Home | Current | Past volumes | About | Login | Notify | Contact | Search
 Probability Surveys > Vol. 9 (2012) open journal systems 


Szegö's theorem and its probabilistic descendants

Nicholas H. Bingham, Imperial College, London


Abstract
The theory of orthogonal polynomials on the unit circle (OPUC) dates back to Szegö's work of 1915-21, and has been given a great impetus by the recent work of Simon, in particular his survey paper and three recent books; we allude to the title of the third of these, Szegö's theorem and its descendants, in ours. Simon's motivation comes from spectral theory and analysis. Another major area of application of OPUC comes from probability, statistics, time series and prediction theory; see for instance the classic book by Grenander and Szegö, Toeplitz forms and their applications. Coming to the subject from this background, our aim here is to complement this recent work by giving some probabilistically motivated results. We also advocate a new definition of long-range dependence.

AMS 2000 subject classifications: Primary 60G10; secondary 60G25.

Keywords: Stationary process, prediction theory, orthogonal polynomials on the unit circle, partial autocorrelation function, moving average, autoregressive, long-range dependence, Hardy space, cepstrum.

Creative Common LOGO

Full Text: PDF


Bingham, Nicholas H., Szegö's theorem and its probabilistic descendants, Probability Surveys, 9, (2012), 287-324 (electronic). DOI: 10.1214/11-PS178.

References

[Ach]     Achieser, N. I., Theory of approximation, Frederick Ungar, New York, 1956 (Russian, Kharkov, 1940; Moscow-Leningrad, 1947). MR0095369

[BaiCr]     Bain, A. and Crisan, D., Fundamentals of stochastic filtering, Springer, 2009. MR2454694

[BarN-S]     Barndorff-Nielsen, O. E. and Schou, G., On the parametrization of autoregressive models by partial autocorrelation. J. Multivariate Analysis 3 (1973), 408-419. MR0343510

[BasW]     Basor, E. L. and Widom, H., On a Toeplitz determinant identity of Borodin and Okounkov. Integral Equations Operator Theory 37 (2000), 397-401. MR1780119

[Bax1]     Baxter, G., A convergence equivalence related to polynomials orthogonal on the unit circle. Trans. Amer. Math. Soc. 99 (1961), 471-487. MR0126126

[Bax2]     Baxter, G., An asymptotic result for the finite predictor. Math. Scand. 10 (1962), 137-144. MR0149584

[Bax3]     Baxter, G., A norm inequality for a “finite-section” Wiener-Hopf equation. Illinois J. Math. 7 (1963), 97-103. MR0145285

[BekXu]     Bekjan, T. and Xu, Q., Riesz and Szegö type factorizations for non-commutative Hardy spaces. J. Operator Theory 62 (2009), 215-231. MR2520548

[Ber]     Beran, J., Statistics for long-memory processes. Chapman and Hall, London, 1994. MR1304490

[Berk]     Berk, K. N., Consistent autoregressive spectral estimates. Ann. Statist. 2 (1974), 489-502. MR0421010

[Beu]     Beurling, A., On two problems concerning linear transformations in Hilbert space, Acta Math. 81 (1948), 239-255 (reprinted in The collected works of Arne Beurling, Volumes 1,2, Birkhäuser, 1989). MR0027954

[Bin1]     Bingham, N. H., Józef Marcinkiewicz: Analysis and probability. Proc. Józef Marcinkiewicz Centenary Conference (Poznań, 2010), Banach Centre Publications 95 (2011), 27-44.

[Bin2]     Bingham, N. H., Multivariate prediction and matrix Szegö theory. Probability Surveys, 9 (2012), 325-339.

[BinFr]     Bingham, N. H. and Fry, J. M., Regression: Linear models in statistics. Springer Undergraduate Mathematics Series, 2010. MR2724817

[BinFrKi]     Bingham, N. H., Fry, J. M. and Kiesel, R., Multivariate elliptic processes. Statistica Neerlandica 64 (2010), 352-366. MR2683465

[BinGT]     Bingham, N. H., Goldie, C. M. and Teugels, J. L., Regular variation, 2nd ed., Cambridge University Press, 1989 (1st ed. 1987). MR0898871

[BinIK]     Bingham, N. H., Inoue, A. and Kasahara, Y., An explicit representation of Verblunsky coefficients. Statistics and Probability Letters 82 no. 2 (2012), 403-410.

