Home | Current | Past volumes | About | Login | Notify | Contact | Search | |||||
|
|||||
References[1] Aas, K. and Puccetti, G. (2014). Bounds for total economic capital: the DNB case study. Extremes, 17(4), 693–715. MR3282692 [2] Bernard, C., Jiang, X. and Wang, R. (2014). Risk aggregation with dependence uncertainty. Insurance: Mathematics and Economics, 54, 93–108. MR3145855 [3] Bernard, C., Rüschendorf, L. and Vanduffel, S. (2013). Value-at-Risk bounds with variance constraints. Journal of Risk and Insurance, forthcoming. Available at http://ssrn.com/abstract=2342068. [4] Bignozzi, V. and Puccetti, G. (2014). Characterizing mixability of supermodular functions. Statistics and Probability Letters, 100, 48–55. MR3324074 [5] Cheung, K. C., and Lo, A. (2013). General lower bounds on convex functionals of aggregate sums. Insurance: Mathematics and Economics, 53(3), 884–896. MR3130483 [6] Cheung, K. C., and Lo, A. (2014). Characterizing mutual exclusivity as the strongest negative multivariate dependence structure. Insurance: Mathematics and Economics, 55, 180–190. MR3179810 [7] Cheung, K. C. and Vanduffel, S. (2013). Bounds for sums of random variables when the marginal distributions and the variance of the sum are given. Scandinavian Actuarial Journal, 2013(2), 103–118. MR3041120 [8] Dhaene, J. and Denuit, M. (1999). The safest dependence structure among risks. Insurance: Mathematics and Economics, 25(1), 11–21. MR1718527 [9] Dhaene, J., Denuit, M., Goovaerts, M. J., Kaas, R. and Vynche, D. (2002). The concept of comonotonicity in actuarial science and finance: theory. Insurance: Mathematics and Economics, 31(1), 3–33. MR1956509 [10] Embrechts, P. and Puccetti, G. (2006). Bounds for functions of dependent risks. Finance and Stochastics, 10, 341–352. MR2244349 [11] Embrechts, P. and Puccetti, G. (2009). Bounds for the sum of dependent risks having overlapping marginals. Journal of Multivariate Analysis, 101(1), 177–190. MR2557627 [12] Embrechts, P., Puccetti, G. and Rüschendorf, L. (2013). Model uncertainty and VaR aggregation. Journal of Banking and Finance, 37(8), 2750–2764. [13] Embrechts, P., Puccetti, G., Rüschendorf, L., Wang, R. and Beleraj, A. (2014a). An academic response to Basel 3.5. Risks, 2(1), 25– 48. [14] Embrechts, P., Wang, B. and Wang, R. (2015). Aggregation-robustness and model uncertainty of regulatory risk measures. Finance and Stochastics, forthcoming. Available at http://ssrn.com/abstract= 2558525. MR3321476 [15] Fang, K. T., Kotz, S. and Ng, K. W. (1990). Symmetric Multivariate and Related Distributions. London: Chapman & Hall. MR1071174 [16] Föllmer, H. and Schied, A. (2011). Stochastic Finance: An Introduction in Discrete Time. Walter de Gruyter, Third Edition. MR2779313 [17] Fréchet, M. (1951). Sur les tableaux de corrélation dont les marges sont données. Ann. Univ. Lyon. Sect. A. (3), 14, 53–77. MR0049518 [18] Gaffke, N. and Rüschendorf, L. (1981). On a class of extremal problems in statistics. Math. Operationsforsch. Statist. Ser. Optim. 12(1), 123–135. MR0609133 [19] Haus, U. (2015). Bounding stochastic dependence, complete mixability of matrices, and multidimensional bottleneck assignment problems. Operations Research Letters, 43(1), 74—79. MR3302551 [20] Hoeffding, W. (1940). Massstabinvariante korrelationtheorie. Schriften Math. Inst. Univ. Berlin, 5(5), 181–233. MR0004426 [21] Jakobsons, E., Han, X. and Wang, R. (2015). General convex order on risk aggregation. Scandinavian Actuarial Journal, forthcoming. DOI: 10.1080/03461238.2015.1012223. [22] Joe, H. (1997). Multivariate Models and Dependence Concepts. London: Chapman & Hall. MR1462613 [23] Knott, M. and Smith, C. S. (2006). Choosing joint distributions so that the variance of the sum is small. Journal of Multivariate Analysis, 97(8), 1757–1765. MR2298887 [24] Lee, W. and Ahn, J. Y. (2014). On the multidimensional extension of countermonotonicity and its applications. Insurance: Mathematics and Economics, 56, 68–79. MR3208102 [25] Mao, T. and Wang, R. (2014). On aggregation sets and lower-convex sets. Journal of Multivariate Analysis, 138, 170–181. MR3348840 [26] McNeil, A. J., Frey, R. and Embrechts, P. (2005). Quantitative Risk Management: Concepts, Techniques, Tools. Princeton University Press, Princeton, NJ. MR2175089 [27] Müller, A. and Stoyan, D. (2002). Comparison Methods for Statistical Models and Risks. Wiley, England. MR1889865 [28] Puccetti, G. and Rüschendorf, L. (2012a). Computation of sharp bounds on the distribution of a function of dependent risks. Journal of Computational and Applied Mathematics, 236(7), 1833–1840. MR2863518 [29] Puccetti, G. and Rüschendorf, L. (2012b). Bounds for joint portfolios of dependent risks. Statistics and Risk Modeling, 29(2), 107–131. MR2945764 [30] Puccetti, G. and Rüschendorf, L. (2013). Sharp bounds for sums of dependent risks. Journal of Applied Probability, 50(1), 42–53. MR3076771 [31] Puccetti, G. and Rüschendorf, L. (2014). Asymptotic equivalence of conservative value-at-risk-and expected shortfall-based capital charges. Journal of Risk, 16(3), 3–22. [32] Puccetti, G., Wang, B. and Wang, R. (2012). Advances in complete mixability. Journal of Applied Probability, 49(2), 430–440. MR2977805 [33] Puccetti, G., Wang, B. and Wang, R. (2013). Complete mixability and asymptotic equivalence of worst-possible VaR and ES estimates. Insurance: Mathematics and Economics, 53(3), 821–828. MR3130477 [34] Puccetti, G. and Wang, R. (2015a). Detecting complete and joint mixability. Journal of Computational and Applied Mathmatics, 280, 174–187. MR3296054 [35] Puccetti, G. and Wang, R. (2015b). Extremal dependence concepts. Statistical Science, forthcoming. Available at http://ssrn.com/ abstract=2436392. [36] Ramachandran, D. and Rüschendorf, L. (1995). A general duality theorem for marginal problems. Probability Theory and Related Fields, 101(3), 311–319. MR1324088 [37] Rüschendorf, L. (1982). Random variables with maximum sums. Advances in Applied Probability, 14(3), 623–632. MR0665297 [38] Rüschendorf, L. (1983). Solution of a statistical optimization problem by rearrangement methods. Metrika, 30, 55–61. MR0701979 [39] Rüschendorf, L. (2013). Mathematical Risk Analysis. Dependence, Risk Bounds, Optimal Allocations and Portfolios. Springer, Heidelberg. MR3051756 [40] Rüschendorf, L. and Uckelmann, L. (2002). Variance minimization and random variables with constant sum. In Distributions with Given Marginals and Statistical Modelling, pp. 211–222. Dordrecht: Kluwer Academic Publishers. MR2058994 [41] Strassen, V. (1965). The existence of probability measures with given marginals. Annals of Mathematical Statistics, 36(2), 423–439. MR0177430 [42] Tchen, A. H. (1980). Inequalities for distributions with given marginals. Annals of Probability, 8(4), 814–827. MR0577318 [43] Wang, B. and Wang, R. (2011). The complete mixability and convex minimization problems with monotone marginal densities. Journal of Multivariate Analysis, 102(10), 1344–1360. MR2819953 [44] Wang, B. and Wang, R. (2015). Joint mixability. Mathematics of Operations Research, forthcoming. Available at http://ssrn.com/abstract= 2557067. [45] Wang, R. (2014). Asymptotic bounds for the distribution of the sum of dependent random variables. Journal of Applied Probability, 51(3), 780–798. MR3256227 [46] Wang, R., Peng, L. and Yang, J. (2013). Bounds for the sum of dependent risks and worst Value-at-Risk with monotone marginal densities. Finance and Stochastics, 17(2), 395–417. MR3038596 |
|||||
Home | Current | Past volumes | About | Login | Notify | Contact | Search Probability Surveys. ISSN: 1549-5787 |