Home | Current | Past volumes | About | Login | Notify | Contact | Search | |||||
|
|||||
ReferencesAdler, R. J., Taylor, J. E.: Random Fields and Geometry. Springer, New York (2007) MR2319516 Aizenman, M., Molchanov, S.: Localization at large disorder and at extreme energies: an elementary derivation. Commun. Math. Phys. 157, 245–278 (1993) MR1244867 Aizenman, M., Schenker, J. H., Friedrich, R. M., Hundertmark, D.: Finite-volume fractional-moment criteria for Anderson localization. Commun. Math. Phys. 224, 219–253 (2001) MR1868998 Anderson, G. W., Guionnet, A., Zeitouni, O.: An introduction to random matrices. Cambridge Studies in Advanced Mathematics, vol. 118. Cambridge University Press, Cambridge (2010) MR2760897 Anderson, P. W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958) Astrauskas, A.: On high-level exceedances of i.i.d. random fields. Stat. Probab. Letters 52, 271–277 (2001) MR1838215 Astrauskas, A.: On high-level exceedances of Gaussian fields and the spectrum of random Hamiltonians. Acta Appl. Math. 78, 35–42 (2003) MR2021766 Astrauskas, A.: Strong laws for exponential order statistics and spacings. Lithuanian Math. J. 46, 385–397 (2006) MR2320358 Astrauskas, A.: Poisson-type limit theorems for eigenvalues of finite-volume Anderson Hamiltonian. Acta Appl. Math. 96, 3–15 (2007) MR2327522 Astrauskas, A.: Extremal theory for spectrum of random discrete Schrödinger operator. I. Asymptotic expansion formulas. J. Stat. Phys. 131, 867–916 (2008) MR2398957 Astrauskas, A.: Extremal theory for spectrum of random discrete Schrödinger operator. II. Distributions with heavy tails. J. Stat. Phys. 146, 98–117 (2012) MR2873003 Astrauskas, A.: Extremal theory for spectrum of random discrete Schrödinger operator. III. Localization properties. J. Stat. Phys. 150, 889–907 (2013) MR3028390 Astrauskas, A.: Asymptotic expansion formulas for the largest eigenvalues of finite-volume Anderson Hamiltonians with fractional double exponential tails. In preparation (2016) Astrauskas, A., Molchanov, S. A.: Limit theorems for the ground states of the Anderson model. Funkts. Anal. Prilozhen. 26:4, 92–95 (1992); English transl.: Funct. Anal. Appl. 26, 305–307 (1992) MR1209956 Auffinger, A., Ben Arous, G., Péché, S.: Poisson convergence for the largest eigenvalues of heavy tailed random matrices. Ann. Inst. H. Poincaré Probab. Statist. 45, 589–610 (2009) MR2548495 Bai, Z. D., Yin, Y. Q.: Necessary and sufficient conditions for almost sure convergence of the largest eigenvalue of a Wigner matrix. Ann. Probab. 16, 1729–1741 (1988) MR0958213 Benaych-Georges, F., Péché, S.: Localization and delocalization for heavy tailed band matrices. Ann. Inst. H. Poincaré Probab. Statist. 50, 1385–1403 (2014) MR3269999 Bingham, N. H., Goldie, C. M., Teugels, J. L.: Regular Variation. Cambridge University Press, Cambridge (1987) MR0898871 Binswanger, K., Embrechts, P.: Longest runs in coin tossing. Insurance Math. Econom. 15, 139–149 (1994) MR1333087 Biroli, G., Bouchaud, J.-P., Potters, M.: On the top eigenvalue of heavy-tailed random matrices. Europhys. Lett. EPL 78(1), Art 10001, 5 pp (2007) MR2371333 Bishop, M., Wehr, J.: Ground state energy of the one-dimensional discrete random Schrödinger operator with Bernoulli potential. J. Stat. Phys. 147, 529–541 (2012) MR2923328 Biskup, M., Fukushima, R., König, W.: Eigenvalue fluctuations for lattice Anderson Hamiltonians. Preprint arXiv:1406.5268 [math.PR] (2014) MR3537879 Biskup, M., König, W.: Long-time tails in the parabolic Anderson model with bounded potential. Ann. Probab. 