Home | Current | Past volumes | About | Login | Notify | Contact | Search | |||||
|
|||||
References[AdArKr] Adamjan, V. M., Arov, D. Z. and Krein, M. G., Infinite Hankel matrices and generalized problems of Carathéodory–Fejér and I. Schur. Functional Anal. Appl. 2 (1968), 269-281. [ArDy1] Arov, D. Z. and Dym, H., Matricial Nehari problems, J-inner functions and the Muckenhoupt condition. J. Funct. Anal. 181 (2001), 227-299. MR1821698 [ArDy2] Arov, D. Z. and Dym, H., Criteria for the strong regularity of J-inner functions and γ-generating functions. J. Math. Anal. Appl. 280 (2003), 387-399. MR1977919 [ArDy3] Arov, D. Z. and Dym, H., J-contractive matrix valued functions and related topics, Encycl. Math. Appl. 116, Cambridge Univ. Press, Cambridge, 2008. MR2474532 [Bar1] Barclay, S. J., Continuity of the spectral factorization maping. J. London Math. Soc. 70 (2004), 763-779. MR2096876 [Bar2] Barclay, S. J., A solution of the Douglas-Rudin problem for matrix-valued functions. Proc. London Math. Soc. 99 (2009), 757-786. MR2551470 [BasWi] Basor, E. L. and Widom, H., On a Toeplitz determinant identity of Borodin and Okounkov. Integral Equations and Operator Theory 37 (2000), 397-401. MR1780119 [Bax1] Baxter, G., A convergence equivalence related to polynomials orthogonal on the unit circle. Trans. Amer. Math. Soc. 99 (1961), 471-487. MR0126126 [Bax2] Baxter, G., An asymptotic result for the finite predictor. Math. Scand. 10 (1962), 137-144. MR0149584 [Bax3] Baxter, G., A norm inequality for a “finite-section” Wiener-Hopf equation. Illinois J. Math. 7 (1963), 97-103. MR0145285 [Beu] Beurling, A., On two problems concerning linear transformations in Hilbert space. Acta Math. 81 (1948), 239-255 (reprinted in The collected works of Arne Beurling, Volumes 1,2, Birkhäuser, 1989). MR0027954 [Bi] Bingham, N. H., Szegö’s theorem and its probabilistic descendants. Probability Surveys 9 (2012), 287-324. [BiFr] Bingham, N. H. and Fry, J. M., Regression: Linear models in statistics. SUMS (Springer Undergraduate Mathematics Series), 2010. MR2724817 [BiFrKi] Bingham, N. H., Fry, J. M. and Kiesel, R., Multivariate elliptic processes. Statistica Neerlandica 64 (2010), 352-366. MR2683465 [BiInKa] Bingham, N. H., Inoue, A. and Kasahara, Y., An explicit representation of Verblunsky coefficients. Statistics and Probability Letters 82.2 (2012), 403-410. MR2875229 [BlJeHa] Bloomfield, P., Jewell, N. P. and Hayashi, E., Characterization of completely non-deterministic stochastic processes. Pacific J. Math. 107 (1983), 307-317. MR0705750 [Bo1] Böttcher, A., One more proof of the Borodin-Okounkiv formula for Toeplitz determinants. Integral Equations and Operator Theory 41 (2001), 13 -125. MR1844464 [Bo2] Böttcher, A., Featured review of the Borodin-Okounkov and Basor-Widom papers. Mathematical Reviews 1790118/9 (2001g:47042a,b). [Bo3] Böttcher, A., On the determinant formulas by Borodin, Okounkov, Baik, Deift and Rains. Operator Th. Adv. Appl. 135, 91-99, Birkhäuser, Basel, 2002. MR1935759 [Cha1] Chanzy, J., Théorèmes-limite de Szëgo dans le cas matriciel. Proc. Japan Acad. A 82 (2006), 113-116. MR2279275 [Cha2] Chanzy, J., Inversion d’un opérateur de Toeplitz tronqué à symbole matriciel et théorèmes-limite de Szegö. Ann. Math. Blaise Pascal 13 (2006), 111-205. MR2233014 [ChePou] Cheng, R. and Pourahmadi, M., Baxter’s inequality and convergence of predictors of multivariate stochastic processes. Probab. Th. Rel. Fields 95 (1993), 115-124. MR1207310 [CuZw] Curtain, R. F. and