Home | Current | Past volumes | About | Login | Notify | Contact | Search
 Probability Surveys > Vol. 2 (2005) open journal systems 


Basic properties of strong mixing conditions. A survey and some open questions

Richard C. Bradley, Indiana University


Abstract
This is an update of, and a supplement to, a 1986 survey paper by the author on basic properties of strong mixing conditions.

AMS 2000 subject classifications: Primary 60G10.

Keywords: strong mixing conditions, stationary sequences.

Creative Common LOGO

Full Text: PDF


Bradley, Richard C., Basic properties of strong mixing conditions. A survey and some open questions, Probability Surveys, 2, (2005), 107-144 (electronic).

References

[1]   C. Bennett and R. Sharpley. Interpolation of Operators. Academic Press, San Diego, 1988.

[2]   H. Berbee. Random walks with stationary increments and renewal theory. Mathematical Centre, Amsterdam, 1979.

[3]   H. Berbee. Weak Bernoulli processes, periodicity, and renewal theory on the integers. Report no. 167, Mathematical Centre, Amsterdam, April 1981.

[4]   H. Berbee. Private communication, 1981.

[5]   H. Berbee. Private communication, 1984.

[6]   H. Berbee. Periodicity and absolute regularity. Israel J. Math. 55 (1986) 289-304. MR876396

[7]   H. Berbee and R.C. Bradley. A limitation of Markov representation for stationary processes. Stochastic Process. Appl. 18 (1984) 33-45. MR757345

[8]   J. Bergh and J. Löfström. Interpolation Spaces. Springer-Verlag, Berlin, 1976.

[9]   J.R. Blum, D.L. Hanson, and L.H. Koopmans. On the strong law of large numbers for a class of stochastic processes. Z. Wahrsch. verw. Gebiete 2 (1963) 1-11. MR161369

[10]   E. Bolthausen. On the central limit theorem for stationary random fields. Ann. Probab. 10 (1982) 1047-1050. MR672305

[11]   R.C. Bradley. On the φ-mixing condition for stationary random sequences. Duke Math. J. 47 (1980) 421-433. MR575905

[12]   R.C. Bradley. Central limit theorems under weak dependence. J. Multivar. Anal. 11 (1981) 1-16. MR612287

[13]   R.C. Bradley. Absolute regularity and functions of Markov chains. Stochastic Process. Appl. 14 (1983) 77-97.

[14]   R.C. Bradley. On the ψ-mixing condition for stationary random sequences. Trans. Amer. Math. Soc. 276 (1983) 55-66. MR684493

[15]   R.C. Bradley. Information regularity and the central limit question. Rocky Mountain J. Math. 13 (1983) 77-97. MR692579

[16]   R.C. Bradley. On the central limit question under absolute regularity. Ann. Probab. 13 (1985) 1314-1325. MR806228

[17]   R.C. Bradley. A bilaterally deterministic ρ-mixing stationary random sequence. Trans. Amer. Math. Soc. 294 (1986) 233-241. MR819945

[18]   R.C. Bradley. Basic properties of strong mixing conditions. In: Dependence in Probability and Statistics, (E. Eberlein and M.S. Taqqu, eds.), pp. 165-192. Birkhäuser, Boston, 1986. MR899982

[19]   R.C. Bradley. Identical mixing rates. Probab. Th. Rel. Fields 74 (1987) 497-503. MR876252

[20]   R.C. Bradley. The central limit question under ρ-mixing. Rocky Mountain J. Math. 17 (1987) 95-114. (Correction, Ibid. 17, 891). MR882890

[21]   R.C. Bradley. A central limit theorem for stationary ρ-mixing sequences with infinite variance. Ann. Probab. 16 (1988) 313-332. MR920274

[22]   R.C. Bradley. A caution on mixing conditions for random fields. Statist. Probab. Letters 8 (1989) 498-491.