29, 636–682 (2001) MR1849173 Biskup, M., König, W.: Eigenvalue order statistics for random Schrödinger operators with doubly-exponential tails. Commun. Math. Phys. 341, 179–218 (2016) MR3439225 Bourgade, P., Erds, L., Yau, H.-T.: Edge universality of beta ensembles. Commun. Math. Phys. 332, 261–353 (2014) MR3253704 Carmona, R., Klein, A., Martinelli, F.: Anderson localization for Bernoulli and other singular potentials. Commun. Math. Phys. 108, 41–66 (1987) MR0872140 de Haan, L., Ferreira, A.: Extreme Value Theory: An Introduction. Springer, New York (2006) MR2234156 Deheuvels, P.: Strong laws for the kth order statistics when k ≤ clog 2n. Probab. Theory Relat. Fields 72, 133–154 (1986) MR0835163 Devroye, L.: Upper and lower class sequences for minimal uniform spacings. Z. Wahrsch. Verw. Gebiete 61, 237–254 (1982) MR0675613 Elgart, A., Krüger, H., Tautenhahn, M., Veselić, I.: Discrete Schrödinger operators with random alloy-type potential. In: Benguria, R., Friedman, E., Mantoiu, M. (eds.), Spectral Analysis of Quantum Hamiltonians, Operator Theory: Advances and Applications, vol. 224, pp. 107–131. Springer, Basel (2012) MR2962857 Embrechts, P., Kluppelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and Finance. Springer, Berlin (1997) MR1458613 Erds, L., Knowles, A., Yau, H.-T., Yin, J.: Spectral statistics of Erds-Rényi graphs I: Local semicircle law. Ann. Probab. 41, 2279–2375 (2013a) MR3098073 Erds, L., Knowles, A., Yau, H.-T., Yin, J.: Delocalization and diffusion profile for random band matrices. Commun. Math. Phys. 323, 367–416 (2013b) MR3085669 Fiodorov, A., Muirhead, S.: Complete localisation and exponential shape of the parabolic Anderson model with Weibull potential field. Electron. J. Probab. 19, no. 58, 1–27 (2014) MR3238778 Fröhlich, J., Martinelli, F., Scoppola, E., Spencer, T.: Constructive proof of localization in the Anderson tight binding model. Commun. Math. Phys. 101, 21–46 (1985) MR0814541 Fröhlich, J., Spencer, T.: Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Commun. Math. Phys. 88, 151–184 (1983) MR0696803 Gärtner, J., den Hollander, F.: Correlation structure of intermittency in the parabolic Anderson model. Probab. Theory Relat. Fields 114, 1–54 (1999) MR1697138 Gärtner, J., König, W., Molchanov, S. A.: Almost sure asymptotics for the continuous parabolic Anderson model. Probab. Theory Relat. Fields 118, 547–573 (2000) MR1808375 Gärtner, J., König, W., Molchanov, S.: Geometric characterization of intermittency in the parabolic Anderson model. Ann. Probab. 35, 439–499 (2007) MR2308585 Gärtner, J., Molchanov, S. A.: Parabolic problems for the Anderson model. I. Intermittency and related topics. Commun. Math. Phys. 132, 613–655 (1990) MR1069840 Gärtner, J., Molchanov, S. A.: Parabolic problems for the Anderson model. II. Second-order asymptotics and structure of high peaks. Probab. Theory Relat. Fields 111, 17–55 (1998) MR1626766 Germinet, F., Klopp, F.: Enhanced Wegner and Minami estimates and eigenvalue statistics of random Anderson models at spectral edges. Ann. H. Poincaré 14, 1263–1285 (2013) MR3070753 Germinet, F., Klopp, F.: Spectral statistics for random Schrödinger operators in the localized regime. J. Europ. Math. Soc. 16:9, 1967–2031 (2014) MR3273314 Götze, F., Naumov, A., Tikhomirov, A. N.: Local semicircle