Home | Current | Past volumes | About | Login | Notify | Contact | Search | |||||
|
|||||
References[1] L. Accardi, On square roots of measures, In: Proc. Internat. School of Physics “Enrico Fermi”, Course LX, North-Holland, pp. 167–189 (1976). MR0626536 [2] H. Araki and E.J. Woods, Complete Boolean algebras of type I factors, Publications of the Research Institute for Mathematical Sciences, Kyoto Univ., Series A, 2(2), 157–242 (1966). MR0203497 [3] R.A. Arratia, Coalescing Brownian motions on the line, Ph. D. Thesis, Univ. of Wisconsin, Madison, 1979. [4] W. Arveson, Noncommutative dynamics and E-semigroups, Springer, New York, 2003. MR1978577 [5] M.T. Barlow, M. Émery, F.B. Knight, S. Song and M. Yor, Autour d’un théorème de Tsirelson sur des filtrations browniennes et non browniennes, Lect. Notes in Math 1686 (Séminaire de Probabilités XXXII), Springer, Berlin, 264–305 (1998). MR1655299 [6] P. Baxendale, Brownian motions in the diffeomorphism group I, Compositio Mathematica 53:1, 19–50 (1984). MR0762306 [7] H. Becker and A. S. Kechris, The descriptive set theory of Polish group actions, London Mathematical Society Lecture Note Series 232, Cambridge University Press, 1996. MR1425877 [8] I. Benjamini, G. Kalai and O. Schramm, Noise sensitivity of Boolean functions and applications to percolation, arXiv:math.PR/9811157v2. Inst. Hautes Études Sci. Publ. Math. no. 90, 5–43 (1999). MR1813223 [9] B. Bhat, Cocycles of CCR flows, Memoirs Amer. Math. Soc. 149 (709), 114 pp (2001). MR1804156. [10] B.V.R. Bhat and R. Srinivasan, On product systems arising from sum systems, arXiv:math.OA/0405276v1. [11] E.B. Davies, Quantum theory of open systems, Academic Press, London, 1976. MR0489429 [12] M. Émery and W. Schachermayer, A remark on Tsirelson’s stochastic differential equation, Lecture Notes in Math. 1709 (Séminaire de Probabilités XXXIII), Springer, Berlin, 291–303 (1999). MR1768002 [13] J. Feldman, Decomposable processes and continuous products of probability spaces, J. Funct. Anal. 8, 1–51 (1971). MR0290436 [14] L.R.G. Fontes, M. Isopi, C.M. Newman, K. Ravishankar, The Brownian web: characterization and convergence, arXiv:math.PR/0311254v1. Annals of Probability 32:4 (2004). [15] E. Glasner, B. Tsirelson and B. Weiss, The automorphism group of the Gaussian measure cannot act pointwise, arXiv:math.DS/0311450v2. Israel J. Math. (to appear). [16] T.E. Harris, Coalescing and noncoalescing stochastic flows in 1, Stochastic Processes and their Applications 17:2, 187–210 (1984). MR0751202 [17] A.S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Math. 156, Springer, New York, 1995. MR1321597 [18] A.S. Kechris, New directions in descriptive set theory, The Bulletin of Symbolic Logic 5:2, 161–174 (1999). MR1791302 [19] Y. Le Jan, S. Lemaire, Products of Beta matrices and sticky flows, arXiv:math.PR/0307106v3. Probability Theory and Related Fields 130:1, 109–134 (2004). [20] Y. Le Jan, O. Raimond, Flows, coalescence and noise, arXiv:math.PR/0203221v4. The Annals of Probability 32:2, 1247–1315 (2004). MR2060298 [21] Y. Le Jan, O. Raimond, Sticky flows on the circle and their noises, Probability Theory and Related Fields 129:1, 63–82 (2004). MR2052863 [22] V. Liebscher, Random sets and invariants for (type II) continuous tensor product systems of Hilbert spaces, arXiv:math.PR/0306365v1. [23] G. Link, Representation theorems of the de Finetti type for (partially) symmetric probability measures, In: Studies in inductive logic and probability, vol. II, 207–231, Univ. of California Press, Berkeley, 1980. MR0587992 [24] J. Neveu, Mathematical foundations of the calculus of probability, Holden-Day, San Francisco, 1965. MR0198505 [25] R.T. Powers, A nonspatial continuous semigroup of *-endomorphisms of 𝔅(ℌ), Publications of the Research Institute for Mathematical Sciences, Kyoto Univ., 23:6, 1053–1069 (1987). MR0935715 [26] R.T. Powers, New examples of continuous spatial semigroups of *-endomorphisms of 𝔅(ℌ), Internat. J. Math. 10:2, 215–288 (1999). MR1687149 [27] M. Reed and B. Simon, Methods of modern mathematical physics. I. Functional analysis, Second edition, Academic Press, New York, 1980. MR0751959 [28] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Second edition. Springer, Berlin, 