[23]   R.C. Bradley. On ρ-mixing except on small sets. Pacific J. Math. 146 (1990) 217-226. MR1078379

[24]   R.C. Bradley. On the spectral density and asymptotic normality of weakly dependent random fields. J. Theor. Probab. 5 (1992) 355-373. MR1157990

[25]   R.C. Bradley. An addendum to “A limitation of Markov representation for stationary processes.” Stochastic Process. Appl. 47 (1993) 159-166. MR1232860

[26]   R.C. Bradley. Equivalent mixing conditions for random fields. Ann. Probab. 21 (1993) 1921-1926. MR1245294

[27]   R.C. Bradley. Some examples of mixing random fields. Rocky Mountain J. Math. 23 (1993) 495-519. MR1226185

[28]   R.C. Bradley. On regularity conditions for random fields. Proc. Amer. Math. Soc. 121 (1994) 593-598. MR1219721

[29]   R.C. Bradley. A covariance inequality under a two-part dependence assumption. Statist. Probab. Letters 30 (1996) 287-293. MR1422580

[30]   R.C. Bradley. Extra details from “On the φ– and ψ–mixing conditions for stationary random sequences.” Unpublished manuscript, 1997.

[31]   R.C. Bradley. Every “lower psi-mixing” Markov chain is “interlaced rho-mixing.” Stochastic Process. Appl. 72 (1997) 221-239. MR1486554

[32]   R.C. Bradley. On the simultaneous behavior of the dependence coefficients associated with three mixing conditions. Rocky Mountain J. Math. 28 (1998) 393-415. MR1651577

[33]   R.C. Bradley. Equivalent mixing conditions for Markov chains. Statist. Probab. Letters 41 (1999) 97-99. MR1652266

[34]   R.C. Bradley. Can a theorem of Csáki and Fischer provide a key to Ibragimov’s conjecture? In: Random Walks, (P. Révész and B. Tóth, eds.), Bolyai Society Mathematical Studies 9, pp. 11-42. János Bolyai Mathematical Society, Budapest, 1999. MR1752728

[35]   R.C. Bradley. On mixing rates for nonisotropic random fields. Acta. Sci. Math. (Szeged) 65 (1999) 749-765. MR1737284

[36]   R.C. Bradley. A stationary rho-mixing Markov chain which is not “interlaced” rho-mixing. J. Theor. Probab. 14 (2001) 717-727. MR1860520

[37]   R.C. Bradley. A restricted dichotomy of equivalence classes for some measures of dependence. Rocky Mountain J. Math. 31 (2001) 831-872. MR1877325

[38]   R.C. Bradley. On the central limit question under ρ-mixing and information regularity. In: Limit Theorems in Probability and Statistics, (I. Berkes, E. Csáki, and M. Csörgʺo   , eds.), Volume 1, pp. 235-248. János Bolyai Mathematical Society, Budapest, 2002.

[39]   R.C. Bradley. On positive spectral density functions. Bernoulli 8 (2002) 175-193. (Acknowledgement of priority, Ibid. 8, 559.) MR1895889

[40]   R.C. Bradley. A criterion for a continuous spectral density. J. Multivar. Anal. 86 (2003) 108-125. MR1994724

[41]   R.C. Bradley. On a theorem of Rosenblatt. Unpublished manuscript, 2003.

[42]   R.C. Bradley. Introduction to Strong Mixing Conditions, Volume 1. Technical Report (March 2005 printing), Department of Mathematics, Indiana University, Bloomington. Custom Publishing of I.U., Bloomington, 2005.

[43]   R.C. Bradley. Introduction to Strong Mixing Conditions, Volume 2. Technical Report (March 2005 printing), Department of Mathematics, Indiana University, Bloomington. Custom Publishing of I.U., Bloomington, 2005.

[44]   R.C. Bradley. Introduction to Strong Mixing Conditions, Volume 3. Technical Report, Department of Mathematics, Indiana University, Bloomington. Custom Publishing of I.U., Bloomington, 2005.

