should verify:

(5.14)

{
sin2 φ(r2

1 − r2
2) + Re

(
P2(r1, r2, φ, λ)

)
= 0

sinφ(cos φ r2
1 + cos φ r2

2 + r1r2) + Im
(
P2(r1, r2, φ, λ)

)
= 0 .

The degree two truncation of the system (5.14) is equivalent to

(5.15)
[
r1, r2

]
A

[
r1

r2

]
= 0 ,

[
r1, r2

]
B

[
r1

r2

]
= 0
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where

A =




sin2 φ 0

0 − sin2 φ


 , B =




sinφ cos φ
sinφ

2
sinφ

2
sinφ cos φ


 .

Note that

detA = − sin4 φ , det B = sin2 φ

(
cos2 φ − 1

4

)
.

We study now the existence of smooth branches of zeros of the system (5.14)

by bifurcation from (0, 0). We use (5.15) in some cases.

(i) We begin with the cases where det(A) < 0 and det(B) < 0. Let φ be such

that sinφ 6= 0 and cos2 φ < 1
4 . The system (5.15) is equivalent to

(5.16)





(r1− r2) (r1 + r2) = 0

cos φ r2
1 + r1r2 + cos φ r2

2 = 0 ,

which admits only the solution (r1, r2) = (0, 0). Moreover the system

(5.17)





(r1− r2) (r1 + r2) +
Re

(
P2(r1, r2, φ, λ)

)

sin2 φ
= 0

cos φ r2
1 + r1r2 + cos φ r2

2 +
Im

(
P2(r1, r2, φ, λ)

)

sin φ
= 0 ,

is equivalent to (5.14). The solutions in R
2 of the first equation of (5.16) corre-

spond to the points of the lines r1 = r2 and r1 = −r2. Denote those lines by l1
and l2. The solutions of the second equation of (5.16) correspond to the points

of two lines l3, l4, whose slopes are distinct from the slopes of the lines l1 and l2.

So (0, 0) is the only solution of (5.16). Moreover (r1, r2) = (0, 0) is a critical

nondegenerate point of each one of the functions

h1(r1, r2) = (r1 − r2)(r1 + r2) ,

h2(r1, r2) = cos φ r2
1 + r1r2 + cos φ r2

2 ,

h3(r1, r2) = h1(r1, r2) +
Re

(
P2(r1, r2, φ, λ)

)

sin2 φ
,

h4(r1, r2) = h2(r1, r2) +
Im

(
P2(r1, r2, φ, λ)

)

sinφ
.
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By Morse Lemma (see for example Poston and Stewart [5] Theorem 4.2) the

solutions of each one of the equations of (5.17) correspond to smooth curves,

say c1, c2 and c3, c4, tangent in (0, 0) to each one of the lines l1, l2 and l3, l4.

Therefore, in a sufficiently small neighborhood of the origin, the system (5.17)

admits only the trivial solution (r1, r2) = (0, 0).

(ii) We consider now the case where det(A) < 0 and det(B) = 0. Let φ be

such that sinφ 6= 0 and cos2 φ = 1
4 . If φ = 2

3π the system (5.15) is equivalent to





(r1− r2) (r1+ r2) = 0

(r1− r2)
2 = 0 .

We obtain the solutions such that r1 = r2 (and φ = 2π
3 ). These solutions cor-

respond to the periodic solutions with symmetry Z̃3 of (5.3) whose existence is

guaranteed by the Equivariant Hopf Theorem (when f is truncated to the third

order). Consider now the system

(5.18)





(r1− r2) (r1+ r2) +
4

3
Re

(
P2

(
r1, r2,

2

3
π, λ

))
= 0

(r1− r2)
2 − 4

√
3

3
Im

(
P2

(
r1, r2,

2

3
π, λ

))
= 0 .