law under moment conditions. Part II: Localization and delocalization. Preprint arXiv:1511.00862v2 [math.PR] (2015) Grenkova, L. N., Molchanov, S. A., Sudarev, Yu. N.: On the basic states of one-dimensional disordered structures. Commun. Math. Phys. 90, 101–124 (1983). MR0714614 Grenkova, L. N., Molchanov, S. A., Sudarev, Yu. N.: The structure of the edge of the multidimensional Anderson model spectrum. Teoret. Mat. Fiz. 85:1, 32–40 (1990); English transl.: Theor. Math. Phys. 85:1, 1033–1039 (1990) MR1083950 van der Hofstad, R., König, W., Mörters, P.: The universality classes in the parabolic Anderson model. Commun. Math. Phys. 267, 307–353 (2006) MR2249772 van der Hofstad, R., Mörters, P., Sidorova, N.: Weak and almost sure limits for the parabolic Anderson model with heavy-tailed potential. Ann. Appl. Prob. 18, 2450-2494 (2008) MR2474543 Hundertmark, D.: A short introduction to Anderson localization. In: Analysis and stochastics of growth processes and interface models, pp. 194–218. Oxford Univ. Press, Oxford (2008) MR2603225 Killip, R., Nakano, F.: Eigenfunction statistics in the localized Anderson model. Ann. H. Poincaré 8, 27–36 (2007) MR2299191 Kirsch, W.: An invitation to random Schrödinger operator. In: Random Schrödinger operators, Panor. Synthéses, vol. 25, pp. 1–119. Soc. Math. France, Paris (2008) MR2509110 Kirsch, W., Metzger, B.: The integrated density of states for random Schrödinger operators. In: Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday, Proc. Sympos. Pure Math., vol. 76, pp. 649–696. Amer. Math. Soc., Providence (2007) MR2307751 Klopp, F.: Band edge behavior of the integrated density of states of random Jacobi matrices in dimension 1. J. Stat. Phys. 90, 927–947 (1998) MR1616938 Klopp, F.: Precise high energy asymptotics for the integrated density of states of an unbounded random Jacobi matrix. Rev. Math. Phys. 12(4), 575–620 (2000) MR1763843 Klopp, F.: Decorrelation estimates for the eigenlevels of the discrete Anderson model in the localized regime. Commun. Math. Phys. 303, 233–260 (2011) MR2775121 König, W.: The Parabolic Anderson Model. Birkhäuser, Basel (2016) König, W., Lacoin, H., Mörters, P., Sidorova, N.: A two cities theorem for the parabolic Anderson model. Ann. Probab. 37, 347–392 (2009) MR2489168 Lankaster, P.: Theory of Matrices. Academic Press, London (1969) MR0245579 Leadbetter, M. R., Lindgren, G., Rootzén, H.: Extremes and Related Properties of Random Sequences and Processes. Springer, New York (1983) MR0691492 Lee, J. O., Yin, J.: A necessary and sufficient condition for edge universality of Wigner matrices. Duke Math. J. 163(1), 117–173 (2014) MR3161313 Mehta, M. L.: Random Matrices, 3rd ed. Elsevier/Academic Press, Amsterdam (2004) MR2129906 Minami, N.: Local fluctuation of the spectrum of a multidimensional Anderson tight binding model. Commun. Math. Phys. 177, 709–725 (1996) MR1385082 Minami, N.: Theory of point processes and some basic notions in energy level statistics. In: Probability and Mathematical Physics. CRM Proceedings and Lecture Notes, vol. 42, pp. 353–398. Amer. Math. Soc., Providence (2007) MR2352280 Molchanov, S.: The local structure of the spectrum of the one-dimensional Schrödinger operator. Commun. Math. Phys. 78, 429–446 (1981) MR0603503 Molchanov, S. A.: Lectures on random media. In: Lectures on Probability Theory, Ecole d’Eté de Probabilités de Saint-Flour XXII-1992. Lect. Notes in Math., vol. 