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Université Pierre et Marie Curie - Paris VI, Université Paris-Diderot Paris VII
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1. Introduction

Bougerol’s celebrated identity in law has been the subject of research for several
authors since first formulated in 1983 [10]. A reason for this study is on the one
hand its interest from the mathematical point of view and on the other hand
its numerous applications, namely in Finance (pricing of Asian options etc.)-see
e.g. [38, 12, 40]. However, one still feels that some better understanding remains
to be discovered.

This paper is essentially an attempt to collect all the known results (up to
now) and to give a (full) survey of the several different equivalent expressions
and extensions (to other processes, multidimensional versions, etc.) in a concise
way. We also provide a bibliography, as complete as possible. For the extended
proofs we address the reader to the original articles.

Bougerol’s remarkable identity states that (see e.g. [10, 1] and [40] (p. 200)),
with (Bu, u ≥ 0) and (βu, u ≥ 0) denoting two independent linear Brownian
motions§, we have:

for fixed t, sinh(Bt)
(law)
= βAt(B) , (1)

where Au(B) =
∫ u

0
ds exp(2Bs) is independent of (βu, u ≥ 0). For a first ap-

proach of (1), see e.g. the corresponding Chapters in [27] and in [11]. In what
follows, sometimes for simplicity we will use the notation Au instead of Au(·).

Alili, Dufresne and Yor [1] obtained the following simple proof of Bougerol’s
identity (1):

§When we simply write: Brownian motion, we always mean real-valued Brownian motion
starting from 0. For 2-dimensional Brownian motion we indicate planar or complex BM.
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Proof. On the one hand, we define St ≡ sinh(Bt); then, applying Itô’s formula
we have:

St =

∫ t

0

√

1 + S2
s dBs +

1

2

∫ t

0

Ss ds . (2)

On the other hand, a time-reversal argument for Brownian motion yields: for
fixed t ≥ 0,

βAt(B) =

∫ t

0

eBsdγs
(law)
= eBt

∫ t

0

e−Bsdγs ≡ Qt , (3)

where (γs, s ≥ 0) denotes another 1-dimensional Brownian motion, independent
from (Bs, s ≥ 0).

Applying once more Itô’s formula to Qt, we have:

dQt =
1

2
Qtdt+ (QtdBt + dγt) =

1

2
Qtdt+

√

Q2
t + 1 dδt, (4)

where δ is another 1-dimensional Brownian motion, depending on B and on γ.
From (2) and (4) we deduce that S andQ satisfy the same Stochastic Differential
Equation with Lipschitz coefficients, hence, we obtain (1).

With some elementary computations, from (1) (e.g. identifying the densities
of both sides, for further details see [29, 5]), we may obtain the Gauss-Laplace
transform of the clock At: for every x ∈ R, with a(x) ≡ arg sinh(x) ≡ log(x +√
1 + x2)

E

[
1√
At

exp

(

− x2

2At

)]

=
a′(x)√

t
exp

(

−a
2(x)

2t

)

. (5)

where a′(x) = (1 + x2)−1/2.
For further use, we note that Bougerol’s identity may be equivalently stated

as:

sinh(|Bu|)
(law)
= |β|Au(B). (6)

Using now the symmetry principle (see [4] for the original note and [15] for a
detailed discussion):

sinh(B̄u)
(law)
= β̄Au(B), (7)

where, e.g. B̄u ≡ sup0≤s≤uBs.
In the remainder of this article we give several versions and generalizations of

Bougerol’s identity (1). In particular, in Section 2 we give extensions of this iden-
tity to other processes (i.e. Brownian motion with drift, hyperbolic Brownian
motion, etc.). Section 3 is devoted to some results that we obtain from subordi-
nation and some applications to the study of Bougerol’s identity in terms of pla-
nar Brownian motion and of complex-valued Ornstein-Uhlenbeck processes. In
Section 4 we give some 2 and 3 dimensional extensions of Bougerol’s identity, first
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involving the local time at 0 of the Brownian motion B, and second by studying
the joint law of 2 and 3 specific processes. In particular, in Subsection 4.2 we give
a new 2-dimensional extension. In Section 5 we generalize Bougerol’s identity for
the case of diffusions, named “Bougerol’s diffusions”, followed by some studies
in terms of Jacobi processes. Section 6 deals with Bougerol’s identity from the
point of view of “peacocks” (see this Section for the precise definition, as intro-
duced in e.g. [16]). In Section 7 we propose some possible directions for further
investigation of this “mysterious” identity in law with its versions and exten-
sions and we give an as full as possible list of references (to the best of author’s
knowledge) up to now. Finally, in the Appendix, we present several tables of
Bougerol’s identity and all the equivalent forms and extensions that we present
in this survey. These tables can be read independently from the rest of the text.

We also note that (sometimes) the notation used from Section to Section may
be independent.

2. Extensions of Bougerol’s identity to other processes

2.1. Brownian motions with drifts

We start by a first generalization concerning Brownian motions with drifts that
was obtained by Alili, Dufresne and Yor, in [1], who showed the following result:

Proposition 2.1. With µ, ν two real numbers, for every x fixed, the Markov
process:

X
(µ,ν)
t ≡ (exp(Bt + µt))

(

x+

∫ t

0

exp (−(Bs + µs)) d(βs + νs)

)

, (8)

for every t ≥ 0, has the same law as (sinh(Y
(µ,ν)
t ), t ≥ 0), where (Y

(µ,ν)
t , t ≥ 0)

is a diffusion with infinitesimal generator:

1

2

d2

dy2
+

(

µ tanh(y) +
ν

cosh(y)

)
d

dy
, (9)

starting from y = arg sinh(x).

Proof. It suffices to apply Itô’s formula to both processesX(µ,ν) and sinh(Y (µ,ν)).

It follows now:

Corollary 2.2. For every t fixed,

sinh(Y
(µ,ν)
t )

(law)
=

∫ t

0

exp(Bs + µs)d(βs + νs). (10)

In particular, in the case µ = 1 and ν = 0:

sinh(Bt + εt)
(law)
=

∫ t

0

exp(Bs + s)dβs, (11)

with ε denoting a symmetric Bernoulli variable taking values in {−1, 1}.
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Remark 2.3. With µ = −1/2 and ν = 0, we have that sinh(Y
(−1/2,0)
t ) is a

martingale. Indeed, with Yt ≡ Y
(−1/2,0)
t , Itô’s formula yields:

sinh(Yt) =

∫ t

0

cosh(Ys) dYs +
1

2

∫ t

0

sinh(Ys) ds

=

∫ t

0

cosh(Ys)

[

dBs −
1

2
tanh(Ys) ds

]

+
1

2

∫ t

0

sinh(Ys) ds

=

∫ t

0

cosh(Ys)dBs .

