Home | Current | Past volumes | About | Login | Notify | Contact | Search | |||||
|
|||||
ReferencesBañuelos, R. and Moore, C. N. (1999). Probabilistic Behavior of Harmonic Functions. Birkhaüser, Boston. MR1707297 Barlow, M. T. Jacka, S. D. and Yor, M. (1986). Inequalites for a pair of processes stopped at a random time. Proc. London Math. Soc. 53 142–172. MR0812449 Bentkus, V., Bloznelis, M. and Götze, F. (1996). A Berry-Essen bound for Student’s statistic in the non i.i.d. case. J. Theoret. Probab. 9 765–796. MR1400598 Bentkus, V. and Götze, F. (1996). The Berry-Esseen bound for Student’s statistic. Ann. Probab. 24 491–503. MR1387647 Bercu, B. (2001). On large deviations in the Gaussian autoregressive process: stable, unstable and explosive cases. Bernoulli 7 299–316. MR1828507 Bercu, B., Gassiat, E. and Rio, E. (2002). Concentration inequalities, large and moderate deviations for self-normalized empirical processes. Ann. Probab. 30 1576–1604. MR1944001 Caballero, M. E., Fernández, B. and Nualart, D. (1998). Estimation of densities and applications. J. Theoret. Probab. 11 831–851. MR1633411 Chan, H. P. and Lai, T. L. (2000). Asymptotic approximations for error probabilities of sequential or fixed sample size tests in exponential families. Ann. Statist. 28 1638–1669. MR1835035 Chen, X. (1999). The law of the iterated logarithm for functionals of Harris recurrent Markov chains: Self normalization. J. Theoret. Probab. 12 421–445. MR1684752 Chistyakov, G. P. and Götze, F. (2004). Limit distributions of Studentized means. Ann. Probab. 32 28–77. MR2040775 de la Peña, V. H. (1999). A general class of exponential inequalities for martingales and ratios. Ann. Probab. 27 537–564. MR1681153 de la Peña and Giné (1999). Decoupling: From Dependence to Independence. Springer, New York. MR1666908 de la Peña, V. H., Klass, M. J. and Lai, T. L. (2000). Moment bounds for self-normalized martingales. In High Dimensional Probability II (E. Giné, D. M. Mason and J. A. Wellner, eds.) 1–11. Birkhauser, Boston. MR1857343 Dembo, A. (1996). Moderate deviations for martingales with bounded jumps. Elect. Comm. in Probab. 1, 11–17. MR1386290 Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap. Chapman & Hall, New York. MR1270903 Egorov, V. (1998). On the growth rate of moments of random sums. Preprint. Einmahl, U. and Mason, D. (1989). Some results on the almost sure behavior of martingales. In Limit Theorems in Probability and Statistics (I. Berkes, E. Csáki and P. Révész, eds.) 185–195. North-Holland, Amsterdam. MR1116787 Erds, P. (1942). On the law of the iterated logarithm. Ann. Math. 43 419–436. MR0006630 Giné, E. Göetze, F. and Mason, D. (1997). When is the Student t-statistic asymptotically standard normal? Ann. Probab. 25 1514–1531. MR1457629 Giné, E. and Mason, D. M. (1998). On the LIL for self-normalized sums of i.i.d. random variables. J. Theoret. Probab. 11 (2) 351–370. MR1622575 Graversen, S. E. and Peskir, G. (2000). Maximal inequalities for the ornstein-Uhlenbeck process. Proc. Amer. Math. Soc. 128 (10), 3035–3041. MR1664394 Griffin, P. and Kuelbs, J. (1989). Self-normalized laws of the iterated logarithm. Ann. Probab. 17 1571–1601. MR1048947 Griffin, P. and Kuelbs, J. (1991). Some extensions of the LIL via self-normalization. Ann. Probab. 19 380–395. MR1085343 Jing, B. Y., Shao, Q. M. and Wang, Q. (2003). Self-normalized Cramér-type large deviations for independent random variables. Ann. Probab. 31 2167–2215. MR2016616 Jing, B. Y., Shao, Q. M. and Zhou, W. (2004). Saddlepoint approximations for Student’s t-statistic with no moment conditions. Ann. Statist. 32 2679–2711. MR2153999 Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus, 2nd edition. Springer, New York. MR1121940 Khoshnevisan, D. (1996). Deviation inequalities for continuous martingales. Stoch. Process. Appl. 65 17–30. MR1422877 Lai, T. L. (1976). Boundary crossing probabilities for sample sums and confidence sequences. Ann. Probab. 4 299–312. MR0405578 Lai, T.L. (2004). Likelihood ratio identities and their applications to sequential analysis (with Discussion). Sequential Anal. 23 467–556. MR2103908 Lipster, R. and Spokoiny, V. (2000). Deviation probability bound for martingales with applications to statistical estimation. Statistics and Probability Letters 46, 347–357. MR1743992 Logan, B. F., Mallows, C. L., Rice, S. O. and Shepp, L. A. (1973). Limit distributions of self-normalized sums. Ann. Probab. 1 788–809. MR0362449 Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion, 3rd edition. Springer, New York. MR1725357 Robbins, H. (1970). Statistical methods related to the law of the iterated logarithm. Ann. Math. Statist. 41 1379–1409. MR0277063 Robbins, H. and Siegmund, D. (1970). Boundary crossing probabilities for the Wiener process and sample sums. Ann. Math. Statist. 41 1410–1429. MR0277059 Shao, Q. (1997). Self-normalized large deviations. Ann. Probab. 25 285–328. MR1428510 Shao, Q. (1999). Cramér-type large deviation for Student’s t-statistic. J. Theoret. Probab. 12 387–398. Stout, W. F. (1970). A martingale analogue of Kolmogorov’s law of the iterated logarithm. Z. Wahrsch. verw. Geb. 15 279–290. MR0293701 Stout, W. F. (1973). Maximal inequalities and the law of the iterated logarithm. Ann. Probab. 1 322–328. MR0353428 Wang, Q. and Jing, B. Y. (1999). An exponential non-uniform Berry-Essen bound for self-normalized sums. Ann. Probab. 27 2068–2088. MR1742902 Worms, J. (2000). Principes de déviations modérées pour des martingales autonormalizées. C. R. Acad. Sci. Paris 330, Serie I, 909–914. MR1771957 |
|||||
Home | Current | Past volumes | About | Login | Notify | Contact | Search Probability Surveys. ISSN: 1549-5787 |