Zwart, H., An introduction to infinite-dimensional linear systems. Springer, 1995. MR1351248 [DaPuSi] Damanik, D., Pushnitski, A. and Simon, B., The analytic theory of matrix orthogonal polynomials. Surveys in Approximation Theory 4 (2008), 1-85. MR2379691 [DeHoKhTy] Derevyagin, M., Holtz, O., Khrushchev, S. and Tyaglov, M., Szegö’s theorem for matrix orthogonal polynomials. arXiv:1104.4999v1 [math.CA] 26 April 2011. [Dev] Devinatz, A., The factorization of operator-valued functions. Ann. Math. 73 (1961), 458-495. MR0126702 [DuFrKi] Dubovoj, V. K., Fritzsche, B. and Kirstein, B., Matricial version of the classical Schur problem. Teubner, Stuttgart, 1992. [EpJaLa] Ephremidze, L., Janashia, G. and Lagvilava, E., An analytic proof of the matrix spectral factorization theorem. Georgian Math. J. 15 (2008), 241-249. MR2428468 [EpLa] Ephremidze, L. and Lagvilada, E., Remark on outer analytic matrix functions. Proc. A. Razmadze Math. Inst. 152 (2010), 29-32. MR2663529 [FrBh] Frazho, A. E. and Bhosri, W., An operator perspective on signals and systems. Operator Theory: advances and Applications 204, Birkhäuser, 2010. MR2584037 [FoFr] Foias, C. and Frazho, A. E., The commutant lifting approach to interpolation problems. Operator Theory: Advances and Applications 44, Birkhäuser, 1990. MR1120546 [GrSz] Grenander, U. and Szegö, G., Toeplitz forms and their applications. Univ. California Press, Berkeley, CA, 1958. MR0094840 [Hal] Halmos, P. R., Shifts on Hilbert spaces. J. reine ang. Math. 208 (1961), 102-112. MR0152896 [Ha] Hannan, E. J., Multiple time series, Wiley, 1970 MR0279952 [HeLo] Helson, H. and Lowdenslager, D., Prediction theory and Fourier series in several variables, I, II. Acta Math. 99 (1958), 165-202, 106 (1961), 175-213. MR0097688 [HeSa] Helson, H. and Sarason, D., Past and future. Math. Scand 21 (1967), 5-16. MR0236989 [HeSz] H. Helson and G. Szegö, A problem in prediction theory. Acta Mat. Pura Appl. 51 (1960), 107-138. MR0121608 [HiPh] Hille, E. and Phillips, R. S., Functional anaysis and semigroups. Colloq. Publ. 31, American Math. Soc., 1957. MR0089373 [IbRo] Ibragimov, I. A. and Rozanov, Yu. A., Gaussian random processes. Springer, 1978. MR0543837 [In1] Inoue, A., Asymptotics for the partial autocorrelation function of a stationary process. J. Analyse Math. 81 (2000), 65-109. MR1785278 [In2] Inoue, A., Asymptotic behaviour for partial autocorrelation functions of fractional ARIMA processes. Ann. Appl. Prob. 12 (2002), 1471-1491. MR1936600 [In3] Inoue, A., AR and MA presentations of partial autocorrelation functions with applications. Prob. Th. Rel. Fields 140 (2008), 523-551. MR2365483 [InKa1] Inoue, A. and Kasahara, Y., Partial autocorrelation functions of the fractional ARIMA process. J. Multivariate Analysis 89 (2004), 135-147. MR2041213 [InKa2] Inoue, A. and Kasahara, Y., Explicit representation of finite predictor coefficients and its applications. Ann. Statist. 34 (2006), 973-993. MR2283400 [JaLaEp] Janashia, G., Lagvilada, E. and Ephremidze, L., A new method of matrix spectral factorization. IEEE Trans. Info. Th. 57 (2011), 2318-2326. MR2809092 [Kal] Kallenberg, O., Foundations of modern probability, 2nd ed., Springer, 2002. MR1876169 [KasBi] Kasahara, Y. and Bingham, N. H., Verblunsky coefficients and Nehari sequences. Trans. Amer. Math. Soc., to appear. [Kol] Kolmogorov, A. N., Stationary sequences in Hilbert space. Bull. Moskov. Gos. Univ. Mat. 2 (1941), 1-40 (in Russian; reprinted, Selected works of A. N. Kolmogorov, Vol. 2: Theory of