1581, pp. 242–411. Springer, Berlin (1994) MR1307415 Molchanov, S., Vainberg, B.: Scattering on the system of the sparse bumps: multidimensional case.Applicable Analysis 71, 167–185 (1998) MR1690097 Molchanov, S., Vainberg, B.: Spectrum of multidimensional Schrödinger operators with sparse potentials. In: Santosa, F., Stakgold, I. (eds.) Analytical and Computational Methods in Scattering and Applied Mathematics, pp. 231–253. Chapman and Hall/CRC (2000) MR1756700 Molchanov, S., Zhang, H.: The parabolic Anderson model with long range basic Hamiltonian and Weibull type random potential. In: Deuschel, J.-D., Gentz, B., König, W., von Renesse, M., Scheutzow, M., Schmock, U. (eds.) Probability in Complex Physical Systems, In Honour of Erwin Bolthausen and Jürgen Gärtner, Springer Proceedings in Mathematics, vol. 11, pp. 13–31. Springer, Heidelberg (2012) MR3372843 Muirhead, S., Pymar, R.: Localization in the Bouchaud-Anderson model. Preprint arXiv: 1411.4032v2 [math.PR] (2014) MR3549713 Pastur, L., Figotin, A.: Spectra of Random and Almost-Periodic Operators. Springer, Berlin (1992) MR1223779 Resnick, S. I.: Extreme Values, Regular Variation, and Point Processes. Springer, Berlin (1987) MR0900810 Shorack, G. R., Wellner, J. A.: Empirical Processes with Applications to Statistics. Wiley, New York (1986) MR0838963 Sidorova, N., Twarowski, A.: Localisation and ageing in the parabolic Anderson model with Weibull potential. Ann. Probab. 42, 1666–1698 (2014) MR3262489 Simon, B., Wolff, T.: Singular continuous spectra under rank one perturbations and localization for random Hamiltonians. Commun. Pure Appl. Math. 39, 75–90 (1986) MR0820340 Sodin, S.: The spectral edge of some random band matrices. Annals of Mathematics 172, 2223–2251 (2010) MR2726110 Soshnikov, A.: Universality at the edge of the spectrum in Wigner random matrices. Commun. Math. Phys. 207, 697–733 (1999) MR1727234 Soshnikov, A.: Poisson statistics for the largest eigenvalues of Wigner random matrices with heavy tails. Elect. Commun. Probab. 9, 82–91 (2004) MR2081462 Spencer, T.: Random banded and sparse matrices (Chapter 23). In: Akemann, G., Baik, J., Di Francesco, P. (eds.) Oxford Handbook on Random Matrix Theory. Oxford University Press, Oxford (2011) MR2932643 Stolz, G.: An introduction to the mathematics of Anderson localization. Contemp. Math. 552, 71–108 (2011) MR2868042 Sznitman, A.-S.: Brownian Motion, Obstacles and Random Media. Springer, Berlin (1998) MR1717054 Tao, T., Vu, V.: Random matrices: Universality of local eigenvalue statistics up to the edge. Commun. Math. Phys. 298, 549–572 (2010) MR2669449 Tao, T., Vu, V.: Random matrices: the universality phenomenon for Wigner ensembles. In: Modern aspects of random matrix theory, Proc. Sympos. Appl. Math., vol. 72, pp. 121–172. Amer. Math. Soc., Providence (2014) MR3288230 Tautenhahn, M., Veselić, I.: Discrete alloy-type models: regularity of distributions and recent results. Markov Process. Related Fields 21, 823–846 (2015) MR3494776 Vu, V., Wang, K.: Random weighted projections, random quadratic forms and random eigenvectors. Random Struct. Alg. 47, 792–821 (2015) MR3418916 Wellner, J. A.: Limit theorems for the ratio of the empirical distribution function to the true distribution function. Z. Wahrsch. Verw. Gebiete 45, 73–88 (1978) MR0651392 |
|||||
Home | Current | Past volumes | About | Login | Notify | Contact | Search Probability Surveys. ISSN: 1549-5787 |