Hence:

Mt ≡ sinh(Yt) = β∫ t
0
ds(cosh2(Ys))

≡ β∫ t
0
ds(1+sinh2(Ys))

, (12)

and for this Markovian martingale, we have:

Mt = sinh(Yt) =

∫ t

0

cosh(Ys)dBs =

∫ t

0

√

1 +M2
s dBs . (13)

It can also be seen directly from (8) that (X
(−1/2,0)
t , t ≥ 0) is the product of

two orthogonal martingales. This property is true because:

X
(−1/2,0)
t =

Bu

Ru

∣
∣
∣
u=A

(1/2)
t

, (14)

with A
(ν)
t =

∫ t

0 ds exp(2B
(ν)
s ), (B

(ν)
t , t ≥ 0) denoting a Brownian motion with

drift, and (Rt, t ≥ 0) a 2-dimensional Bessel process started at 0. Further details
about this ratio are discussed in Sections 5 and 7. We also remark that, with

the notation of Section 1, A
(0)
t ≡ At.

2.2. Hyperbolic Brownian motion

Alili and Gruet in [2] generalized Bougerol’s identity in terms of hyperbolic
Brownian motion:

Proposition 2.4. We use the notation introduced in the previous Subsection,
that is: (Rt, t ≥ 0) is a 2-dimensional Bessel process with R0 = 0 and we denote
by Ξ an arcsine variable such that B(ν), R and Ξ are independent. Let φ be the
function defined by:

φ(x, z) =
√

2ex cosh(z)− e2x − 1, for z ≥ |x|. (15)

Then, for fixed t, we have:

β
A

(ν)
t

(law)
= (2Ξ− 1)φ

(

B
(ν)
t ,

√

R2
t + (B

(ν)
t )2

)

. (16)

In particular, with ν = 0, we recover Bougerol’s identity:

βAt

(law)
= (2Ξ− 1)φ

(

Bt,
√

R2
t +B2

t

)
(law)
= sinh(Bt). (17)
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This is an immediate consequence of the following:

Lemma 2.5. (i) The law of the functional A
(ν)
t is characterized by: for all

u ≥ 0,

E

[

exp

(

−u
2

2
A

(ν)
t

)]

= e−ν2t/2

∫

R

dx eνx
∫ +∞

|x|

dz
z√
2πt3

e−z2t/2J0(uφ(x, z)), (18)

where J0 stands for the Bessel function of the first kind with parameter 0
[22].

(ii) In particular, taking ν = 0, for u ≥ 0 and x ∈ R we have:

exp

(

−x
2

2t

)

E

[

exp

(

−u
2

2
At

)
∣
∣Bt = x

]

=

∫ +∞

|x|

dz
z

t
e−z2t/2J0(uφ(x, z)). (19)

Proposition 2.4 follows now immediately from Lemma 2.5 by using the classi-
cal representation of the Bessel function of the first kind with parameter 0 (see
e.g. [22]):

J0(z) =
1

π

∫ +1

−1

dr√
1− r2

cos(zr), (20)

and remarking that (with Ξ denoting again an arcsine variable), for all real ξ:

J0(ξ) = E [exp (iξ(2Ξ− 1))] . (21)

Proof of Lemma 2.5. With Iµ and Kµ denoting the modified Bessel functions

of the first and the second kind respectively with parameter µ =
√

ρ2 + ν2 (for
ρ and ν reals), we define the function Gµ : R2 → R+ by:

Gµ(u, v) =

{
2Iµ(u)Kµ(v), u ≤ v;
2Iµ(v)Kµ(u), u ≥ v.

(22)

First, using the skew product representation of planar Brownian motion (see
e.g. Section 3 below), the following formula holds (for further details we address
the interested reader to [2]):
∫ ∞

0

dt exp

(

−ρ
2

2
t

)

E

[

exp

(

−u
2

2
A

(ν)
t

)]

=

∫ +∞

−∞

dy eνyGµ(u, ue
y). (23)

Using the integral representation (see e.g. [22], problem 8, p. 140):

Iµ(x)Kµ(y) =
1

2

∫ ∞

log(y/x)

dr e−µrJ0

(√

2 cosh(r)xy − x2 − y2
)

, y ≥ x. (24)

we can invert (23) in order to obtain part i) of Lemma 2.5.
Part ii) follows with the help of Cameron-Martin relation.
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3. Bougerol’s identity and subordination

In this Section, we consider (Zt = Xt + iYt, t ≥ 0) a standard planar Brownian
motion (BM) starting from x0 + i0, x0 > 0 (for simplicity and without loss of
generality, we suppose that x0 = 1). Then, a.s., (Zt, t ≥ 0) does not visit 0 but

it winds around it infinitely often, hence θt = Im(
∫ t

0
dZs

Zs
), t ≥ 0 is well defined

[18]. There is the well-known skew-product representation:

log |Zt|+ iθt ≡
∫ t

0

dZs

Zs
= (Bu + iγu)

∣
∣
∣
u=Ht=

∫

t
0

ds
|Zs|2

, (25)

where (Bu+iγu, u ≥ 0) is another planar Brownian motion starting from log 1+
i0. Thus:

H−1
u ≡ inf{t : Ht > u} =

∫ u

0

ds exp(2Bs) := Au(B).

For further study of the Bessel clock H , see e.g. [37]. We also define the first

hitting times T θ
c ≡ inf{t : θt = c} and T

|θ|
c ≡ inf{t : |θt| = c}.

3.1. General results

Bougerol’s identity in law combined with the symmetry principle of André [4, 15]
yields the following identity in law (see e.g. [8, 5]): for every fixed l > 0,

Hτl

(law)
= τa(l) (26)

where (τl, l ≥ 0) stands for a stable (1/2)-subordinator. An example of this kind
of identities in law is given for the planar Brownian motion case in the next
Subsection. The main point in [8] is that (26) is not extended in the level of
processes indexed by l ≥ 0.

3.2. Bougerol’s identity in terms of planar Brownian motion

Vakeroudis [30] investigated Bougerol’s identity in terms of planar Brownian
motion and obtained some striking identities in law:

Proposition 3.1. Let (βu, u ≥ 0) be a 1-dimensional Brownian motion inde-
pendent of the planar Brownian motion (Zu, u ≥ 0) starting from 1. Then, for
any b ≥ 0 fixed, the following identities in law hold:

i) HTβ
b

(law)
= TB

a(b) ii) θTβ
b

(law)
= Ca(b) iii) θ̄Tβ

b

(law)
= |Ca(b)|,

where Cσ is a Cauchy variable with parameter σ and θ̄u = sup0≤s≤u θs.
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Proof. i) We identify the laws of the first hitting times of a fixed level b by the
processes on each side of (7) and we obtain:

TB
a(b)

(law)
= HTβ

b
,

which is i).
ii) It follows from i) since:

θu
(law)
= γHu ,

with (γs, s ≥ 0) a Brownian motion independent of (Hu, u ≥ 0) and (Cu, u ≥ 0)
may be represented as (γTB

u
, u ≥ 0).

iii) follows from ii) again with the help of the symmetry principle.