probability and mathematical statistics, Nauka, Moskva, 1986, 215-255). [Lax1] Lax, P. D., Translation-invariant subspaces. Acta Math. 101 (1959), 163-178. MR0105620 [Lax2] Lax, P. D., On the regularity of spectral densities. Th. Probab. Appl. 8 (1963), 337-340. MR0156217 [Lax3] Lax, P. D., On the factorization of matrix-valued functions. Comm. Pure Appl. Math. 29 (1976), 683-688. MR0425663 [LeMcK] Levinson, N. and McKean, H. P., Weighted trigonometrical approximation on R1 with application to the germ field of a stationary Gaussian noise. Acta Math. 112 (1964), 99-143 (reprinted in Selected papers of Norman Levinson Vol. 2 (Birkhäuser, Basel, 1998), IX, 222-266). MR0163111 [MakMiSc] Makagon, A., Miamee, A. G. and Schröder, B. S. W., Recursive condition for positivity of the angle for multivariate stationary sequences. Proc. Amer. Math. Soc. 126 (1998), 1821-1825. MR1443841 [MakSa] Makagon, A. and Salehi, H., Notes on infinite-dimensional stationary sequences. Probability Theory on Vector Spaces IV, 200-238. Lecture Notes in Math. 1391, Springer, 1987. MR1020565 [MakWe] Makagon, A. and Weron, A., q-variate minimal stationary processes. Studia Math. 59 (1976), 41-52. MR0428419 [Mas1] Masani, P., Cramér’s theorem on monotone matrix functions and the Wold decomposition. Probability and statistics: The Harald Cramér volume (ed. U. Grenander) 175-189, Wiley, 1959. MR0124929 [Mas2] Masani, P., The prediction theory of multivariate stochastic processes, III. Acta Math. 104 (1960), 141-162. MR0121952 [Mas3] Masani, P., Shift-invariant spaces and prediction theory. Acta Math. 107 (1962), 275-290. MR0140930 [Mas4] Masani, P., Recent trends in multivariate prediction theory. Multivariate Analysis (Proc. Int. Symp., Dayton OH) 351-382, Academic Press, 1966. MR0214228 [Mas5] Masani, P., Comments on the prediction-theoretic papers, 276-305 in [Wi]. [Mat] Matveev, R. F., Regularity of multi-dimensional stochastic processes with discrete time. Dokl. Akad. Nauk SSSR 126 (1959), 713-715. MR0115215 [Mei] Tao Mei, Operator-valued Hardy spaces. Memoirs Amer. Math. Soc. vol. 188 no. 881, 2007. MR2327840 [MoViKa] Morf, M., Vieira, A. and Kailath, T., Covariance characterization by partial autocorrelation matrices. Ann. Statist. 6 (1978), 643-678. MR0478519 [Nik1] Nikolskii, N. K., Treatise on the shifgt operator: Spectral function theory. Grundl. math. Wiss. 237, Springer, 1986. MR0827223 [Nik2] Nikolskii, N. K., Operators, functions and systems: an easy reading. Volume 1: Hardy, Hankel and Toeplitz; Volume 2: Model operators and systems. Math. Surveys and Monographs 92, 93, Amer. Math. Soc., 2002. MR1864396 [Pel1] Peller, V. V., Hankel operators and multivariate stochastic processes. Proc. Symp. Pure Math. 51, Part 1, 357-371, AMS, Providence, RI, 1990. MR1077396 [Pel2] Peller, V. V., Factorization and approximation problems for matrix functions. J. American Math. soc. 11 (1998), 751-770. MR1618768 [Pel3] Peller, V. V., Hankel operators and their applications, Springer, 2003. MR1949210 [Pou1] Pourahmadi, M., A matricial extension of the Helson-Szegö theorem and its application in multivariate prediction. J. Multivariate Analysis 16 (1985), 265-275. MR0790606 [Pou2] Pourahmadi, M., Joint mean-covariance models with applications to longitudinal data. Unconstrained parametrization. Biometrika 86 (1999), 677-690. MR1723786 [Pou3] Pourahmadi, M., Foundations of time series analysis and prediction theory. Wiley, 2001. MR1849562 [Re] Reinsel, G. C., Elements of multivariate time series analysis, Springer, 1997. MR1451875 [RiNa] Riesz, F. and Sz.