[BlLa]     Blecher, D. P. and Labuschagne, L. E., Applications of the Fuglede-Kadison determinant: Szegö’s theorem and outers for non-commutative Hp. Trans. Amer. Math. Soc. 360 (2008), 6131-6147. MR2425707

[Bl1]     Bloomfield, P., An exponential model for the spectrum of a scalar time series. Biometrika 60 (1973), 217-226. MR0323048

[Bl2]     Bloomfield, P., Fourier analysis of time series: An introduction. Wiley, 1976. MR0654511

[Bl3]     Bloomfield, P., Non-singularity and asymptotic independence. E. J. Hannan Festschrift, J. Appl. Probab. 23A (1986), 9-21. MR0803159

[BlJeHa]     Bloomfield, P., Jewell, N. P. and Hayashi, E., Characterization of completely nondeterministic stochastic processes. Pacific J. Math. 107 (1983), 307-317. MR0705750

[BogHeTu]     Bogert, B. P., Healy, M. J. R. and Tukey, J. W., The quefrency alanysis of time series for echoes: cepstrum, pseudo-autocovariance, cross-cepstrum and saphe cracking. Proc. Symposium on Time Series Analysis (ed. M. Rosenblatt) Ch. 15, 209-243, Wiley, 1963.

[BorOk]     Borodin, A. M. and Okounkov, A., A Fredholm determinant formula for Toeplitz determinants. Integral Equations and Operator Theory 37 (2000), 386-396. MR1780118

[Bot]     Böttcher, A., Featured review of the Borodin-Okounkov and Basor-Widom papers. Mathematical Reviews 1790118/6 (2001g:47042a,b).

[BotKaSi]     Böttcher, A., Karlovich, A. and Silbermann, B., Generalized Krein algebras and asymptotics of Toeplitz determinants. Methods Funct. Anal. Topology 13 (2007), 236-261. MR2356757

[BotSi1]     Böttcher, A. and Silbermann, B., Analysis of Toeplitz operators. Springer, 1990 (2nd ed., with A. Karlovich, 2006). MR1071374

[BotSi2]     Böttcher, A. and Silbermann, B., Introduction to large truncated Toeplitz matrices. Universitext, Springer, 1999. MR1724795

[BotW]     Böttcher, A. and Widom, H., Szegö via Jacobi. Linear Algebra and Applications 419 (2006), 656-667. MR2277996

[BouKo]     Bourgain, J. and Kozma, G., One cannot hear the winding number. J. European Math. Soc. 9 (2007), 637-658. MR2341826

[BouGePu]     Boutet de Monvel-Berthier, A., Georgescu, V. and Purice, R., A boundary-value problem related to the Ginzburg-Landau model. Comm. Math. Phys. 142 (1991), 1-23. MR1137773

[BoxJeRe]     Box, G. E. P., Jenkins, G. M. and Reinsel, G. C., Time-series analysis. Forecasting and control (4th ed.). Wiley, 2008. MR2419724

[Bra1]     Bradley, R. C., Basic properties of strong mixing conditions. Pages 165-192 in [EbTa]. MR0899990

[Bra2]     Bradley, R. C., Basic properties of strong mixing conditions. A survey and some open questions. Probability Surveys 2 (2005), 107-144. MR2178042

[Bra3]     Bradley, R. C., Introduction to strong mixing conditions, Volumes 1-3. Kendrick Press, Heber City, UT, 2007.