Using now these identities in law, we can apply William’s “pinching” method
[36, 26] and recover Spitzer’s celebrated asymptotic law which states that [28]:

2

log t
θt

(law)−→
t→∞

C1 , (27)

with C1 denoting a standard Cauchy variable (for other proofs, see also e.g.
[36, 14, 26, 7, 39, 32]). One can also find a characterization of the distribution of

T θ
c and of T

|θ|
c in [30]. First, applying Bougerol’s identity (1) in terms of planar

Brownian motion we have:

Proposition 3.2. For fixed c > 0,

sinh(Cc)
(law)
= β(T θ

c )
(law)
=

√

T θ
c N , (28)

where N ∼ N (0, 1) and the involved random variables are independent.

Furthermore, we can obtain the following Gauss-Laplace transforms which
are equivalent to Bougerol’s identity exploited for planar Brownian motion:

Proposition 3.3. For x ≥ 0 and m = π
2c ,

c E

[√
π

2T θ
c

exp

(

− x

2T θ
c

)]

=
1√
1 + x

c2

(c2 + log2(
√
x+

√
1 + x))

; (29)

c E

[√

2

πT
|θ|
c

exp

(

− x

2T
|θ|
c

)]

=
1√
1 + x

2

(
√
1 + x+

√
x)m + (

√
1 + x−√

x)m
.

(30)

Proof. For the proof of (29), it suffices to identify the densities of the two parts
of (28) and to recall that the density of a Cauchy variable with parameter c
equals:

c

π(c2 + y2)
.
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For (30), we apply Bougerol’s identity with u = T
|γ|
c ≡ inf{t : |γt| = c} and we

obtain:

sinh(B
T

|γ|
c

)
(law)
= β

(T
|θ|
c )

(law)
=

√

T
|θ|
c N . (31)

Once again we identify the densities of the two parts. For the left hand side,

we use the following Laplace transform: for λ ≥ 0, E[e−
λ2

2 T
|γ|
b ] = 1

cosh(λb) (see

e.g. Proposition 3.7, p. 71 in Revuz and Yor [27]). We also use the well-known
result [23, 9]:

E
[

exp(iλB
T

|γ|
c

)
]

=
1

cosh(λc)
=

1

cosh(πλ c
π )

=

∫ ∞

−∞

ei(
λc
π )x 1

2π

1

cosh(x2 )
dx .

(32)

Changing now the variables y = cx/π, we obtain the density of B
T

|γ|
c

which

equals:
(

2c cosh(
yπ

2c
)
)−1

=
(

c(e
yπ
2c + e−

yπ
2c )
)−1

,

and finishes the proof.

Vakeroudis and Yor in [32, 33] investigated further the law of these random
times.

3.3. The Ornstein-Uhlenbeck case

Vakeroudis in [30, 31] studied also the case of Ornstein-Uhlenbeck processes. In
particular, we consider now a complex valued Ornstein-Uhlenbeck (OU) process:

Zt = z0 + Z̃t − λ

∫ t

0

Zsds, (33)

where Z̃t is a complex valued Brownian motion, z0 ∈ C (for simplicity and

without loss of generality, we suppose again z0 = 1), λ ≥ 0 and T
(λ)
c ≡ T

|θZ|
c ≡

inf{t ≥ 0 : |θZt | = c} (θZt is the continuous winding process associated to Z)
denoting the first hitting time of the symmetric conic boundary of angle c for
Z. Then, we have the following:

Proposition 3.4. Consider (Zλ
t , t ≥ 0) and (Uλ

t , t ≥ 0) two independent
Ornstein-Uhlenbeck processes, the first one complex valued and the second one

real valued, both starting from a point different from 0, and define T
(λ)
b (Uλ) =

inf{t ≥ 0 : eλtUλ
t = b}, for any b ≥ 0. Then, an Ornstein-Uhlenbeck extension

of identity in law ii) in Proposition 3.1 is the following:

θZ
λ

T
(λ)
b (Uλ)

(law)
= Ca(b), (34)

where a(x) = arg sinh(x) and Cσ is a Cauchy variable with parameter σ.
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Proof. First, for Ornstein-Uhlenbeck processes, is well known that [27], with
(Bt, t ≥ 0) denoting a complex valued Brownian motion starting from 1, Dambis-
Dubins-Schwarz Theorem yields:

Zt = e−λt

(

1 +

∫ t

0

eλsdZ̃s

)

= e−λt (Bαt) , (35)

Let us consider a second Ornstein-Uhlenbeck process (Uλ
t , t ≥ 0) independent

of the first one. Taking now equation (35) for Uλ
t (1-dimensional case) we have:

eλtUλ
t = δ

( e2λt−1
2λ )

, (36)

where (δt, t ≥ 0) is a real valued Brownian motion starting from 1.
Second, applying Itô’s formula to (35) and dividing by Zs, we obtain (αt =

∫ t

0 e
2λsds = e2λt−1

2λ ):

Im

(
dZs

Zs

)

= Im

(
dBαs

Bαs

)

,

hence:

θZt = θBαt
. (37)

By inverting αt, it follows now that:

T (λ)
c =

1

2λ
ln
(

1 + 2λT |θ|B

c

)

. (38)

Similarly, for the 1-dimensional case we have:

T
(λ)
b (Uλ) =

1

2λ
ln
(
1 + 2λT δ

b

)
. (39)

Equation (37) for t = 1
2λ ln

(
1 + 2λT δ

b

)
, equivalently: α(t) = T δ

b becomes:

θZ
λ

T
(λ)
b (Uλ)

= θZ
λ

1
2λ ln(1+2λT δ

b )
= θBu=T δ

b

(law)
= Ca(b),

where the last equation in law follows precisely from statement ii) in Proposi-
tion 3.1.

4. Multidimensional extensions of Bougerol’s identity

4.1. The law of the couple (sinh(βt), sinh(Lt))

A first 2-dimensional extension of Bougerol’s identity was obtained by Bertoin,
Dufresne and Yor in [5] (for a first draft, see also [13]). With (Lt, t ≥ 0) denoting
the local time at 0 of B, we have:
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Theorem 4.1. For fixed t, the 3 following 2-dimensional random variables are
equal in law:

(sinh(Bt), sinh(Lt))
(law)
= (βAt , exp(−Bt) λAt)

(law)
= (exp(−Bt) βAt , λAt), (40)

where (λu, u ≥ 0) is the local time of β at 0.