As the Equivariant Hopf Theorem guarantees that if φ = 2
3π the system (5.18)

still admits the solution r1 = r2 then there are smooth functions P̃i(r1, r2, λ) for

i = 1, 2 (whose Taylor expansion around (r1, r2) = (0, 0) has terms in r1, r2 of

degree greater or equal to three) such that the system (5.18) is equivalent to

(5.19)





(r1− r2)
(
r1+ r2 + P̃1(r1, r2, λ)

)
= 0

(r1− r2)
(
r1− r2 + P̃2(r1, r2, λ)

)
= 0 ,

and so for (r1, r2) sufficiently close to (0, 0) this system admits only the solutions

with r2 = r1. These correspond to the branch of periodic solutions of (5.3) with

symmetry Z̃3 guaranteed by the Equivariant Hopf Theorem. When φ = 4
3π the

situation is similar.

For the cases φ = π
3 and φ = 5

3π we observe the following. We have that

(z1, z2) =
(
r1e

iφ1 , r2e
i(φ1+ 2π

3
)
)

=
(
r1e

iφ1 ,−r2e
i(φ1+ 5π

3
)
)

,

(z1, z2) =
(
r1e

iφ1 , r2e
i(φ1+ 4π

3
)
)

=
(
r1e

iφ1 ,−r2e
i(φ1+π

3
)
)

.
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Therefore the solutions (r1, r2) of the system (5.14) with φ = 2π
3 correspond to

the solutions (r1,−r2) of the system (5.14) with φ = 5π
3 . Similarly, the solutions

(r1, r2) of (5.14) with φ = 4π
3 correspond to the solutions (r1,−r2) of the system

(5.14) with φ = π
3 . Therefore from the cases φ = π

3 and φ = 5π
3 we do not obtain

new solutions (besides the solutions with symmetry conjugate to Z̃3).

(iii) We study now the cases where det A < 0 and detB > 0. That is, we

consider values of φ such that sinφ 6= 0 and cos2 φ > 1
4 . Again we consider the

system (5.17). The point (0, 0) is a nondegenerate critical point of the function

defined by h(r1, r2, φ) = cos φ r2
1 + r1r2 + cos φ r2

2 + Im(P2(r1,r2,φ))
sin φ

. In these

conditions, Morse Lemma guarantees that the solutions of the second equation of

the system (5.17) in a sufficiently small neighborhood of (0, 0) are in one to one

correspondence with the solutions of the equation cosφ r2
1 + r1r2 + cosφ r2

2 = 0.

As det B > 0 we conclude that (5.17) in a sufficiently small neighborhood of the

origin admits only the solution (r1, r2) = (0, 0).

(iv) We consider now the cases where det(A) = det(B) = 0. That is, φ = 0

or φ = π. Let f be as in (5.5) and g = f − (1 + τ)iz. By Lemma 5.1, if we take

z3 = −z1 − z2, (z1, z2) = (r1e
iφ1 , r2e

iφ2) and φ = φ2 − φ1 we obtain a function

g̃ = (g̃1, g̃2, g̃3) such that

(5.20)
g̃1(r1, r2, φ, φ1, λ, τ) = (ν + A)r1e

iφ1 + BX2,1 + CX3,1 + DX4,1 ,

g̃2(r1, r2, φ, φ2, λ, τ) = (ν + A)r2e
iφ2 + BX2,2 + CX3,2 + DX4,2

where ν = µ(λ) − (1+τ)i and A, B, C, D are written in the new coordinates.

Taking φ = 0 in (5.6) and (5.7) we obtain

(
X2,1

r1eiφ1

)

φ=0

=

(
X2,2

r2eiφ2

)

φ=0

= 3 (r2
1 + r2

2 + r1r2) ,

(
X3,1

r1eiφ1

)

φ=0

= h3(r1, r2, 0) = 3 r4
1 + 5 r4

2 + 5 r3
1r2 + 10 r1r

3
2 + 10 r2

1r
2
2 ,

(
X3,2

r2eiφ2

)

φ=0

= h3(r2, r1, 0) ,

(
X4,1

r1eiφ1

)

φ=0

= h4(r1, r2, 0) = 21 r4
1r

2
2 + 35 r3

1r
3
2 − r6

1 − 21 r1r
5
2 − 7 r6

2 ,

(
X4,2

r2eiφ2

)