[dBR]     de Branges, L. and Rovnyak, J., Square-summable power series. Holt, Rinehart and Winston, New York, 1966. MR0215065

[Bre]     Brezis, H., New questions related to the topological degree. The unity of mathematics. 137-154, Progr. Math. 244 (2006), Birkhäuser, Boston MA. MR2181804

[Bri]     Brillinger, D. R., John W. Tukey’s work on time series and spectrum analysis. Ann. Statist. 30 (2002), 1595-1918. MR1969441

[BriKri]     Brillinger, D. R. and Krishnaiah, P. R. (ed.), Time series in the frequency domain. Handbook of Statistics 3, North-Holland, 1983. MR0749777

[BroDav]     Brockwell, P. J. and Davis, R. A., Time series: Theory and methods (2nd ed.), Springer, New York, 1991 (1st ed. 1987).

[Cra]     Cramér, H., On harmonic analysis in certain function spaces. Ark. Mat. Astr. Fys. 28B (1942), 1-7, reprinted in Collected Works of Harald Cramér Volume II, 941-947, Springer, 1994. MR0006609

[CraLea]     Cramér, H. and Leadbetter, R., Stationary and related stochastic processes. Wiley, 1967.

[Ch]     Chung, K.-L., A course in probability theory, 3rd ed. Academic Press, 2001 (2nd ed. 1974, 1st ed. 1968). MR1796326

[CorFoSi]     Cornfeld, I. P., Fomin, S. V. and Sinai, Ya. G., Ergodic theory. Grundl. math. Wiss. 245, Springer, 1982. MR0832433

[CovTh]     Cover, T. M. and Thomas, J. A., Elements of information theory. Wiley, 1991. MR1122806

[Cox]     Cox, D. R., Long-range dependence: a review. Pages 55-74 in Statistics: An appraisal (ed. H. A. David and H. T. David), Iowa State University Press, Ames IA, reprinted in Selected statistical papers of Sir David Cox, Volume 2, 379-398, Cambridge University Press, 2005.

[Deb]     Debowski, L., On processes with summable partial autocorrelations. Statistics and Probability Letters 77 (2007), 752-759. MR2356516

[Deg]     Dégerine, S., Canonical partial autocorrelation function of a multivariate time series. Ann. Statist. 18 (1990), 961-971. MR1056346

[dLR]     de Leeuw, K. and Rudin, W., Extreme points and extremum problems in H1. Pacific J. Math. 8 (1958), 467-485. MR0098981

[Dia]     Diaconis, P., G. H. Hardy and probability??? Bull. London Math. Soc. 34 (2002), 385-402. MR1897417

[Do]     Doob, J. L., Stochastic processes. Wiley, 1953. MR0058896

[DouOpTa]     Doukhan, P., Oppenheim, G. and Taqqu, M. S. (ed.), Theory and applications of long- range dependence. Birkhäuser, Basel, 2003. MR1956041

[DunSch]     Dunford, N. and Schwartz, J. T., Linear operators, Part II: Spectral theory: Self-adjoint operators on Hilbert space. Interscience, 1963. MR1009163

[Dur]     Durbin, J., The fitting of time-series models. Rev. Int. Statist. Inst. 28 (1960), 233-244.

[Du]     Duren, P. L., Theory of Hp spaces. Academic Press, New York, 1970. MR0268655

[Dym]     Dym, H., M. G. Krein’s contributions to prediction theory. Operator Theory Advances and Applications 118 (2000), 1-15, Birkhäuser, Basel. MR1765460

[DymMcK]     Dym, H. and McKean, H. P., Gaussian processes, function theory and the inverse spectral problem. Academic Press, 1976. MR0448523

[EbTa]     Eberlein, E. and Taqqu, M. S. (ed.), Dependence in probability and statistics. A survey of recent results. Birkhäuser, 1986. MR0899982

[Ell]     Ellis, R. S., Entropy, large deviations and statistical mechanics. Grundl. math. Wiss 271, Springer, 1985. MR0793553

[Fe]     Fefferman, C., Characterizations of bounded mean oscillation. Bull. Amer. Math. Soc. 77 (1971), 587-588. MR0280994

[FeSt]     Fefferman, C. and Stein, E. M., Hp spaces of several variables. Acta Math. 129 (1972), 137-193. MR0447953

[FrBh]     Frazho, A. E. and Bhosri, W., An operator perspective on signals and systems. Operator Theory: advances and Applications 204, Birkhäuser, 2010. MR2584037

[Gao]     Gao, J., Non-linear time series. Semi-parametric and non-parametric models. Monogr. Stat. Appl. Prob. 108, Chapman and Hall, 2007.

