Home | Current | Past volumes | About | Login | Notify | Contact | Search | |||||
|
|||||
References[1] D. Aldous. The continuum random tree I. Ann. Probab. 19 (1991), 1-28. MR1085326 [2] D. Aldous. The continuum random tree III. Ann. Probab. 21 (1993), 248-289. MR1207226 [3] D. Aldous. Tree-based models for random distribution of mass. J. Stat. Phys. 73 (1993), 625-641. MR1251658 [4] R.M. Blumenthal. Excursions of Markov Processes. Birkhäuser 1992. [5] M. Bramson, J.T. Cox, J.F. Le Gall. Super-Brownian limits of voter model clusters. Ann. Probab. 29 (2001), 1001-1032. MR1872733 [6] P. Chassaing, G. Schaeffer. Random planar lattices and integrated superBrownian excursion. Probab. Th. Rel. Fields 128 (2004), 161-212. MR2031225 [7] E. Derbez, G. Slade. The scaling limit of lattice trees in high dimensions. Comm. Math. Phys. 198 (1998), 69-104. MR1620301 [8] J.S. Dhersin, J.F. Le Gall. Wiener’s test for super-Brownian motion and for the Brownian snake. Probab. Th. Rel. Fields 108 (1997), 103-129. MR1452552 [9] M. Drmota, B. Gittenberger. On the profile of random trees. Random Struct. Alg. 10 (1997), 421-451. MR1608230 [10] T. Duquesne. A limit theorem for the contour process of conditioned Galton-Watson trees. Ann. Probab. 31 (2003), 996–1027. MR1964956 [11] T. Duquesne, J.F. Le Gall. Random Trees, Lévy Processes and Spatial Branching Processes. Astérisque 281 (2002) [12] T. Duquesne, J.F. Le Gall. Probabilistic and fractal aspects of Lévy trees. Probab. Th. Rel. Fields 131 (2005), 553-603. MR2147221 [13] E.B. Dynkin. A probabilistic approach to one class of nonlinear differential equations. Probab. Th. Rel. Fields 90 (1991), 89-115. MR1109476 [14] E.B. Dynkin. Diffusions, Superdiffusions and Partial Differential Equations. American Math. Society 2002. MR1883198 [15] E.B. Dynkin. Superdiffusions and Positive Solutions of Nonlinear Partial Differential Equations. American Math. Society 2004. MR2089791 [16] S.N. Ethier, T. Kurtz. Markov Processes, Characterization and Convergence. Wiley 1986. [17] S.N. Evans, J. Pitman, A. Winter. Rayleigh processes, real trees, and root growth with re-grafting. Probab. Th. Rel. Fields, to appear. [18] S.N. Evans, A. Winter. Subtree prune and re-graft: A reversible tree-valued Markov process. Ann. Probab., to appear. MR1159560 [19] M. Gromov. Metric Structures for Riemannian and Non-Riemannian Spaces. Birkhäuser 1999. [20] B. Haas, G. Miermont. The genealogy of self-similar fragmentations with negative index as a continuum random tree. Electron. J. Probab. 9 (2004), 57-97. MR2041829 [21] T. Hara, G. Slade. The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-Brownian excursion. Probabilistic techniques in equilibrium and nonequilibrium statistical physics. J. Math. Phys. 41 (2000), 1244-1293. MR1757958 [22] R. van der Hofstad, A. Sakai. Gaussian scaling for the critical spread-out contact process above the upper critical dimension. Electron. J. Probab. 9 (2004), 710-769. MR2110017 [23] R. van der Hofstad, G. Slade. Convergence of critical oriented percolation to super-Brownian motion above 4 + 1 dimensions. Ann. Inst. H. Poincaré Probab. Statist. 39 (2003), 413-485. MR1978987 [24] W.D. Kaigh. An invariance principle for random walk conditioned by a late return to zero. Ann. Probab. 4 (1976), 115-121. MR415706 [25] J.F. Le Gall. Brownian excursions, trees and measure-valued processes. Ann. Probab. 19 (1991), 1399-1439. MR1127710 [26] J.F. Le Gall. The uniform random tree in a Brownian excursion. Probab. Theory Rel. Fields 95 (1993), 25-46. MR1207305 [27] J.F. Le Gall. Spatial Branching Processes, Random Snakes and Partial Differential Equations. Birkhäuser 1999. [28] J.F. Le Gall. Random trees and spatial branching processes. Maphysto Lecture Notes Series (University of Aarhus), vol. 9 (80 pp.), 2000. Available at http://www.maphysto.dk/publications/MPS-LN/2000/9.pdf [29] J.F. Le Gall, Y. Le Jan. Branching processes in Lévy processes: The exploration process. Ann. Probab. 26 (1998), 213-252. MR1617047 [30] J.F. Le Gall, M. Weill. Conditioned Brownian trees. Ann. Inst. H. Poincaré Probab. Statist., to appear. [31] J.F. Marckert, A. Mokkadem. The depth first processes of Galton-Watson trees converge to the same Brownian excursion. Ann. Probab. 31 (2003), 1655-1678. MR1989446 [32] J.-F. Marckert, G. Miermont. Invariance principles for labeled mobiles and bipartite planar maps. Preprint (2005). [33] B. Mselati. Classification and probabilistic representation of the positive solutions of a semilinear elliptic equation. Memoirs Amer. Math. Soc. 798 (2004) [34] J. Neveu. Arbres et processus de Galton-Watson. Ann. Inst. Henri Poincaré Probab. Stat. 22 (1986), 199-207. MR850756 [35] E.A. Perkins. Dawson-Watanabe superprocesses and measure-valued diffusions. Ecole d’été de probabilités de Saint-Flour 1999. In: Lecture Notes Math. 1781. Springer, 2002. MR1915445 [36] J.W. Pitman. Combinatorial stochastic processes. Ecole d’été de probabilités de Saint-Flour 2002. Lecture Notes Math., Springer. To appear. [37] S.C. Port, C.J. Stone. Brownian Motion and Classical Potential Theory. Academic, New York, 1978. MR492329 [38] D. Revuz, M. Yor. Continuous Martingales and Brownian Motion. Springer 1991. [39] L.C.G. Rogers, D. Williams. Diffusions, Markov Processes and Martingales. Vol.2: Itô Calculus. Wiley 1987. MR921238 [40] F. Spitzer. Principles of Random Walk. Van Nostrand 1963. [41] R.P. Stanley. Enumerative Combinatorics, Vol.2. Cambridge University Press 1999 |
|||||
Home | Current | Past volumes | About | Login | Notify | Contact | Search Probability Surveys. ISSN: 1549-5787 |