Remark 4.2. Theorem 4.1 can be equivalently stated as: for fixed t, the 3
following 2-dimensional random variables are equal in law:

(sinh(|Bt|), sinh(Lt))
(law)
= (|β|At , exp(−Bt) λAt)

(law)
= (exp(−Bt) |β|At , λAt).

(41)

Using now Paul Lévy’s celebrated identity in law (see e.g. [27]):

(
(B̄t −Bt, B̄t), t ≥ 0

) (law)
= ((|Bt|, Lt), t ≥ 0) , (42)

we can reformulate (40) or (41), and we obtain:

(sinh(B̄t −Bt), sinh(B̄t))
(law)
=

(
(β̄ − β)At , exp(−Bt) β̄At

)

(law)
=

(
exp(−Bt) (β̄ − β)At , β̄At

)
. (43)

The latter is particularly interesting when compared with the Wiener-Hopf fac-
torization for Brownian motion. In particular, if we consider eq an indepen-
dent exponential random variable of parameter q, then B̄eq is independent of
Beq − B̄eq . This tells that the two random variables appearing on the right hand
side of (43), when taken at eq, are independent.

Remark 4.3. Considering only the second processes of the first and the third
part of (40) (or equivalently of (41)), we obtain a “local time” version of Bougerol’s
identity:

sinh(Lt)
(law)
= λAt , (44)

which (as was shown in [8]), similar to the Brownian motion case, is true only
for fixed t and not in the level of processes.

Proof of Theorem 4.1. From Remark 4.2 it suffices to prove (41).
First, we denote Sp, p ≥ 0 an exponential variable with parameter p inde-

pendent from B and gt = sup{u < t : Bu = 0}. We know that (Bu, u ≤ gSp)
and (BgSp+u, u ≤ Sp − gSp) are independent, hence LSp and BSp are also inde-
pendent. We also know that Lt and |Bt| have the same law. Hence, using the
following computation: for every l ≥ 0, with (τl, l ≥ 0) denoting the time L
reaches l,

P
(
LSp ≥ l

)
= P (Sp ≥ τl) = E [exp(−pτl)] = exp(−l

√

2p),
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we deduce that the common density of LSp and |BSp | is:
√

2p exp(−u
√

2p), u ≥ 0.

Equivalently, we have:

√
2e(|β(1)|, λ(1)) (law)

= (e, e′),

where on the left hand side e and e′ are two independent copies of S1 indepen-
dent from β.

For the second identity in law in Theorem 4.1, it suffices to remark that

(βAt , exp(−Bt) λAt)
(law)
= (

√

Atβ1, exp(−Bt)
√

At λ1),

and use a time reversal argument.

For the first identity in law we use an exponential time Sp and we compute
the joint Mellin transforms in both sides in order to show that:

√
2e(sinh(|B|Sp), sinh(LSp))

(law)
=

√
2e(exp(−BSp)

√

ASp |β1|,
√

ASp λAt).

For further details we address the reader to [5].

Using now Tanaka’s formula we can also obtain the following identity in law
for 2-dimensional processes:

Corollary 4.4.

(sinh(Bt), Lt)t≥0

(law)
=

(

exp(−Bt) βAt ,

∫ t

0

exp(−Bs)dλAs

)

t≥0

, (45)

where, in each part, the second process is the local time at level 0 and time t of
the first one.

4.2. Another two-dimensional extension

In this Subsection we will study the joint distribution of:

(

X(1)
u , X(2)

u

)

=

(

exp(−Bu)

∫ u

0

dξ(1)v exp(Bv), exp(−2Bu)

∫ u

0

dξ(2)v exp(2Bv)

)

, (46)

where (ξ
(1)
v , v ≥ 0), (ξ

(2)
v , v ≥ 0) and (Bu, u ≥ 0) are three independent Brown-

ian motions. Hence, we obtain a new 2-dimensional extension which states the
following:
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Proposition 4.5. We consider (B
(1)
t , t ≥ 0) and (B

(2)
t , t ≥ 0) two real depen-

dent Brownian motions, such that:

d < B(1), B(2) >v= tanh(B(1)
v ) tanh(2B(2)

v ) dv. (47)

For the two-dimensional process (X
(1)
u , X

(2)
u ), we have:

(i) In the level of processes:

(

X(1)
u , X(2)

u , u ≥ 0
)

(law)
=

(

sinh(B(1)
u ),

1

2
sinh(2B(2)

u ), u ≥ 0

)

(48)

(ii) For u fixed,

(

X(1)
u , X(2)

u

)
(law)
=

(

β
(1)

(
∫

u
0

dv exp(2Bv))
, β

(2)

(
∫

u
0

dv exp(4Bv))

)

. (49)

Proof. Let us define:

X(α)
u = exp(−αBu)

∫ u

0

dξ(α)v exp(αBv), (50)

where α = 1, 2. By Itô’s formula, we have:

X(α)
u = ξ(α)u +

∫ u

0

(

exp(−αBv)(−αdBv) +
α2

2
exp(−αBv)dv

)

×
(∫ v

0

dξ
(α)
h exp(αBh)

)

= ξ(α)u +

∫ u

0

(

−αdBv X
(α)
v +

α2

2
X(α)

v dv

)

.

Hence:

X(1)
u = ξ(1)u −

∫ u

0

dBv X
(1)
v +

1

2

∫ u

0

X(1)
v dv

=

∫ u

0

dη(1)v

√
(

1 +
(

X
(1)
v

)2
)

+
1

2

∫ u

0

X(1)
v dv , (51)

and

X(2)
u = ξ(2)u − 2

∫ u

0

dBv X
(2)
v + 2

∫ u

0

X(2)
v dv

=

∫ u

0

dη(2)v

√
(

1 + 4
(

X
(2)
v

)2
)

+ 2

∫ u

0

X(2)
v dv, (52)

where (η
(1)
v , v ≥ 0) and (η

(2)
v , v ≥ 0) are two dependent Brownian motions, with

quadratic variation:

d < η(1), η(2) >v=
2X

(1)
v X

(2)
v dv

√
(

1 +
(
X

(1)
v

)2
)
√
(

1 + 4
(
X

(2)
v

)2
) . (53)
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Thus, we deduce that the infinitesimal generator of (X
(1)
u , X

(2)
u ) is:

