Home | Current | Past volumes | About | Login | Notify | Contact | Search | |||||
|
|||||
References[1] L. Alili, D. Dufresne and M. Yor (1997). Sur l’identité de Bougerol pour les fonctionnelles exponentielles du mouvement Brownien avec drift. In Exponential Functionals and Principal Values related to Brownian Motion. A collection of research papers; Biblioteca de la Revista Matematica, Ibero-Americana, ed. M. Yor, p. 3-14. MR1648653 [2] L. Alili and J.C. Gruet (1997). An explanation of a generalised Bougerol’s identity in terms of Hyperbolic Brownian Motion. In Exponential Functionals and Principal Values related to Brownian Motion. A collection of research papers; Biblioteca de la Revista Matematica, Ibero-Americana, ed. M. Yor, p. 15-33. MR1648655 [3] L. Alili, H. Matsumoto and T. Shiraishi (2001). On a triplet of exponential Brownian functionals. Sém. Prob. XXXV, Lect. Notes in Mathematics, 1755, Springer, Berlin Heidelberg New York, p. 396-415. MR1837300 [4] D. André (1887). Solution directe du problème résolu par M. Bertrand. C. R. Acad. Sci. Paris, 105, p. 436-437. [5] J. Bertoin, D. Dufresne and M. Yor (2012). Some two-dimensional extensions of Bougerol’s identity in law for the exponential functional of linear Brownian motion. Preprint. ArXiv: 1201.1495. [6] J. Bertoin, D. Dufresne and M. Yor (2012). A relationship between Bougerol’s generalized identity in law and Jacobi processes. In Preparation. [7] J. Bertoin and W. Werner (1994). Asymptotic windings of planar Brownian motion revisited via the Ornstein-Uhlenbeck process. Sém. Prob. XXVIII, Lect. Notes in Mathematics, 1583, Springer, Berlin Heidelberg New York, p. 138-152. MR1329109 [8] J. Bertoin and M. Yor (2012). Retrieving information from subordination. To appear in Feitschrift volume for Professor Prokhorov. [9] P. Biane and M. Yor (1987). Valeurs principales associées aux temps locaux browniens. Bull. Sci. Math., 111, p. 23-101. MR0886959 [10] Ph. Bougerol (1983). Exemples de théorèmes locaux sur les groupes résolubles. Ann. Inst. H. Poincaré, 19, p. 369-391. MR0730116 [11] L. Chaumont and M. Yor (2012). Exercises in Probability: A Guided Tour from Measure Theory to Random Processes, via Conditioning. Cambridge University Press, 2nd Edition. MR2016344 [12] D. Dufresne (2000). Laguerre Series for Asian and Other Options. Mathematical Finance, Vol. 10, n. 4, p. 407-428. MR1785163 [13] D. Dufresne and M. Yor (2011). A two dimensional extension of Bougerol’s identity in law for theexponential of Brownian motion. Working paper No. 222. Centre for Actuarial Studies, University of Melbourne. [14] R. Durrett (1982). A new proof of Spitzer’s result on the winding of 2-dimensional Brownian motion. Ann. Prob., 10, p. 244-246. MR0637391 [15] L. Gallardo (2008). Mouvement Brownien et calcul d’Itô. Hermann. [16] F. Hirsch, C. Profeta, B. Roynette and M. Yor (2011). Peacocks and associated martingales, with explicit constructions. Bocconi and Springer Series, vol. 3, Springer. MR2808243 [17] F. Hirsch and B. Roynette (2012). A new proof of Kellerer’s theorem. ESAIM: Probability and Statistics, 16, p. 48-60. MR2911021 [18] K. Itô and H.P. McKean (1965). Diffusion Processes and their Sample Paths. Die Grundlehren der Mathematischen Wissenschaften, 125. Springer, Berlin Heidelberg New York. MR0199891 [19] J. Jakubowski and M. Wisniewolski (2012). On hyperbolic Bessel processes and beyond. To appear in Bernoulli. Available at http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal-papers [20] H.G. Kellerer (1972). Markov-Komposition und eine Anwendung auf Martingale. Math. Ann., 198, p. 