-Nagy, B., Leçons d’analyse fonctionnelle, 2nd ed., Akad. Kiadó, 1953. MR0056821 [RosRov] Rosenblum, M. and Rovnyak, J., Hardy classes and operator theory, Dover, New York, 1997 (1st ed. Oxford University Press, 1985). MR1435287 [Ro1] Rozanov, Yu. A., Spectral properties of multivariate stationary processes and boundary properties of analytic functions. Th. Probab. Appl. 5 (1960), 362-376. [Ro2] Rozanov, Yu. A., Stationary random processes, Holden Day, San Francisco, CA, 1967. MR0214134 [Sa1] Sarason, D., An addendum to “Past and future”. Math. Scand. 30 (1972), 62-64. MR0385990 [Sa2] Sarason, D., Functions of vanishing mean oscillation. Trans. Amer. Math. Soc. 207 (1975), 391-405. MR0377518 [Sa3] Sarason, D., Function theory on the unit circle. Virginia Polytechnic Institute and State University, Blacksburg, VA, 1979. MR0521811 [SeSi] Seidel, M. and Silbermann, B., Banach algebras of structured matrix sequences. Linear Algebra Appl. 430 (2009), 1243-1281. MR2489391 [Si1] Simon, B., Orthogonal polynomials on the unit circle. Part 1: Classical theory. AMS Colloq. Publ. 54.1, AMS, Providence, RI, 2005. MR2105088 [Si2] Simon, B., Orthogonal polynomials on the unit circle. Part 2: Spectral theory. AMS Colloq. Publ. 54.2, AMS, Providence, RI, 2005. MR2105089 [Si3] Simon, B., Szegö’s theorem and its descendants. Spectral theory for L2 perturbations of orthogonal polynomials. Princeton Univ. Press, Princeton, NJ, 2011. MR2743058 [Ste] Stein, E. M., Harmonic analysis. Princeton University Press. 1993. MR1232192 [Sto] Stone, M. H., Linear transformations in Hilbert space and their applications to analysis. Coll. Publ. XV. American Math. Soc., 1932. MR1451877 [SzNF] Sz.-Nagy, B. and Foias, C., Harmonic analysis of operators on Hilbert space, North-Holland, 1970 (2nd ed., with H. Bercovici and L. Kérchy, Springer Universitext, 2010). MR0275190 [TrVo1] Treil, S. and Volberg, A., Wavelets and the angle between past and future. J. Functional Analysis 143 (1997), 269-308. MR1428818 [TrVo2] Treil, S. and Volberg, A., Completely regular multivariate stochastic processes and the Muckenhoupt conditiion. Pacific J. Math. 190 (1999), 361-382. MR1722900 [Wh] Whittle, P., On the fitting of multivariate autoregressions, and the approximate canonical factorization of a spectral density matrix. Biometrika 50 (1963), 129-134. MR0161430 [Wi] Wiener, N., Collected works, Volume III (ed. P. Masani), MIT Press, 1981. MR0652691 [WiAk] Wiener, N. and Akutowicz, E. J., A factorization of positive Hermitian matrices, J. Math. Mech. 8 (1959), 111-120 (reprinted in [Wi] 264-273). MR0103388 [WiMa1] Wiener, N. and Masani, P., The prediction theory of multivariate stochastic processes, I: The regularity condition. Acta Math. 98 (1957), 111-150 (reprinted in [Wi], 164-203). MR0097856 [WiMa2] Wiener, N. and Masani, P., The prediction theory of multivariate stochastic processes, II: The linear predictor. Acta Math. 98 99 (1958), 93-137 (reprinted in [Wi] 164-203). MR0097859 [WiMa3] Wiener, N. and Masani, P., On bivariate stationary processes and the factorization of matrix-valued functions. Th. Prob. Appl. 4 (1959), 300-308 (reprinted in [Wi] 255-263). MR0123368 [WigRo] Wiggins, R. A. and Robinson, E. A., Recursive solution to the multichannel filtering problem. J. Geophys. Res. 70 (1965), 1885-1891. MR0183107 |
|||||
Home | Current | Past volumes | About | Login | Notify | Contact | Search Probability Surveys. ISSN: 1549-5787 |