1

2

[
(
1 + x21

) ∂2

∂x21
+
(
1 + 4x22

) ∂2

∂x22
+ 4x1x2

∂2

∂x1∂x2

]

+
x1
2

∂

∂x1
+ 2x2

∂

∂x2
. (54)

Let us now study the couple:

(x
(1)
t , x

(2)
t ) =

(

sinh(B
(1)
t ),

1

2
sinh(2B

(2)
t )

)

, (55)

where (B
(1)
t , t ≥ 0) and (B

(2)
t , t ≥ 0) are two dependent Brownian motions. By

Itô’s formula we have:

x
(1)
t = sinh(B

(1)
t )

=

∫ t

0

cosh(B(1)
v ) dB(1)

v +
1

2

∫ t

0

sinh(B(1)
v ) dv

=

∫ t

0

√
(

1 + (x
(1)
v )2

)

dB(1)
v +

1

2

∫ t

0

x(1)v dv, (56)

and:

x
(2)
t =

1

2
sinh(2B

(2)
t )

=

∫ t

0

cosh(2B(2)
v ) dB(2)

v +

∫ t

0

sinh(2B(2)
v ) dv

=

∫ t

0

√
(

1 + 4(x
(2)
v )2

)

dB(2)
v + 2

∫ t

0

x(2)v dv. (57)

Moreover, using (47):

d < sinh(B(1)),
1

2
sinh(2B(2)) >v = cosh(B(1)

v ) cosh(2B(2)
v ) d < B(1), B(2) >v

= 2 sinh(B(1)
v )

1

2
sinh(2B(2)

v ) dv. (58)

Finally, we have that (x
(1)
u , x

(2)
u ) has the same infinitesimal generator with

(X
(1)
u , X

(2)
u ). Hence, we get part (i) of the Proposition.

For part (ii), we fix u and we have:

(

sinh(B(1)
u ),

1

2
sinh(2B(2)

u )

)
(law)
=

(

β
(1)

(
∫

u
0

dv exp(2Bv))
, β

(2)

(
∫

u
0

dv exp(4Bv))

)

, (59)

where (β
(1)
v , v ≥ 0) and (β

(2)
v , v ≥ 0) are two dependent Brownian motions and

(Bv, v ≥ 0) is another Brownian motion independent from them. Now, from
(59), we obtain (60).
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Remark 4.6. From (59), with pu(x, y) denoting now the density function of

the couple (sinh(B
(1)
u ), 12 sinh(2B

(2)
u )), we have:

pu(x, y) = E




1

2π

exp
(
−x2/2

∫ u

0
dv exp(2Bv)

)

√
∫ u

0 dv exp(2Bv)

exp
(
−y2/2

∫ u

0
dv exp(4Bv)

)

√
∫ u

0 dv exp(4Bv)



 .

(60)

In theory, we should be able to compute this probability density as we know the
joint distribution of the couple of exponential functionals (see e.g. [3]).

4.3. A three-dimensional extension

Alili, Dufresne and Yor, in [1], obtained a 3-dimensional extension of Bougerol’s
identity:

Proposition 4.7. The two following processes have the same law:

{

eBt

∫ t

0

e−Budβu, Bt, βt; t ≥ 0

}
(law)
= {sinh(Bt), B

′
t, G

′
t; t ≥ 0} , (61)

where:
{

B′
t =

∫ t

0 tanh(Bs)dBs +
∫ t

0
dGs

cosh(Bs)
;

G′
t =

∫ t

0
dBs

cosh(Bs)
−
∫ t

0
tanh(Bs)dGs ,

(62)

with (Gt, t ≥ 0) denoting another Brownian motion, independent from B.

Remark 4.8. We remark that with:

α(x) =

(

tanh(x) − 1
cosh(x)

1
cosh(x) tanh(x)

)

, (63)

we have:
(
dB′

t

dG′
t

)

= α(Bt)

(
dBt

dβt

)

, (64)

and {(
B′

t

G′
t

)

, t ≥ 0

}

is a 2-dimensional Brownian motion.

Proof of Proposition 4.7.
First proof: Using Itô’s formula, we deduce easily that each of these triplets

is a Markov process with infinitesimal generator (in C2(R3)):

1

2
(1 + x2)

d2

dx2
+

1

2

d2

dy2
+

1

2

d2

dz2
+ x

d2

dxdy
+

d2

dxdz
+ x

d

dx
. (65)
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The proof finishes by the uniqueness (in law) of the solutions of the correspond-
ing martingale problem.

Second proof: First, we admit that the identity in law is true. Then, if we
replace on the left hand side (Bs) by (B′

s) and (βs) by (G′
s), we have necessarily:

sinh(Bt)
(law)
= eB

′
t

∫ t

0

e−B′
udG′

t, (66)

which is essentially a (partial) inversion formula of the transformation (64).
Equation (66) can be proved by using Itô’s formula on the right hand side.

Gruet in [1] also remarked that:

Proposition 4.9. There exist two independent linear Brownian motions V and
W and a diffusion J starting from 0 satisfying the following equation

dJt = dWt +
1

2
tanh(Jt)dt, (67)

such that,

(
dβt
dBt

)

= α(−Jt)
(
dVt
dWt

)

. (68)

Hence, the two following 3-dimensional processes:

(

exp

(

Bt +
t

2

)∫ t

0

exp
(

−Bs −
s

2

)

dβs, Bt, βt; t ≥ 0

)

and
(sinh(Jt), Bt, βt; t ≥ 0) ,

are equal.

Proof. This result follows from a geometric proof and it is essentially an expla-
nation of the second proof of Proposition 4.7, at least for ν = 0. For this purpose,
we can compare the writing of a hyperbolic Brownian motion in the half-plane
of Poincaré, decomposed in rectangular coordinates with the equidistant coor-
dinates [34]. For further details, see the Appendix in [1] due to Gruet.

5. The diffusion version of Bougerol’s identity

5.1. Bougerol’s diffusion

Bertoin, Dufresne and Yor in a recent work [6] generalized Bougerol’s identity
in terms of diffusions. First, we remark that from Proposition 2.1 we have that
(see also [1]):

(sinh(Bt), t ≥ 0)
(law)
=

(

exp(−Bt)βA(0)
t
, t ≥ 0

)

. (69)
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In particular, using Lamperti’s relation (see e.g. [21] or [27]) we can invoke a
Bessel process R(δ) independent from B in order to replace the right hand side
of (69) by:

(

exp
(

−B(ν)
t

)

R
(δ)

A
(ν)
t

, t ≥ 0

)

,

which turns out to be a diffusion (named Bougerol’s diffusion) with a certain
infinitesimal generator. Hence, we obtain the following:

Theorem 5.1. With Z = Z(δ) and Z ′ = Z(δ′) denoting two independent squared
Bessel processes of dimension δ = 2(1+µ) and δ′ = 2(1+ν) respectively, starting
from z and z′, the process:

Xt ≡ X
(ν,δ)
t ≡ exp

(

−2B
(ν)
t

)

Z
A

(ν)
t

=
Zu

Z ′
u

∣
∣
∣
∣
∣
u=A

(ν)
t

, t ≥ 0, (70)

is a diffusion with infinitesimal generator:

2x(1 + x)D2 + (δ + (4− δ′)x)D, (71)

where δ′ = 2(1 + ν).