[Gar]     Garnett, J. B., Bounded analytic functions. Academic Press, 1981 (Grad. Texts in Math. 236, Springer, 2007). MR2261424

[Geo]     Georgii, H.-O., Gibbs measures and phase transitions. Walter de Gruyter, 1988. MR0956646

[GerCa]     Geronimo, J. S. and Case, K. M., Scattering theory and polynomials orthogonal on the unit circle. J. Math. Phys. 20 (1979), 299-310. MR0519213

[Ges]     Gesztesy, F., Deift, P., Galves, C., Perry, P. and Schlag, W. (ed.), Spectral theory and mathematical physics: A Festschrift in honor of Barry Simon’s sixtieth birthday. Proc. Symp. Pure Math. 76 Parts 1, 2, Amer. Math. Soc., 2007. MR2310193

[GiKoSu]     Giraitis, L., Koul, H. L. and Surgailis, D., Large sample inference for long memory processes, World Scientific, 2011.

[GolKPY]     Golinskii, L., Kheifets, A., Peherstorfer, F. and Yuditskii, P., Scattering theory for CMV matrices: uniqueness, Helson-Szegö and strong Szegö theorems. Integral Equations and Operator Theory 69 (2011), 479-508. MR2784575

[GolTo]     Golinskii, L. and Totik, V., Orthogonal polynomials: from Jacobi to Simon. P. 715-742 in [Ges], Part 2.

[GolvL]     Golub, G. H. and van Loan, C. F., Matrix computations, 3rd ed., Johns Hopkins University Press, 1996 (1st ed. 1983, 2nd ed. 1989).

[GrSz]     Grenander, U. and Szegö, G., Toeplitz forms and their applications. University of California Press, Berkeley CA, 1958. MR0094840

[Gri1]     Grimmett, G. R., Percolation, 2nd ed. Grundl. math. Wiss. 321, Springer, 1999 (1st ed. 1989).

[Gri2]     Grimmett, G. R., The random cluster model. Grundl. math. Wiss. 333, Springer, 2006. MR2243761

[Ha1]     Hannan, E. J., Multiple time series. Wiley, 1970. MR0279952

[Ha2]     Hannan, E. J., The Whittle likelihood and frequency estimation. Chapter 15 (p. 205-212) in [Kel]. MR1320753

[HaKR]     Hannan, E. J., Krishnaiah, P. K. and Rao, M. M., Time series in the time domain. Handbook of Statistics 5, North-Holland, 1985. MR0831742

[He]     Helson, H., Harmonic analysis, 2nd ed., Hindustan Book Agency, 1995. MR2656971

[HeSa]     Helson, H. and Sarason, D., Past and future. Math. Scand 21 (1967), 5-16. MR0236989

[HeSz]     Helson, H. and Szegö, G., A problem in prediction theory. Acta Mat. Pura Appl. 51 (1960), 107-138. MR0121608

[Ho]     Hoffman, K., Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs NJ, 1962. MR0133008

[Hos]     Hosking, J. R., Fractional differencing. Biometrika 68 (1981), 165-176. MR0614953

[HuMuWe]     Hunt, R. A., Muckenhoupt, B. and Wheeden, R. L., Weighted norm inequalities for the conjugate function and Hilbert transform. Trans. Amer. Math. Soc. 176 (1973), 227-151. MR0312139

[IbLi]     Ibragimov, I. A. and Linnik, Yu. V., Independent and stationary sequences of random variables. Wolters-Noordhoff, 1971. MR0322926

[IbRo]     Ibragimov, I. A. and Rozanov, Yu. A., Gaussian random processes. Springer, 1978. MR0543837

[In1]     Inoue, A., Asymptotics for the partial autocorrelation function of a stationary process. J. Analyse Math. 81 (2000), 65-109. MR1785278