1994. MR1303781 [29] O. Schramm and B. Tsirelson, Trees, not cubes: hypercontractivity, cosiness, and noise stability, Electronic Communications in Probability 4, 39–49 (1999). MR1711603 [30] A. Shnirelman, On the nonuniqueness of weak solution of the Euler equation, Comm. Pure Appl. Math., 50:12, 1261–1286 (1997). MR1476315 [31] A.V. Skorokhod, Random linear operators, Mathematics and its Applications (Soviet Series), D. Reidel Publ., Dordrecht, 1984. MR0733994 [32] S. Smirnov and W. Werner, Critical exponents for two-dimensional percolation, arXiv:math.PR/0109120v2. Mathematical Research Letters 8:5/6, 729–744 (2001). MR1879816 [33] F. Soucaliuc, B. Tóth and W. Werner, Reflection and coalescence between independent one-dimensional Brownian paths, Ann. Inst. H. Poincaré Probab. Statist. 36:4, 509–545 (2000). MR1785393 [34] B. Tóth and W. Werner, The true self-repelling motion, Probab. Theory Related Fields 111:3, 375–452 (1998). MR1640799 [35] B. Tsirelson, Unitary Brownian motions are linearizable, arXiv:math.PR/9806112v1. [36] B. Tsirelson, Noise sensitivity on continuous products: an answer to an old question of J. Feldman, arXiv:math.PR/9907011v1. [37] B. Tsirelson, From random sets to continuous tensor products: answers to three questions of W. Arveson, arXiv:math.FA/0001070v1. [38] B. Tsirelson, Spectral densities describing off-white noises, arXiv:math.FA/0104027v1. Ann. Inst. H. Poincare Probab. Statist., 38:6 (2002), 1059–1069. MR1955353 [39] B. Tsirelson, Non-isomorphic product systems, arXiv:math.FA/0210457v2. In: Advances in Quantum Dynamics (eds. G. Price et al), Contemporary Mathematics 335, AMS, pp. 273–328 (2003). MR2029632 [Note: the numbers of theorems, equations etc. refer to the arXiv version. In the AMS version they differ (because of a different LATEX style) as follows (arXiv/AMS): 2.2/2.1; 2.4/2.3; 2.5/2.4; 2.6/2.5; 2.9/2.6; 5.3/5.3; 7.3/7.3; 8.5/8.1; 9.7/9.6; (9.11)/(29); (9.12)/(30); (9.13)/(31); 10.2/10.1; 10.3/10.2; 11.3/11.3; 13.10/13.5; 13.11/13.6.] [40] B. Tsirelson, Scaling limit, noise, stability, arXiv:math.PR/0301237v1. Lect. Notes in Math 1840 (St. Flour XXXII), Springer, Berlin, 1–106 (2004). MR2079671 [Note: the numbers of subsections, theorems etc. refer to the arXiv version. In the Springer version they differ (because of a different LATEX style) as follows (arXiv/Springer). Subsections: 1a/1.1; 5b/5.2; 6b/6.2; 7d/7.4; 8b/8.2; 8d/8.4. Theorems etc.: 1d1/1.9; (3d3)/(3.11); 3d6/3.20; 3d11/3.25; 3d12/3.26; 3e3/3.28; 5b4/5.5; 5b5/5.6; 5b11/5.10; 6a3/6.2; 6a4/6.3; 6b1/6.6; 6b2/6.7; . . . ; 6b12/6.17; 6c4/6.18; 6c7/6.21; 8a1/8.1; 8a2/8.2; 8d3/8.8.] [41] B. Tsirelson, On automorphisms of type II Arveson systems (probabilistic approach), arXiv:math.OA/0411062v1. [42] B.S. Tsirelson and A.M. Vershik, Examples of nonlinear continuous tensor products of measure spaces and non-Fock factorizations, Reviews in Mathematical Physics 10:1, 81–145 (1998). MR1606855 [43] J. Warren, On the joining of sticky Brownian motion, Lecture Notes in Math. 1709 (Séminaire de Probabilités XXXIII), Springer, Berlin, 257–266 (1999). MR1767999 [44] J. Warren, Splitting: Tanaka’s SDE revisited, arXiv:math.PR/9911115v1. [45] J. Warren, The noise made by a Poisson snake, Electronic Journal of Probability 7:21, 1–21 (2002). MR1943894 [46] J. Warren and S. Watanabe, On spectra of noises associated with Harris flows, arXiv:math.PR/0307287v1. Advanced Studies in Pure Mathematics 41, 351–373 (2004). MR2083719 [47] S. Watanabe, Stochastic flow and noise associated with the Tanaka stochastic differential equation, Ukrainian Math. J. 52:9, 1346–1365 (2001) (transl). MR1816931 [48] S. Watanabe, A simple example of black noise, Bull. Sci. Math. 125:6/7, 605–622 (2001). MR1869993 [49] M. Yor, Tsirel’son’s equation in discrete time, Probability Theory and Related Fields 91:2, 135–152 (1992). MR1147613 [50] K. Yosida, On Brownian motion in a homogeneous Riemannian space, Pacific J. Math. 2, 263–270 (1952). MR0050817 [51] J. Zacharias, Continuous tensor products and Arveson’s spectral C*-algebras, Memoirs Amer. Math. Soc. 143 (680), 118 pp (2000). MR1643205 |
|||||
Home | Current | Past volumes | About | Login | Notify | Contact | Search Probability Surveys. ISSN: 1549-5787 |