Remark 5.2. There is a discussion in [19] concerning the particular case where
the diffusion with generator given in (71) is the hyperbolic sine of the radial
part of a hyperbolic Brownian motion (or equivalently the hyperbolic sine of
a hyperbolic Bessel process) of index α ∈ (−1/2,∞) (see [19] Theorem 2.25,
formula (46), p.15). In that case, with Rt denoting this hyperbolic Bessel process
starting from x and Yt = eBt−(α+1/2)t, for any w ≥ 0, t ≥ 0,

(sinh(Rt), t ≥ 0)
(law)
=

(

Y −1
t S∫ t

0
Y 2
u du, t ≥ 0

)

, (72)

where S is a Bessel process of dimension 2(1 + α) independent of B, and S0 =
sinh(x).

Proof of Proposition 5.1. Applying Itô’s formula to the process X , we obtain:

Xt =

∫ t

0

exp
(

−2B(ν)
u

)

d
(

Z
A

(ν)
u

)

+

∫ t

0

Z
A

(ν)
u
d
(

exp
(

−2B(ν)
u

))

. (73)

For the second integral in (73), Itô’s formula once more yields:

d
(

exp
(

−2B(ν)
u

))

= −2 exp
(

−2B(ν)
u

)

(dBu + νdu) + 2 exp
(

−2B(ν)
u

)

du

= −2

∫ t

0

XudBu + 2(1− ν)
︸ ︷︷ ︸

4−δ′

∫ t

0

Xudu .

Thus:
∫ t

0

Z
A

(ν)
u
d
(

exp
(

−2B(ν)
u

))

= −2

∫ t

0

XudBu + 2(1− ν)
︸ ︷︷ ︸

4−δ′

∫ t

0

Xudu . (74)
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For the first integral in (73), we recall that, with γ denoting another Brownian
motion independent from B (thus independent also from Z):

dZs = 2
√

Zsdγs + δ ds . (75)

Hence:

dZ
A

(ν)
u

= 2
√

Z
A

(ν)
u
dγ

A
(ν)
u

+ δ exp
(

2B(ν)
u

)

du

= 2
√

Z
A

(ν)
u

exp
(

B(ν)
u

)

dγ̂u + δ exp
(

2B(ν)
u

)

du , (76)

with γ̂ denoting another Brownian motion, depending on γ and on B.
The proof finishes by some elementary computations from (73), using (74)

and (76).
Finally, using Lamperti’s relation, which states that:

exp
(

2B
(ν)
t

)

= Z ′

A
(ν)
t

, (77)

we obtain the last identity in (70).

We may continue a little further in order to obtain the following result relating

the diffusion X with its reciprocal (recall that: A
(ν)
u =

∫ u

0 ds exp(2B
(ν)
s )):

Corollary 5.3. The following relation holds:

1

X
(ν,µ)
t

= X
(µ,ν)
∫ t
0

du

X
(ν,µ)

A
(ν)
u

. (78)

Proof. It follows easily by some relations involving the changes of time:

A
(ν)
t =

∫ t

0

ds exp
(

2B(ν)
s

)

; A
(µ)
t =

∫ t

0

ds exp
(

2B(µ)
s

)

; (79)

H(ν)
u =

∫ u

0

ds

Z ′
s

; H(µ)
u =

∫ u

0

ds

Zs
. (80)

Moreover, we remark that (H
(ν)
t ) is the inverse of (A

(ν)
t ) and (H

(µ)
t ) is the inverse

of (A
(µ)
t ).

We also need to use:

H(ν,µ)
u =

∫ u

0

ds

X
(ν,µ)
s

; H(µ,ν)
u =

∫ u

0

ds

X
(µ,ν)
s

. (81)

Simple calculations now yield:

H
(ν,µ)
t = H

(µ)

A
(ν)
t

, (82)

Finally, using (70) we have:

H
(µ)

A
(ν)
t

=

∫ t

0

ds

X
(ν,µ)

A
(ν)
s

, (83)

and we obtain easily the result.
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5.2. Relations involving Jacobi processes

In this Subsection, we present a particular study of Theorem 5.1 in terms of
the Jacobi processes Y (δ,δ′) as introduced in Warren and Yor [35] (see also the
references therein for Jacobi processes), due to Bertoin, Dufresne and Yor [6].
First, we recall some results involving Jacobi processes:

Proposition 5.4 (Warren and Yor [35], Proposition 8). With T ≡ inf{u :
Zu + Z ′

u = 0}, there exists a diffusion process (Yu ≡ Y δ,δ′

u , u ≥ 0) on [0, 1],
independent from Z + Z ′ such that:

Zu

Zu + Z ′
u

= Y∫ u
0

ds
Zs+Z′

s

, u < T. (84)

We remark that Y ′ = 1 − Y is the Jacobi process with dimensions (δ′, δ), and
Y has infinitesimal generator:

2y(1− y)D2 + (δ − (δ + δ′)y)D . (85)

Now, X defined in (70) and Y can be related as following:

Proposition 5.5. The following relation holds:

Yw
1− Yw

= X∫ w
0

dv
Y ′
v

= X∫w
0

dv
1−Yv

, (86)

or equivalently:

Xk =
Yw

1− Yw

∣
∣
∣
∣
∣
w=

∫ k
0

dv
1+Xv

. (87)

Proof of Proposition 5.5. First, from (70), we have:

Xt =
Zu

Z ′
u

∣
∣
∣
∣
∣
u=A

(ν)
t

.