[In2]     Inoue, A., Asymptotic behaviour for partial autocorrelation functions of fractional ARIMA processes. Ann. Appl. Probab. 12 (2002), 1471-1491. MR1936600

[In3]     Inoue, A., AR and MA representations of partial autocorrelation functions, with applications. Prob. Th. Rel. Fields 140 (2008), 523-551. MR2365483

[InKa1]     Inoue, A. and Kasahara, Y., Partial autocorrelation functions of the fractional ARIMA processes. J. Multivariate Analysis 89 (2004), 135-147. MR2041213

[InKa2]     Inoue, A. and Kasahara, Y., Explicit representation of finite predictor coefficients and its applications. Ann. Statist. 34 (2006), 973-993. MR2283400

[Jan]     Janson, S., Gaussian Hilbert spaces. Cambridge Tracts in Math. 129, Cambridge University Press, 1997. MR1474726

[JeBl]     Jewell, N. P. and Bloomfield, P., Canonical correlations of past and future for time series: definitions and theory. Ann. Statist. 11 (1983), 837-847. MR0707934

[JeBlBa]     Jewell, N. P., Bloomfield, P. and Bartmann, F. C., Canonical correlations of past and future for time series: bounds and computation. Ann. Statist. 11 (1983), 848-855. MR0707935

[Kac]     Kac, M., Toeplitz matrices, transition kernels and a related problem in probability theory. Duke Math. J. 21 (1954), 501-509. MR0062867

[Kah]     Kahane, J.-P., Some random series of functions, 2nd ed., Cambridge University Press, 1985 (1st ed. D. C. Heath, 1968). MR0833073

[KahSa]     Kahane, J.-P. and Salem, R., Ensembles parfaits et séries trigonométriques, 2nd ed. Hermann, Paris, 1994. MR1303593

[Kak]     Kakihara, Y., The Kolmogorov isomorphism theorem and extensions to some non-stationary processes. Stochastic processes: Theory and methods (ed. D. N. Shanbhag and C. R. Rao), Handbook of Statistics 19, North-Holland, 2001, 443-470. MR1861731

[Kal]     Kallenberg, O., Foundations of modern probability, 2nd ed., Springer, 2002. MR1876169

[KanSch]     Kantz, H. and Schreiber, T., Nonlinear time series analysis, Cambridge University Press, 1997 (2nd ed. 2004). MR2040330

[Kar]     Karhunen, K., Über lineare Methoden in der Wahrscheinlichkeitsrechnung. Ann. Acad. Sci. Fenn. 37 (1947), 1-79. MR0023013

[KasBi]     Kasahara, Y. and Bingham, N. H., Verblunsky coefficients and Nehari sequences. Trans. Amer. Math. Soc., to appear.

[KatSeTe]     Kateb, D., Seghier, A. and Teyssière, G., Prediction, orthogonal polynomials and Toeplitz matrices. A fast and reliable approach to the Durbin-Levinson algorithm. Pages 239-261 in [TeKi]. MR2265061

[Kel]     Kelly, F. P. (ed.), Probability, statistics and optimization. A tribute to Peter Whittle. Wiley, 1994. MR1320736

[KenSt]     Kendall, M. G. and Stuart, A., The advanced theory of statistics. Charles Griffin. Volume 1 (4th ed., 1977), Vol. 2 (3rd ed, 1973), vol. 3 (3rd ed., 1976).

[KokTa]     Kokoszka, P. S. and Taqqu, M. S., Can one use the Durbin-Levinson algorithm to generate infinite-variance fractional ARIMA time series? J. Time Series Analysis 22 (2001), 317-337. MR1837371

[Kol]     Kolmogorov, A. N., Stationary sequences in Hilbert space. Bull. Moskov. Gos. Univ. Mat. 2 (1941), 1-40 (in Russian; reprinted, Selected works of A. N. Kolmogorov, Vol. 2: Theory of probability and mathematical statistics, Nauka, Moskva, 1986, 215-255).

