</script> To interpret interacting particle system style models as social dynamics, suppose each pair ({i,j}) of individuals in a finite population meet at random times of arbitrary specified rates (nu_{ij}), and update their states according to some specified rule. The <i>averaging process</i> has real-valued states and the rule: upon meeting, the values (X_i(t-), X_j(t-)) are replaced by (frac{1}{2}(X_i(t-)+X_j(t-)), frac{1}{2}(X_i(t-)+X_j(t-))). It is curious this simple process has not been studied very systematically. We provide an expository account of basic facts and open problems.">
Home | Current | Past volumes | About | Login | Notify | Contact | Search | |||||
|
|||||
References[1] Acemoglu, D., Como, G., Fagnini, F. and Ozdaglar, A. (2011). Opinion fluctuations and disagreement in social networks. http://arxiv.org/abs/1009.2653 [2] Aldous, D. (2011). Finite Markov Information-Exchange Procesess. Lecture Notes from Spring 2011. http://www.stat.berkeley.edu/~aldous/260-FMIE/Lectures/index.html. [3] Aldous, D. and Fill, J. Reversible Markov Chains and Random Walks on Graphs. http://www.stat.berkeley.edu/~aldous/RWG/book.html [4] Ben-Naim, E., Krapivsky, P.L. and Redner, S. (2003). Bifurcations and patterns in compromise processes. Phys. D 183 190–204. [5] Diaconis, P. and Saloff-Coste, L. (1996). Logarithmic Sobolev inequalities for finite Markov chains. Ann. Appl. Probab. 6 695–750. MR1410112 [6] Häggström, O. (2011). A pairwise averaging procedure with application to consensus formation in the Deffuant model. http://www.math.chalmers.se/~olleh/averaging.pdf. [7] Lanchier, N. (2011). The critical value of the bounded confidence Deffuant model equals one half. http://stat.asu.edu/~lanchier/articles/2011h_lanchier.pdf. [8] Levin, D. A., Peres, Y. and Wilmer, E. L. (2009), Markov Chains and Mixing Times. Amer. Math. Soc., Providence, RI. MR2466937 [9] Liggett, T. M. (1985). Interacting Particle Systems. Springer-Verlag, New York. MR776231 [10] Montenegro, R. and Tetali, P. (2006). Mathematical aspects of mixing times in Markov chains. Found. Trends Theor. Comput. Sci. 1 1–121. MR2341319 [11] Olshevsky, A. and Tsitsiklis, J. N. (2009). Convergence speed in distributed consensus and averaging. SIAM J. Control Optim. 48 33–55. MR2480125 [12] Shah, D. (2008). Gossip algorithms. Foundations and Trends in Networking 3 1–125. |
|||||
Home | Current | Past volumes | About | Login | Notify | Contact | Search Probability Surveys. ISSN: 1549-5787 |