Conversely,

Zu

Z ′
u

= X
H

(ν)
u

, (88)

where H
(ν)
u =

∫ u

0
ds
Z′

s
is the inverse of A(ν). However, using the Jacobi process Y ,

Zu

Z ′
u

=
Yw

1− Yw

∣
∣
w=Hu=

∫

u
0

ds
Zs+Z′

s

, (89)

and moreover:

H(ν)
u =

∫ u

0

ds

Z ′
s

=

∫ u

0

ds

(Zs + Z ′
s)

1

(1− YHs)
=

∫ Hu

0

dv

Y ′
v

. (90)

Plugging now (90) to (88) and comparing to (89), we obtain (86). For (87), it

suffices to remark that k →
∫ k

0
dv

1+Xv
is the inverse of the increasing process

w →
∫ w

0
dv

1−Yv
.
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6. Bougerol’s identity and peacocks

Hirsch, Profeta, Roynette and Yor in [16], studied the processes which are in-
creasing in the convex order, named peacocks (coming from the French term:
Processus Croissant pour l’Ordre Convexe, which yields the acronym PCOC).
Let us first introduce a notation: for W and V two real-valued random vari-
ables, W is said to be dominated by V for the convex order if, for every convex
function ψ : R → R such that E[|ψ(W )|] <∞ and E[|ψ(V )|] <∞, we have:

E[ψ(W )] ≤ E[ψ(V )], (91)

and we write: W
(c)

≤ V .

A process (Gt, t ≥ 0) is a peacock if, for every s ≤ t, Gs

(c)

≤ Gt. Kelleler’s
Theorem now (see e.g. [20, 16, 17]) states that, to every peacock, we can associate
a martingale (defined possibly on another probability space than G). In other
words, there exists a martingale (Mt, t ≥ 0) such that, for every fixed t ≥ 0,

Gt
(law)
= Mt . (92)

The main subject of [16] is to give several examples of peacocks and the associ-
ated martingales.

We return now to Bougerol’s identity and we remark that (see also [16],
paragraph 7.5.4, p. 322), for every λ ≥ 0, (sinh(λBt), t ≥ 0) is a peacock with

associated martingale (λ
∫ t

0
eλβsdγs, t ≥ 0) (see e.g. (3)).

Moreover, for every λ real, (e−
λ2

2 t sinh(λBt),≥ 0) is obviously a peacock, as
it is a martingale. This is generalized in the following:

Proposition 6.1 ([16], Proposition 7.2). The process (eµt sinh(λBt),≥ 0) is a

peacock if and only if µ ≥ −λ2

2 .

Proof. i) First, we suppose µ ≥ −λ2

2 . Then, for s < t:

eµt sinh(λBt) = e(µ+
λ2

2 )t
(

sinh(λBt)e
−λ2

2 t
) (c)

≥ e(µ+
λ2

2 )s
(

sinh(λBt)e
−λ2

2 t
)

(c)

≥ e(µ+
λ2

2 )s
(

sinh(λBs)e
−λ2

2 s
)

.

ii) Conversely, Itô-Tanaka’s formula yields:

E [| sinh(λBt)|] = E [sinh(λ|Bt|)] = e
λ2

2 tλ

∫ t

0

ds√
2πs

e−
λ2

2 s,

hence:

E
[
|eµt sinh(µBt)|

] t→+∞
∼ λe(

λ2

2 +µ)tλ

∫ +∞

0

ds√
2πs

e−
λ2

2 s,
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which means that if µ < −λ2

2 ,

E
[
|eµt sinh(µBt)|

] t→+∞−→ 0 .

However, x → |x| is convex and if (eµt sinh(µBt), t ≥ 0) was a peacock, then
E [|eµt sinh(µBt)|] would increase on t, which is a contradiction.

7. Further extensions and open questions

In this Section, we propose some possible directions to continue studying and
possibly extending Bougerol’s celebrated identity in law (for fixed time or as a
process).

First, the natural question posed is wether this identity can be extended to
higher dimensions. This very challenging question has already been attempted
to be dealt with, and in this paper we’ve presented several extensions, at least
for the 2-dimensional (and partly for the 3-dimensional) case.

Another natural question is wether we can generalize Bougerol’s identity to
other processes. For this purpose, we may think in terms of a diffusion, as
introduced in Section 5. It seems more intelligent to start from the right hand
side of (1) and try to see, e.g. in (70), for every particular ratio of processes,
which is the corresponding process on the left hand side (this process could be
named “Bougerol’s process”).

In particular, it seems interesting to investigate a possible extension in the
case of Lévy or stable processes. To that end, we could replace the ratio of
the two squared independent Bessel processes in (70) by e.g. the ratio of two
exponentials of Lévy processes, and investigate the process obtained after the
time-change. However, this perspective is not in the aims of the present work.

Finally, another aspect which could be further studied is the applications that
one may obtain by the subordination method, as presented in Section 3. Follow-
ing the lines of this Section, one may retrieve further results and applications,
others than for the planar Brownian motion case (see also [8, 5]).

Appendix A: Tables of Bougerol’s Identity and other equivalent
expressions

Using now the notations introduced in the whole text, we can summarize all the
results in the following tables (u > 0, wherever used is considered as fixed).

A.1. Table: Bougerol’s Identity in law and equivalent expressions
(u > 0 fixed)

With a(x) ≡ arg sinh(x), and B, β denoting two independent real Brownian
motions, for u > 0 fixed, we have:
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1) sinh(Bu)
(law)
= β(Au(B)≡

∫

u
0 ds exp(2Bs))

(Bougerol’s Identity)

2) sinh(|Bu|)
(law)
= |β|(Au(B))

3) sinh(B̄u)
(law)
= β̄(Au(B)), B̄u = sups≤u βs

4) E

[

1√
2πAu(B)

exp
(

− x
2Au(B)

)

]

= 1√
2πu

1√
1+x

exp
(

− (a(
√

x))2

2u

)

, x ≥ 0

A.2. Table: Bougerol’s Identity for other 1-dimensional processes
(u > 0 fixed)

We use µ, ν reals and we define:

B
(µ)
t = Bt + µt, β(ν)

s = βt + νt, A
(ν)
t =

∫ t

0

ds exp(2B(ν)
s ),

ε: a Bernoulli variable in {−1, 1}, (Rt, t ≥ 0) a 2-dimensional Bessel process

started at 0, Ξ an arcsine variable, and (Y
(µ,ν)
t , t ≥ 0) a diffusion with infinites-

imal generator:
1

2

d2

dy2
+

(

µ tanh(y) +
ν

cosh(y)

)
d

dy
,

starting from y = arg sinh(x). B(µ), β(ν), ε, Ξ and R are independent. Then, for
u > 0 fixed:

5)
(

sinh(Y
(µ,ν)
t ), t ≥ 0

)

(law)
=

(

exp(B
(µ)
t )

(

x+
∫ t
0 exp(−B

(µ)
s )dβ

(ν)
s

)

, t ≥ 0
)

, x: fixed

6) sinh(Y
(µ,ν)
u )

(law)
=

∫ u

0
exp(B

(µ)
s )dβ

(ν)
s ,

7) sinh(Bu + ε t)
(law)
=

∫ u

0
exp(Bs + s)dβs, ε: Bernoulli variable in {−1, 1}

8) β
A

(ν)
u

(law)
= (2Ξ− 1)φ

(

B
(ν)
u ,

√

R2
u +(B

(ν)
u )2

)