[Koo1]     Koosis, P., Introduction to Hp spaces, 2nd ed. Cambridge Tracts Math. 115, Cambridge Univ. Press, 1998 (1st ed. 1980). MR0565451

[Koo2]     Koosis, P., The logarithmic integral, I, 2nd ed., Cambridge Univ. Press, 1998 (1st ed. 1988), II, Cambridge Univ. Press, 1992. MR0961844

[Kr]     Krein, M. G., On some new Banach algebras and Wiener-Lévy type theorems for Fourier series and integrals. Amer. Math. Soc. Translations (2) 93 (1970), 177-199 (Russian original: Mat. Issled. 1 (1966), 163-288). MR0203515

[Lev]     Levinson, N., The Wiener (RMS) error criterion in filter design and prediction. J. Math. Phys. MIT 25 (1947), 261-278. MR0019257

[LevMcK]     Levinson, N. and McKean, H. P., Weighted trigonometrical approximation on R1 with application to the germ field of a stationary Gaussian noise. Acta Math. 112 (1964), 99-143. MR0163111

[Li]     Li, L. M., Some notes on mutual information between past and future. J. Time Series Analysis 27 (2006), 309-322. MR2235848

[LiXi]     Li, L. M. and Xie, Z., Model selection and order determination for time series by information between the past and the future. J. Time Series Analysis 17 (1996), 65-84. MR1380897

[Loe]     Loève, M., Probability theory, Volumes I, II, 4th ed., Springer, 1978. MR0651018

[LuZhKi]     Lund, R., Zhao, Y. and Kiessler, P. C., Shapes of stationary autocovariances. J. Applied Probability 43 (2006), 1186-1193. MR2274647

[Ly1]     Lyons, R., Characterizations of measures whose Fourier-Stieltjes transforms vanish at infinity. Bull. Amer. Math. Soc. 10 (1984), 93-96. MR0722859

[Ly2]     Lyons, R., Fourier-Stieltjes coefficients and asymptotic distribution modulo 1. Ann. Math. 122 (1985), 155-170. MR0799255

[Ly3]     Lyons, R., Seventy years of Rajchman measures. J. Fourier Anal. Appl., Kahane Special Issue (1995), 363-377. MR1364897

[MakWe]     Makagon, A. and Weron, A., q-variate minimal stationary processes. Studia Math. 59 (1976), 41-52. MR0428419

[MatNeTo]     Máté, A., Nevai, P. and Totik, V., Aymptotics for the ratio of leading coefficients of orthogonal polynomials on the unit circle. Constructive Approximation 1 (1985), 63-69. MR0766095

[McCW]     McCoy, B. M. and Wu, T. T., The two-dimensional Ising model. Harvard Univ. Press, Cambridge MA, 1973.

[McC]     McCullagh, P., John Wilder Tukey, 1915-2000. Biographical Memoirs of Fellows of the Royal Society 49 (2003), 537-555.

[McLZ]     McLeod, A. I. and Zhang, Y., Partial autocorrelation parametrization for subset regression. J. Time Series Analysis 27 (2006), 599-612. MR2245714

[Me]     Meyer, Y., Wavelets and operators. Cambridge Univ. Press, 1992. MR1228209

[MeCo]     Meyer, Y. and Coifman, R., Wavelets. Calderón-Zygmund and multilinear operators. Cambridge Univ. Press, 1997. MR1456993

[Nak1]     Nakazi, T., Exposed points and extremal problems in H1. J. Functional Analysis 53 (1983), 224-230. MR0724027

[Nak2]     Nakazi, T., Exposed points and extremal problems in H1, II. Tohoku Math. J. 37 (1985), 265-269. MR0788133

[vN]     von Neumann, J., Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren. Math. Ann. 102, 49-131 (Collected Works II.1). MR1512569

[Nik1]     Nikolskii, N. K., Treatise on the shift operator: Spectral function theory. Grundl. math. Wiss. 273, Springer, 1986. MR0827223

[Nik2]     Nikolskii, N. K., Operators, functions and systems: an easy reading. Volume 1: Hardy, Hankel and Toeplitz; Volume 2: Model operators and systems. Math. Surveys and Monographs 92, 93, Amer. Math. Soc., 2002. MR1864396

[OpSc]     Oppenheim, A. V. and Schafer, R. W., Discrete signal processing. Prentice-Hall, 1989.