[45]   R.C. Bradley and W. Bryc. Multilinear forms and measures of dependence between random variables. J. Multivar. Anal. 16 (1985) 335-367. MR793497

[46]   R.C. Bradley, W. Bryc, and S. Janson. On dominations between measures of dependence. J. Multivar. Anal. 23 (1987) 312-329. MR918261

[47]   R.C. Bradley, W. Bryc, and S. Janson. Remarks on the foundations of measures of dependence. In: New Perspectives in Theoretical and Applied Statistics (M.L. Puri, J.P. Vilaplana, and W. Wertz, eds.), pp. 421-437. Wiley, New York, 1987. MR900202

[48]   R.C. Bradley and M. Peligrad. Invariance principles under a two-part mixing assumption. Stochastic Process. Appl. 22 (1986) 271-289. MR860937

[49]   R.C. Bradley and L.T. Tran. Density estimation for nonisotropic random fields. J. Statist. Plann. Infer. 81 (1999) 51-70. MR1718397

[50]   R.C. Bradley and S.A. Utev. On second-order properties of mixing random sequences and random fields. In: Probability Theory and Mathematical Statistics, Proceedings of the Sixth Vilnius Conference (1993), (B. Grigelionis, J. Kubilius, H. Pragarauskas, and V. Statulevicius, eds.), pp. 99-120. VSP Science Publishers, Utrecht, and TEV Publishers Service Group, Vilnius, 1994.

[51]   W. Bryc. On large deviations for uniformly strong mixing sequences. Stochastic Process. Appl. 41 (1992) 191-202. MR1164173

[52]   W. Bryc and M. Peligrad. The central limit theorem for Tukey’s 3R smoother. Statist. Probab. Letters 13 (1992) 29-37. MR1147636

[53]   A.V. Bulinskii. Limit Theorems under Weak Dependence Conditions. Moscow University Press, Moscow, 1989. (In Russian).

[54]   R.M. Burton, M. Denker, and M. Smorodinsky. Finite state bilaterally deterministic strongly mixing processes. Israel J. Math. 95 (1996) 115-133. MR1418290

[55]   R.M. Burton and J.E. Steif. Quite weak Bernoulli with exponential rate and percolation for random fields. Stochastic Process. Appl. 58 (1995) 35-55. MR1341553

[56]   R.M. Burton and J.E. Steif. Coupling surfaces and weak Bernoulli in one and higher dimensions. Adv. Math. 132 (1997) 1-23. MR1488237

[57]   R. Cogburn. Asymptotic properties of stationary sequences. Univ. Calif. Publ. Statist. 3 (1960) 99-146. MR138118

[58]   P. Csáki and J. Fischer. On the general notion of maximal correlation. Magyar Tud. Akad. Mat. Kutato Int. Kozl. 8 (1963) 27-51. MR166833

[59]   Yu.A. Davydov. Mixing conditions for Markov chains. Theory Probab. Appl. 18 (1973) 312-328.

[60]   J. Dedecker. A central limit theorem for stationary random fields. Probab. Th. Rel. Fields 110 (1998) 397-426. MR1616496

[61]   H. Dehling and W. Philipp. Almost sure invariance principles for weakly dependent vector-valued random variables. Ann. Probab. 10 (1982) 689-701. MR659538

[62]   H. Dehling and W. Philipp. Empirical process techniques for dependent data. In: Empirical Process Techniques for Dependent Data (H. Dehling, T. Mikosch and M. Sørensen, eds.), pp. 3-113. Birkhäuser, Boston, 2002. MR1958776

[63]   M. Denker. The central limit theorem for dynamical systems. In: Dynamical Systems and Ergodic Theory, (K. Krzyzewski, ed.), pp. 33-62. Banach Center Publications 23, Warsaw, Poland, 1989. MR1102697

[64]   M. Denker. Private communication, 1996.

[65]   M. Denker and G. Keller. On U–statistics and v. Mises statistics for weakly dependent processes. Z. Wahrsch. verw. Gebiete 64 (1983) 505-522. MR717756

[66]   M. Denker and W. Philipp. Approximation by Brownian motion for Gibbs measures and flows under a function. Ergodic Th. Dynam. Systems 4 (1984) 541-552. MR779712

[67]   J. Deuschel and D.W. Stroock. Large Deviations. Academic Press, Boston, 1989.

[68]   R.L. Dobrushin. The description of a random field by its conditional distribution and its regularity condition. Theor. Probab. Appl. 13 (1968) 197-224.

[69]   W. Doeblin. Sur les propriétés asymptotiques de mouvement régis par certains types de chaines simples. Bull. Math. Soc. Roum. Sci. 39 (1937) no. 1, 57-115, no. 2, 3-61.

