Home | Current | Past volumes | About | Login | Notify | Contact | Search | |||||
|
|||||
ReferencesAndrews, D. (1984). Probability inequalities for the sum of independent random variables. J. Appl. Probab. 21 930–934. Bardet, J. M., Doukhan, P., Lang G. and Ragache, N. (2007). Dependent Lindeberg central limit theorem and some applications. ESAIM Probab. Stat. 12 154–172. MR2374636 Bickel, P. J. and Bühlmann, P. (1999). A new mixing notion and functional central limit theorems for a sieve bootstrap in time series. Bernoulli 5 413–446. MR1693612 Bickel, P. J. and Freedman, D. A. (1981). Some asymptotic theory for the bootstrap. Ann. Statist. 9 1196–1217. MR0630103 Billingsley, P. (1968). Convergence of Probability Measures. New-York: Wiley. MR0233396 Birkhoff, G. D. (1931). Proof of the ergodic theorem. Proc. Natl. Acad. Sci. USA 17 656–660. Borovkova, S., Burton, R. and Dehling, H. (2001). Limit theorems for functionals of mixing processes with application to U-statistics and dimension estimation. Trans. Amer. Math. Soc. 353 4261–4318. MR1851171 Bradley, R. C. (2005). Basic properties of strong mixing conditions. A survey and some open questions. Probab. Surv. 2 107–144. MR2178042 Bradley, R. C. (2007). Introduction to Strong Mixing Conditions (in 3 volumes). Kendrick Press, Heber City, Utah. Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods, 2nd edition. Springer, New York. MR1093459 Bulinski, A. and Shashkin, A. (2005). Strong invariance principle for dependent multi-indexed random rariables. Doklady Mathematics 72 (1) 503–506. Coulon-Prieur, C. and Doukhan, P. (2000). A triangular central limit theorem under a new weak dependence condition. Statist. Probab. Lett. 47 61–68. MR1745670 Dedecker, J., Doukhan, P., Lang, G., León, J. R., Louhichi, S., Prieur, C. (2007). Weak Dependence: Models, Theory and Applications. Lecture Notes in Statistics 190, Springer-Verlag. MR2338725 Dedecker, J. and Doukhan, P. (2003). A new covariance inequality and applications. Stoch. Process. Appl. 106 (1) 63–80. MR1983043 Dedecker, J. and Prieur, C. (2004). Coupling for τ-dependent sequences and applications. J. Theor. Probab. 17 861–885. MR2105738 Dedecker, J. and Prieur, C. (2005). New dependence coefficients. Examples and applications to statistics. Probab. Theory Related Fields 132 203–236. MR2199291 Dedecker, J. and Rio, E. (2000). On the functional central limit theorem for stationary processes. Ann. Inst. H. Poincaré Probab. Statist. 36 1–34. MR1743095 Dehling, H. and Philipp, W. (2002). Empirical process techniques for dependent data. In: Empirical Process Techniques for Dependent Data (H. Dehling, T. Mikosch and M. Sörensen, eds.), 3–113. Birkhäuser, Boston. MR1958777 Dobrushin, R. L. (1970). Describing a system of random variables by conditional distributions. Teor. Veroyatn. Primen. 15 469–497 (in Russian). [English translation: Theory Probab. Appl. 15, 458–486.] MR0298716 Doukhan, P. (1994). Mixing: Properties and Examples. Lecture Notes in Statistics 85, Springer-Verlag. MR1312160 Doukhan, P. (2002). Limit theorems for stationary sequences. in Long Range Dependence, Theory and Applications, editors P. Doukhan, G. Oppenheim and M. Taqqu, Birkhäuser. Doukhan, P. and Louhichi, S. (1999). A new weak dependence condition and application to moment inequalities. Stoch. Process. Appl. 84 313–342. MR1719345 Doukhan, P., Madre, H. and Rosenbaum, M. (2007). ARCH type bilinear weakly dependent models. Statistics 41 (1) 31–45. MR2303967 Doukhan, P., Massart, P. and Rio, E. (1994). The functional central limit theorem for strongly mixing processes. Ann. Inst. H. Poincaré Probab. Statist. 30 (1) 63–82. MR1262892 Doukhan, P., Massart, P. and Rio, E. (1995). Invariance principle for the empirical measure of a weakly dependent process. Ann. Inst. H. Poincaré Probab. Statist. 