[PaWiZy]     Paley, R. E. A. C., Wiener, N. and Zygmund, A., Notes on random functions. Math. Z. 37 (1933), 647-668. MR1545426

[Pel]     Peller, V. V., Hankel operators and their applications. Springer, 2003. MR1949210

[PoSz]     Pólya, G. and Szegö, G., Problems and theorems in analysis, I, II. Classics in Math., Springer, 1998 (transl. 4th German ed., 1970; 1st ed. 1925). MR1492447

[Pou]     Pourahmadi, M., Foundations of time series analysis and prediction theory. Wiley, 2001. MR1849562

[Rak]     Rakhmanov, E. A., On the asymptotics of the ratios of orthogonal polynomials, II, Math. USSR Sb. 58 (1983), 105-117.

[Ram]     Ramsey, F. L., Characterization of the partial autocorrelation function. Ann. Statist. 2 (1974), 1296-1301. MR0359219

[Rao]     Rao, M. M., Harmonizable, Cramér and Karhunen classes of processes. Ch. 10 (p.276-310) in [HaKR].

[Rob]     Robinson, P. M. (ed.), Time series with long memory. Advanced Texts in Econometrics, Oxford University Press, 2003. MR2083220

[RoRo]     Rosenblum, M. and Rovnyak, J., Hardy classes and operator theory, Dover, New York, 1997 (1st ed. Oxford University Press, 1985). MR1435287

[Roz]     Rozanov, Yu. A., Stationary random processes. Holden-Day, 1967. MR0214134

[Ru]     Rudin, W., Real and complex analysis, 2nd ed. McGraw-Hill, 1974 (1st ed. 1966). MR0210528

[Sa1]     Sarason, D., Function theory on the unit circle. Virginia Polytechnic Institute and State University, Blacksburg VA, 1979. MR0521811

[Sa2]     Sarason, D., An addendum to “Past and future”, Math. Scand. 30 (1972), 62-64. MR0385990

[Sa3]     Sarason, D., Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391-405. MR0377518

[Si1]     Simon, B., The statistical mechanics of lattice gases, Volume 1. Princeton University Press, 1993. MR1239893

[Si2]     Simon, B., The Golinskii-Ibragimov method and a theorem of Damanik-Killip. Int. Math. Res. Notes (2003), 1973-1986. MR1991180

[Si3]     Simon, B., OPUC on one foot. Bull. Amer. Math. Soc. 42 (2005), 431-460. MR2163705

[Si4]     Simon, B., Orthogonal polynomials on the unit circle. Part 1: Classical theory. AMS Colloquium Publications 54.1, American Math. Soc., Providence RI, 2005. MR2105088

[Si5]     Simon, B., Orthogonal polynomials on the unit circle. Part 2: Spectral theory. AMS Colloquium Publications 54.2, American Math. Soc., Providence RI, 2005. MR2105089

[Si6]     Simon, B., The sharp form of the strong Szegö theorem. Contemorary Math. 387 (2005), 253-275, AMS, Providence RI. MR2180212

[Si7]     Simon, B., Meromorphic Szegö functions and asymptotic series for Verblunsky coefficients. Acta Math. 195 (2005), 267-285. MR2233692

[Si8]     Simon, B., Ed Nelson’s work in quantum theory. Diffusion, quantum theory and radically elementary mathematics (ed. W. G. Faris), Math. Notes 47 (2006), 75-93.

[Si9]     Simon, B., Szegö’s theorem and its descendants: Spectral theory for L2 perturbations of orthogonal polynomials. Princeton University Press, 2011. MR2743058

[Si10]     Simon, B., Convexity: An analytic viewpoint. Cambridge Tracts in Math. 187, Cambridge University Press, 2011. MR2814377

[Sz1]     Szegö, G., Ein Grenzwertsatz über die Toeplitzschen Determinanten einer reellen positiven Funktion. Math. Ann. 76 (1915), 490-503. MR1511838

[Sz2]     Szegö, G., Beiträge zur Theorie der Toeplitzschen Formen. Math. Z. 6 (1920), 167-202. MR1544404

[Sz3]     Szegö, G., Beiträge zur Theorie der Toeplitzschen Formen, II. Math. Z. 9 (1921), 167-190. MR1544462

[Sz4]     Szegö, G., Orthogonal polynomials. AMS Colloquium Publications 23, American Math. Soc., Providence RI, 1939.