φ=0

= h4(r2, r1, 0)
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and so
(

g̃1(r1, r2, φ, φ1, λ, τ)

r1eiφ1

)

φ=0

= ν + Aφ=0 + 3Bφ=0

(
r2
1 + r2

2 + r1r2

)

+ Cφ=0

(
3r4

1 + 5r4
2 + 5r3

1r2 + 10r1r
3
2 + 10r2

1r
2
2

)

+ Dφ=0

(
21r4

1r
2
2 + 35r3

1r
3
2 − r6

1 − 21r1r
5
2 − 7r6

2

)
,

(
g̃2(r1, r2, φ, φ2, λ, τ)

r2eiφ2

)

φ=0

= ν + Aφ=0 + 3Bφ=0

(
r2
1 + r2

2 + r1r2

)

+ Cφ=0

(
5r4

1 + 3r4
2 + 10r2

1r
2
2 + 10r3

1r2 + 5r1r
3
2

)

+ Dφ=0

(
21r2

1r
4
2 + 35r3

1r
3
2 − r6

2 − 21r5
1r2 − 7r6

1

)
.

Then the equation

(5.21)

(
g̃1(r1, r2, φ, φ1, λ, τ)

r1eiφ1

)

φ=0

−
(

g̃2(r1, r2, φ, φ2, λ, τ)

r2eiφ2

)

φ=0

= 0

can be written as

(5.22) (r2 − r1) (r1+ 2r2) (2r1+ r2) (r1+ r2)
(
C + 3(r2

1 + r2
2 + r1r2)D

)
φ=0

= 0

where C, D are smooth S3× S1-invariant functions. Assuming the generic hypo-

thesis

C(0) 6= 0

from (5.22) we obtain only branches of solutions of (5.4) corresponding to the

branches of periodic solutions of (5.3) with symmetry (conjugate to) Z̃2 and

S1× S2. We recall that

Fix(Z̃2) =
{

(w,−w, 0) : w ∈ C

}
.

So, periodic solutions of (5.3) with symmetry Z̃2 correspond to zeros of (5.4)

where

(r1 = r2 and φ = π) or (r1 = −r2 and φ = 0) .

From there the factor r1+ r2 in the equation (5.22). In the case of S1× S2,

we have that

Fix(S1× S2) =
{

(2w,−w,−w) : w ∈ C

}
.

Periodic solutions of (5.3) with symmetry S1× S2 or conjugate to S1× S2

correspond to zeros of (5.4) where

(r1 = 2r2 and φ = π) or (r1 = −2r2 and φ = 0) ,

(r2 = 2r1 and φ = π) or (r2 = −2r1 and φ = 0) ,

(r1 = −r2 and φ = π) or (r1 = r2 and φ = 0) .
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So, we have the factors r1+ 2r2, r2 + 2r1 and r1− r2 in the equation (5.22).

The case φ = π is similar.

(v) Finally, we study the cases where z1 = 0 and z2 6= 0. Let Ñ , P̃ , S̃, T̃ ,

X1, X2, X3 and X4 be as in Corollary 4.6. In that case Ñ = 2|z2|2, P̃ = |z2|4,
S̃ = −2|z2|6, T̃ = 0 and

X1 =




0

z2

−z2


 , X2 =




0

z2|z2|2
−z2|z2|2


 , X3 =




0

−z2|z2|4
z2|z2|4


 , X4 =




0

−z2|z2|6
z2|z2|6


 .

Replacing in the system (5.4) where g = f−(1+τ)iz and f appears in (5.5) we

obtain
g1(z, λ, τ) = 0 ,

g2(z, λ, τ) = z2

(
ν + h(z2, λ)

)

where h is smooth and ν = µ(λ) − (1 + τ)i. In this case we obtain zeros corre-

sponding to a branch of periodic solutions with symmetry conjugate to Z̃2.

If z2 = 0 and z1 6= 0 the situation is similar to the previous one.

From the study (i)–(v) we conclude that the system (5.3) generically only ad-

mits branches of periodic solutions guaranteed by the EquivariantHopf Theorem.
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