, φ(x, z)=
√

2ex cosh(z)− e2x − 1, z ≥ |x|

A.3. Table: Bougerol’s Identity in terms of planar Brownian
motion (u > 0 fixed)

We define (Zt, t ≥ 0) a planar Brownian motion starting from 1. Then θt =

Im(
∫ t

0
dZs

Zs
), t ≥ 0 is well defined. We further define the Bessel clock Ht =

∫ t

0
ds

|Zs|
2 = A−1

u (B) and the first hitting times: T θ
c ≡ inf{t : θt = c} and
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T
|θ|
c ≡ inf{t : |θt| = c}. Then, with (Cc, c ≥ 0) a standard Cauchy process, Cy

a Cauchy variable with parameter y, N ∼ N (0, 1), (Zλ
t , t ≥ 0) and (Uλ

t , t ≥ 0)
two independent Ornstein-Uhlenbeck processes, the first one complex valued
and the second one real valued, both starting from a point different from 0 and

T
(λ)
b (Uλ) = inf{t ≥ 0 : eλtUλ

t = b}, for b, c > 0 fixed:

9) sinh(Cc)
(law)
= β(Tθ

c )

(law)
=

√

T θ
c N , c > 0 fixed

10) H
T

β
b

(law)
= TB

a(b)
, TB

y = inf{t : Bt = y}, a(x) = arg sinh(x), b > 0 fixed

11) θ
T

β
b

(law)
= Ca(b), b > 0 fixed

12) θ̄
T

β
b

(law)
= |Ca(b)|, θ̄u = sups≤u θs

13) E

[

1√
2πTθ

c

exp
(

− x

2Tθ
c

)

]

= 1√
1+x

c

π(c2+log2(
√

x+
√
1+x))

, b > 0 fixed, x ≥ 0

14) E

[

1
√

2πT
|θ|
c

exp(− x

2T
|θ|
c

)

]

=
(

1
c

)

(

1√
1+x

)

1
(
√

1+x+
√
x)ζ+(

√
1+x−

√
x)ζ

, x ≥ 0, ζ = π
2c

15) θZ
λ

T
(λ)
b

(Uλ)

(law)
= Ca(b) (OU version)

A.4. Table: Multi-dimensional extensions of Bougerol’s Identity

In the following table, (Lt, t ≥ 0) and (λt, t ≥ 0) denote the local times at 0 of
B, β respectively and:

(

X(1)
u , X(2)

u

)

=

(

exp(−Bu)

∫ u

0

dξ(1)v exp(Bv), exp(−2Bu)

∫ u

0

dξ(2)v exp(2Bv)

)

,

where (ξ
(1)
v , v ≥ 0), (ξ

(2)
v , v ≥ 0) and (Bu, u ≥ 0) are three independent Brownian

motions. Moreover, we denote by (B(1), B(2)) and (β(1), β(2)) two couples of
dependent Brownian motions (independent from B), such that:

d < B(1), B(2) >v= tanh(B(1)
v ) tanh(2B(2)

v ) dv,

and, for u > 0 fixed:






sinh(B
(1)
u )

(law)
= β

(1)

(
∫

u
0

dv exp(2Bv))
;

1
2 sinh(2B

(2)
u )

(law)
= β

(2)

(
∫

u
0

dv exp(4Bv))
.

Finally,
{

B′
t =

∫ t

0
tanh(Bs)dBs +

∫ t

0
dGs

cosh(Bs)
;

G′
t =

∫ t

0
dBs

cosh(Bs)
−
∫ t

0
tanh(Bs)dGs ,
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with (Gt, t ≥ 0) denoting another Brownian motion, independent from B and
J a diffusion starting from 0 satisfying: dJt = dWt +

1
2 tanh(Jt)dt, where W

stands for an independent Brownian motion. Hence, for u > 0 fixed:

16) sinh(Lu)
(law)
= λAu

17) (sinh(Bu), sinh(Lu))
(law)
= (βAu , exp(−Bu) λAu )

(law)
= (exp(−Bu) βAu , λAu )

18) (sinh(|Bu|) sinh(Lu))
(law)
= (|β|Au , exp(−Bu) λAu )

(law)
= (exp(−Bu) |β|Au , λAu)

19) (sinh(B̄u − Bu), sinh(B̄u))
(law)
=

(

(β̄ − β)Au , exp(−Bu) β̄Au

)

(law)
= (exp(−Bu) (β̄ − β)Au , β̄Au)

20) (sinh(Bt), Lt, t ≥ 0)
(law)
=

(

exp(−Bt) βAt ,
∫ t

0
exp(−Bs)dλAs , t ≥ 0

)

21)
(

X
(1)
t ,X

(2)
t , t ≥ 0

)

(law)
=

(

sinh(B
(1)
t ), 1

2
sinh(2B

(2)
t ), t ≥ 0

)

22)
(

X
(1)
u ,X

(2)
u

)

(law)
=

(

β
(1)

(
∫u
0 dv exp(2Bv))

, β
(2)

(
∫u
0 dv exp(4Bv))

)

23)
(

eBt
∫ t
0 eBudβu, Bt, βt; t ≥ 0

)

(law)
= (sinh(Bt), B′

t, G
′
t; t ≥ 0)

24)
(

exp
(

Bt +
t
2

) ∫ t
0 exp

(

−Bs − s
2

)

dβs, Bt, βt; t ≥ 0
)

(law)
= (sinh(Jt), Bt, βt; t ≥ 0)

A.5. Table: Diffusion version of Bougerol’s Identity (relations
involving the Jacobi process)

Let Z ≡ Z(δ) and Z ′ ≡ Z(δ′) be two independent squared Bessel process of
dimension δ = 2(1 + µ) and δ′ = 2(1 + ν) respectively, starting from z and z′,

and Xt ≡ X
(ν,δ)
t a diffusion (named “Bougerol’s diffusion”), with infinitesimal

generator:

2x(1 + x)D2 + (δ + (4− δ′)x)D,

and Y ≡ Y δ,δ′ the Jacobi process. Then, for t, w, k > 0:

25) X
(ν,δ)
t ≡ exp

(

−2B
(ν)
t

)

Z
A

(ν)
t

= Zu
Z′

u

∣

∣

∣

u=A
(ν)
t

26) Yw
1−Yw

= X∫

w
0

dv
Y ′
v

= X∫

w
0

dv
1−Yv

27) Xk = Yw
1−Yw

∣

∣

∣

w=
∫ k
0

dv
1+Xv
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