[Sz5]     Szegö, G., On certain Hermitian forms associated with the Fourier series of a positive function. Festschrift Marcel Riesz 222-238, Lund, 1952. MR0051961

[SzN]     Sz.-Nagy, B., Spektraldarstellung linearer Transformationen der Hilbertschen Raumes. Ergeb. Math. 5, Springer, 1942.

[SzNF]     Sz.-Nagy, B. and Foias, C., Harmonic analysis of operators on Hilbert space, North-Holland, 1970 (2nd ed., with H. Bercovici and L. Kérchy, Springer Universitext, 2010). MR0275190

[TeKi]     Teyssière, G. and Kirman, A. P. (ed.), Long memory in economics. Springer, 2007. MR2263582

[Tor]     Torchinsky, A., Real-variable methods in harmonic analysis, Dover, 2004 (Academic Press, 1981). MR2059284

[TrVo1]     Treil, S. and Volberg, A., Wavelets and the angle between past and future. J. Functional analysis 143 (1997), 269-308. MR1428818

[TrVo2]     Treil, S. and Volberg, A., A simple proof of the Hunt-Muckenhoupt-Wheeden theorem. Preprint, 1997. MR1478786

[Ts]     Tsirelson, B., Spectral densities describing off-white noises. Ann. Inst. H. Poincaré Prob. Stat. 38 (2002), 1059-1069. MR1955353

[V1]     On positive harmonic functions. A contribution to the algebra of Fourier series. Proc. London Math. Soc. 38 (1935), 125-157. MR1576309

[V2]     On positive harmonic functions (second paper). Proc. London Math. Soc. 40 (1936), 290-320.

[Wh]     Whittle, P., Hypothesis testing in time series analysis. Almqvist and Wiksell, Uppsala, 1951. MR0040634

[Wi1]     Wiener, N., Generalized harmonic analysis. Acta Math. 55 (1930), 117-258 (reprinted in Generalized harmonic analysis and Tauberian theorems, MIT Press, Cambridge MA, 1986, and Collected Works, Volume II: Generalized harmonic analysis and Tauberian theory; classical harmonic and complex analysis (ed. P. Masani), MIT Press, Cambridge MA, 1979). MR1555316

[Wi2]     Wiener, N., Extrapolation, interpolation and smoothing of stationary time series. With engineering applications. MIT Press/Wiley, 1949. MR0031213

[Wi3]     Wiener, N., Collected Works, Volume III: The Hopf-Wiener integral equation; prediction and filtering; quantum mechanics and relativity; miscellaneous mathematical papers (ed. P. Masani), MIT Press, Cambridge MA, 1981. MR0652691

[Wil]     Williams, D., Weighing the odds. Cambridge University Press, 2001. MR1854128

[Wo]     Wold, H., A study in the analysis of stationary time series. Almqvist and Wiksell, Uppsala, 1938 (2nd ed., appendix by Peter Whittle, 1954). MR0061344

[Z1]     Zygmund, A., Sur les fonctions conjuguées. Fund. Math. 13 (1929), 284-303; corr. Fund. Math. 18 (1932), 312 (reprinted in [Z3], vol 1).

[Z2]     Zygmund, A., Trigonometric series, Volumes 1,2, Cambridge University Press, 1968. MR0236587

[Z3]     Zygmund, A., Selected papers of Antoni Zygmund (ed. A. Hulanicki, P. Wojtaszczyk and W. Zelasko), Volumes 1-3, Kluwer, Dordrecht, 1989.




Home | Current | Past volumes | About | Login | Notify | Contact | Search

Probability Surveys. ISSN: 1549-5787