[70]   J.L. Doob. Stochastic Processes. Wiley, New York, 1953.

[71]   P. Doukhan. Mixing: Properties and Examples. Springer-Verlag, New York, 1995.

[72]   P. Doukhan, P. Massart, and E. Rio. The functional central limit theorem for strongly mixing processes. Ann. Inst. H. Poincaré Probab. Statist. 30 (1994) 63-82. MR1262892

[73]   M. Falk. On the convergence of spectral densities of arrays of weakly stationary processes. Ann. Probab. 12 (1984) 918-921. MR744248

[74]   R.A. Fisher. The precision of discriminant functions. Annals of Eugenics, London 10 (1940) 422-429. MR3543

[75]   J.B.G. Frenk. On Banach Algebras, Renewal Measures, and Regenerative Processes. CWI Tract 38. Stichting Mathematisch Centrum, Amsterdam, 1987.

[76]   N. Friedman and D.S. Ornstein. On isomorphism of weak Bernoulli transformations. Advances in Math. 5 (1970) 365-394. MR274718

[77]   H. Gebelein. Das Statistische Problem der Korrelation als Variations—und Eigenwertproblem und sein Zusammenhang mit der Ausgleichungsrechnung. Z. Angew. Math. Mech. 21 (1941) 364-379. MR7220

[78]   I.M. Gelfand, A.N. Kolmogorov, and A.M. Yaglom. On the general definitions of quantity of information. Dokl. Akad. Nauk. 111 (1956) 745-748. MR84440

[79]   V.M. Gurevič. On one-sided and two-sided regularity of stationary random processes. Soviet Math. Dokl. 14 (1973) 804-808.

[80]   P. Hall and C.C. Heyde. Martingale Limit Theory and its Application. Academic Press, New York, 1980.

[81]   T.E. Harris. The existence of stationary measures for certain Markov processes. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Vol. 2, pp. 113-124. University of California Press, Los Angeles, 1956.

[82]   L. Heinrich. Bounds for the absolute regularity coefficient of a stationary renewal process. Yokohama Math. J. 40 (1992) 25-33. MR1189998

[83]   H. Helson and D. Sarason. Past and future. Math. Scand. 21 (1967) 5-16. MR236989

[84]   H. Helson and G. Szegö. A problem in prediction theory. Ann. Mat. Pura Appl. 51 (1960) 107-138. MR121608

[85]   N. Herrndorf. Stationary strongly mixing sequences not satisfying the central limit theorem. Ann. Probab. 11 (1983) 809-813. MR704571

[86]   H.O. Hirschfeld. A connection between correlation and contingency. Proc. Camb. Phil. Soc. 31 (1935) 520-524.

[87]   H. Hotelling. Relations between two sets of variates. Biometrika 28 (1936) 321-377.

[88]   I.A. Ibragimov. Some limit theorems for stochastic processes stationary in the strict sense. Dokl. Akad. Nauk SSSR 125 (1959) 711-714. MR105180

[89]   I.A. Ibragimov. Spectral functions of certain classes of stationary Gaussian processes. Soviet Math. Dokl. 2 (1961) 403-405.

[90]   I.A. Ibragimov. Stationary Gaussian sequences that satisfy the strong mixing condition. Soviet Math. Dokl. 3 (1962) 1799-1801.

[91]   I.A. Ibragimov. Some limit theorems for stationary processes. Theor. Probab. Appl. 7 (1962) 349-382.

[92]   I.A. Ibragimov. On the spectrum of stationary Gaussian sequences satisfying the strong mixing condition I. Necessary conditions. Theor. Probab. Appl. 10 (1965) 85-106.

[93]   I.A. Ibragimov. On the spectrum of stationary Gaussian sequences satisfying the strong mixing condition II. Sufficient conditions. Mixing rate. Theor. Probab. Appl. 15 (1970) 23-36.

[94]   I.A. Ibragimov. A note on the central limit theorem for dependent random variables. Theor. Probab. Appl. 20 (1975) 135-141.

[95]   I.A. Ibragimov and Yu.V. Linnik. Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff, Groningen, 1971.