99-122. MR0356250 [21] J. Lamperti (1972). Semi-stable Markov processes I. Z. Wahr. Verw. Gebiete, 22, p. 205-225. MR0307358 [22] N.N. Lebedev (1972). Special Functions and their Applications. Revised edition, translated from the Russian and edited by Richard A. Silverman. [23] P. Lévy (1980). Œuvres de Paul Lévy, Processus Stochastiques, Vol. IV. Paris: Gauthier-Villars. Published under the direction of D. Dugué with the collaboration of Paul Deheuvels and Michel Ibéro. MR0586765 [24] H. Matsumoto and M. Yor (1998). On Bougerol and Dufresne’s identities for exponential Brownian functionals. Proc. Japan Acad. Ser. A Math. Sci., Volume 74, n. 10, p. 152-155. MR1675456 [25] H. Matsumoto and M. Yor (2005). Exponential functionals of Brownian motion, I: Probability laws at fixed time. Probab. Surveys, Volume 2, p. 312-347. MR2203675 [26] P. Messulam and M. Yor (1982). On D. Williams’ “pinching method” and some applications. J. London Math. Soc., 26, p. 348-364. MR0675178 [27] D. Revuz and M. Yor (1999). Continuous Martingales and Brownian Motion. 3rd ed., Springer, Berlin. MR1725357 [28] F. Spitzer (1958). Some theorems concerning two-dimensional Brownian Motion. Trans. Amer. Math. Soc. 87, p. 187-197. MR0104296 [29] S. Vakeroudis (2011). Nombres de tours de certains processus stochastiques plans et applications à la rotation d’un polymère. (Windings of some planar Stochastic Processes and applications to the rotation of a polymer). PhD Dissertation, Université Pierre et Marie Curie (Paris VI), April 2011. [30] S. Vakeroudis (2011). On hitting times of the winding processes of planar Brownian motion and of Ornstein-Uhlenbeck processes, via Bougerol’s identity. Teor. Veroyatnost. i Primenen., 56 (3), p. 566-591. Published also in SIAM Theory Probab. Appl. (2012) 56 (3), p. 485-507. [31] S. Vakeroudis (2012). On the windings of complex-valued Ornstein-Uhlenbeck processes driven by a Brownian motion and by a Stable process. Preprint. ArXiv: 1209.4027. [32] S. Vakeroudis and M. Yor (2012). Integrability properties and Limit Theorems for the first exit times from a cone of planar Brownian motion. To appear in Bernoulli. ArXiv: 1201.2716. MR2887477 [33] S. Vakeroudis and M. Yor (2012). Some infinite divisibility properties of the reciprocal of planar Brownian motion exit time from a cone. Electron. Commun. Probab., 17, Paper No. 23. [34] E.B. Vinberg (1993). Geometry II, Spaces of constant curvature. Encyclopædia of Math. Sciences, 29, Springer. MR1254931 [35] J. Warren and M. Yor (1998). The brownian burglar: conditioning brownian motion by its local time process. Sém. Prob. XXXII, Lect. Notes in Mathematics, 1583, Springer, Berlin Heidelberg New York, p. 328-342. MR1655303 [36] D. Williams (1974). A simple geometric proof of Spitzer’s winding number formula for 2-dimensional Brownian motion. University College, Swansea. Unpublished. [37] M. Yor (1980). Loi de l’indice du lacet Brownien et Distribution de Hartman-Watson. Z. Wahrsch. verw. Gebiete, 53, p. 71-95. MR0576898 [38] M. Yor (1992). On some Exponential Functionals of Brownian Motion. Adv. Appl. Prob., 24, n. 3, p. 509-531. MR1174378 [39] M. Yor (1997). Generalized meanders as limits of weighted Bessel processes, and an elementary proof of Spitzer’s asymptotic result on Brownian windings. Studia Scient. Math. Hung. 33, p. 339-343. MR1454119 [40] M. Yor (2001). Exponential Functionals of Brownian Motion and Related Processes. Springer Finance. Springer-Verlag, Berlin. MR1854494 |
|||||
Home | Current | Past volumes | About | Login | Notify | Contact | Search Probability Surveys. ISSN: 1549-5787 |