31 (2) 393–427. MR1324814 Doukhan, P. and Neumann, M. H. (2007). Probability and moment inequalities for sums of weakly dependent random variables, with applications, Stoch. Process. Appl. 117 878–903. MR2330724 Doukhan, P. and Portal, F. (1987). Principe d’invariance faible pour la fonction de répartition empirique dans un cadre multidimensionnel et mélangeant. Probab. Math. Statist. 8 (2) 117–132. MR0928125 Doukhan, P., Teyssière, G. and Winant, M. H. (2006). A LARCH(∞) vector valued process, in Dependence in Probability and Statistics, Lecture Notes in Statistics 187, Bertail, Doukhan & Soulier editors, Springer-Verlag. MR2269087 Doukhan, P. and Wintenberger, O. (2007). An invariance principle for weakly dependent stationary general models. Probab. Math. Statist. 1 45–73. MR2353271 Eberlein, E. and Taqqu, M. S. (eds.) (1986). Dependence in Probability and Statistics. Birkhäuser, Boston. MR0899982 Esseen, C.-G. and Janson, S. (1985). On moment conditions for normed sums of independent variables and martingale differences. Stoch. Process. Appl. 19 173–182. MR0780729 Giraitis, L. and Surgailis, D. (2002). ARCH-type bilinear models with double long memory. Stoch. Process. Appl. 100 275–300. MR1919617 Gordin, M. I. (1969). The central limit theorem for stationary processes. Dokl. Akad. Nauk SSSR 188 739–741, (in Russian). [English translation: Soviet Math. Dokl. 10, 1174–1176.] MR0251785 Gorodetskii, V. V. (1977). On the strong mixing property for linear sequences. Teor. Veroyatn. Primen. 22 421–423, (in Russian). [English translation: Theory Probab. Appl. 22, 411–413.] MR0438450 Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and its Applications, Academic Press, New York. MR0624435 Ibragimov, I. A. (1962). Some limit theorems for stationary processes. Teor. Veroyatn. Primen. 7 361–392, (in Russian). [English translation: Theory Probab. Appl. 7, 349–382.] MR0148125 Kallabis, R. S. and Neumann, M. H. (2006). An exponential inequality under weak dependence. Bernoulli 12 333–350. MR2218558 Mallows, C. L. (1972). A note on asymptotic joint normality. Ann. Math. Statist. 43 508–515. MR0298812 Marden, M. (1949). The Geometry of the Zeros of a Polynomial in a Complex Variable. Mathematical Surveys Number III, Amer. Math. Soc., New York. MR0031114 Merlevède, F. and Peligrad, M. (2002). On the coupling of dependent random variables and applications. In Empirical Process Techniques for Dependent Data. pp. 171–193, Birkhäuser. MR1958781 Neumann, M. H. and Paparoditis, E. (2007). Goodness-of-fit tests for Markovian time series models: Central limit theory and bootstrap approximations. Bernoulli 14 14–46. Pitt, L. (1982). Positively correlated normal variables are associated. Ann. Probab. 10 496–499. MR0665603 Rio, E. (1993). Covariance inequalities for strongly mixing processes. Ann. Inst. H. Poincaré Probab. Statist. 29 (4) 587–597. MR1251142 Rio, E. (1995). About the Lindeberg method for strongly mixing sequences. ESAIM Probab. Stat. 1 35–61. MR1382517 Rio, E. (2000). Théorie asymptotique pour des processus aléatoires faiblement dépendants. SMAI, Mathématiques et Applications 31, Springer. MR2117923 Rosenblatt, M. (1956). A central limit theorem and a strong mixing condition. Proc. Natl. Acad. Sci. USA 42 43–47. MR0074711 Rosenblatt, M. (1980). Linear processes and bispectra. J. Appl. Probab. 17 265–270. MR0557456 Rosenblatt, M. (1985). Stationary Sequences and Random Fields. Birkhäuser. MR0885090 Shao, Q. M. (1988). Remark on the invariance principle for ρ-mixing sequences of random variables. Chinese Ann. Math. Ser. A 9 409–412. MR0996917 Shao, Q. M. (1995). Maximal inequalities for partial sums of ρ-mixing sequences. Ann. Probab. 23 948–965. MR1334179 Shao, Q. M. and Yu, H. (1996). Weak convergence for weighted empirical processes of dependent sequences. Ann. Probab. 24 2052–2078. MR1415243 Stout, W. (1974). Almost Sure Convergence. Academic Press, New York. MR0455094 Wu, W. B. (2005). Nonlinear system theory: Another look at dependence. Proc. Natl. Acad. Sci. USA 102 14150–14154. MR2172215 |
|||||
Home | Current | Past volumes | About | Login | Notify | Contact | Search Probability Surveys. ISSN: 1549-5787 |