[96]   I.A. Ibragimov and Yu.A. Rozanov. On the connection between two characteristics of dependence of Gaussian random vectors. Theor. Probab. Appl. 15 (1970) 295-299. MR273660

[97]   I.A. Ibragimov and Yu.A. Rozanov. Gaussian Random Processes. Springer-Verlag, New York, 1978.

[98]   I.A. Ibragimov and V.N. Solev. A condition for regularity of a stationary Gaussian sequence. Soviet Math. Dokl. 10 (1969) 371-375.

[99]   M. Iosifescu. Limit theorems for φ-mixing sequences, a survey. In: Proceedings of the Fifth Conference on Probability Theory, Brasov (Romania) 1974, pp. 51-57. Publishing House of the Romanian Academy, Bucharest, 1977. MR445574

[100]   M. Iosifescu. Doeblin and the metric theory of continued fractions: A functional theoretic solution to Gauss’ 1812 problem. In: Doeblin and Modern Probability, (H. Cohn, ed.), Contemporary Mathematics 149, pp. 97-110. American Mathematical Society, Providence, R.I., 1993.

[101]   A.V. Ivanov and N.N. Leonenko. Statistical Analysis of Random Fields. Kluwer, Boston, 1989.

[102]   D.G. Kendall. Unitary dilations of Markov transition operators and the corresponding integral representations for transition–probability matrices. In: Probability and Statistics, (U. Grenander, ed.), pp. 139-161. Almqvist and Wiksell, Stockholm, 1959. MR116389

[103]   H. Kesten and G.L. O’Brien. Examples of mixing sequences. Duke Math. J. 43 (1976) 405-415. MR410874

[104]   A.N. Kolmogorov and Yu.A. Rozanov. On strong mixing conditions for stationary Gaussian processes. Theor. Probab. Appl. 5 (1960) 204-208.

[105]   M.R. Leadbetter and H. Rootzén. On extreme values in stationary random fields. In: Stochastic Processes and Related Topics, In Memory of Stamatis Cambanis, 1943-1995, (I. Karatzas, B.S. Rajput, and M.S. Taqqu, eds.), pp. 275-285. Birkhäuser, Boston, 1998.

[106]   B.A. Lifshits. Invariance principle for weakly dependent variables. Theor. Probab. Appl. 29 (1984) 33-40.

[107]   Z. Lin and C. Lu. Limit Theory for Mixing Dependent Random Variables. Science Press, Beijing, and Kluwer Academic Publishers, Boston, 1996.

[108]   N.F.G. Martin. The Rosenblatt mixing condition and Bernoulli shifts. Ann. Probab. 2 (1974) 333-338. MR357740

[109]   K. Maung. Measurement of association in a contingency table with special reference to the pigmentation of hair and eye colours of Scottish school children. Annals of Eugenics, London 11 (1941) 189-223.

[110]   F. Merlevède and M. Peligrad. The functional central limit theorem under the strong mixing condition. Ann. Probab. 28 (2000) 1336-1352. MR1797876

[111]   F. Merlevède and M. Peligrad. On the coupling of dependent random variables and applications. In: Empirical Process Techniques for Dependent Data (H. Dehling, T. Mikosch and M. Sørensen, eds.), pp. 171-193. Birkhäuser, Boston, 2002. MR1958781

[112]   S.P. Meyn and R.L. Tweedie. Markov Chains and Stochastic Stability, 3rd printing. Springer-Verlag, New York, 1996.

[113]   C. Miller. Three theorems on ρ*–mixing random fields. J. Theor. Probab. 7 (1994) 867-882. MR1295544

[114]   C.C. Moore. The degree of randomness of a stationary time series. Ann. Math. Statist. 34 (1963) 1253-1258. MR159405

[115]   E. Nummelin and P. Tuominen. Geometric ergodicity of Harris recurrent Markov chains with applications to renewal theory. Stochastic Process. Appl. 12 (1982) 187-202. MR651903

[116]   E. Nummelin and P. Tuominen. The rate of convergence in Orey’s theorem for Harris recurrent Markov chains with applications to renewal theory. Stochastic Process. Appl. 15 (1983) 295-311. MR711187

[117]   E. Nummelin and R.L. Tweedie. Geometric ergodicity and R-positivity for general Markov chains. Ann. Probab. 6 (1978) 404-420. MR474504

[118]   R.A. Olshen. The coincidence of measure algebras under an exchangeable probability. Z. Wahrsch. verw. Gebiete 18 (1971) 153-158. MR288797

[119]   S. Orey. Recurrent Markov chains. Pacific J. Math. 9 (1959) 805-827. MR125632

[120]   S. Orey. Lecture Notes on Limit Theorems for Markov Chain Transition Probabilities. Mathematical Studies no. 34. Van Nostrand Reinhold, New York, 1971.

[121]   D.S. Ornstein and B. Weiss. Finitely determined implies very weak Bernoulli. Israel J. Math. 17 (1974) 94-104. MR346132

[122]   D.S. Ornstein and B. Weiss. Every transformation is bilaterally deterministic. Israel J. Math. 21 (1975) 154-158. MR382600

[123]   M. Peligrad. Invariance principles for mixing sequences of random variables. Ann. Probab. 10 (1982) 968-981. MR672297

[124]   M. Peligrad. A note on two measures of dependence and mixing sequences. Adv. Appl. Probab. 15 (1983) 461-464. MR698829

[125]   M. Peligrad. An invariance principle for φ–mixing sequences. Ann. Probab. 13 (1985) 1304-1313. MR806227

[126]   M. Peligrad. Recent advances in the central limit theorem and its weak invariance principle for mixing sequences of random variables (a survey). In: Dependence in Probability and Statistics, (E. Eberlein and M.S. Taqqu, eds.), pp. 193-223. Birkhäuser, Boston, 1986.

[127]   M. Peligrad. On the central limit theorem for weakly dependent sequences with a decomposed strong mixing coefficient. Stochastic Process. Appl. 42 (1992) 181-193. MR1176496

[128]   V.V. Peller. Hankel Operators and their Applications. Springer, New York, 2003.

[129]   K. Petersen. Ergodic Theory, first paperback edition. Cambridge University Press, Cambridge, 1989.

[130]   W. Philipp. The central limit problem for mixing sequences of random variables. Z. Wahrsch. verw. Gebiete 12 (1969) 155-171.

[131]   W. Philipp. Invariance principles for independent and weakly dependent random variables. In: Dependence in Probability and Statistics, (E. Eberlein and M.S. Taqqu, eds.), pp. 225-268. Birkhäuser, Boston, 1986.

[132]   W. Philipp. Limit theorems for sums of partial quotients of continued fractions. Mh. Math. 105 (1988) 195-206. MR939942

[133]   W. Philipp. Private communication, 1996.

[134]   M.S. Pinsker. Information and Information Stability of Random Variables and Processes. Holden-Day, San Francisco, 1964.

[135]   M. Pourahmadi. A matrical extension of the Helson–Szegö theorem and its application to multivariate prediction. J. Multivar. Anal. 16 (1985) 265-275. MR790606

[136]   E. Rio. Théorie asymptotique des processus aléatoires faiblement dépendantes. Mathématiques & Applications 31. Springer, Berlin, 2000.

[137]   M. Rosenblatt. A central limit theorem and a strong mixing condition. Proc. Natl. Acad. Sci. USA 42 (1956) 43-47. MR74711

[138]   M. Rosenblatt. Markov Processes, Structure and Asymptotic Behavior. Springer-Verlag, Berlin, 1971.

[139]   M. Rosenblatt. Uniform ergodicity and strong mixing. Z. Wahrsch. verw. Gebiete 24 (1972) 79-84. MR322941

[140]   M. Rosenblatt. Central limit theorems for stationary processes. Proceedings of the Sixth Berkeley Symposium on Probability and Statistics, vol. 2, pp. 551-561. University of California Press, Los Angeles, 1972. MR388588

[141]   M. Rosenblatt. Linear processes and bispectra. J. Appl. Probab. 17 (1980) 265-270. MR557456




Home | Current | Past volumes | About | Login | Notify | Contact | Search

Probability Surveys. ISSN: 1549-5787