Home | Current | Past volumes | About | Login | Notify | Contact | Search
 Probability Surveys > Vol. 5 (2008) open journal systems 


The notion of ψ-weak dependence and its applications to bootstrapping time series

Paul Doukhan, CREST, Paris
Michael H. Neumann, Friedrich-Schiller-Universität Jena


Abstract
We give an introduction to a notion of weak dependence which is more general than mixing and allows to treat for example processes driven by discrete innovations as they appear with time series bootstrap. As a typical example, we analyze autoregressive processes and their bootstrap analogues in detail and show how weak dependence can be easily derived from a contraction property of the process. Furthermore, we provide an overview of classes of processes possessing the property of weak dependence and describe important probabilistic results under such an assumption.

AMS 2000 subject classifications: Primary 60E15; secondary 62E99.

Keywords: Autoregressive processes, autoregressive bootstrap, mixing, weak dependence.

Creative Common LOGO

Full Text: PDF


Doukhan, Paul, Neumann, Michael H., The notion of ψ-weak dependence and its applications to bootstrapping time series, Probability Surveys, 5, (2008), 146-168 (electronic). DOI: 10.1214/06-PS086.

References

   Andrews, D. (1984). Probability inequalities for the sum of independent random variables. J. Appl. Probab. 21 930–934.

   Bardet, J. M., Doukhan, P., Lang G. and Ragache, N. (2007). Dependent Lindeberg central limit theorem and some applications. ESAIM Probab. Stat. 12 154–172. MR2374636

   Bickel, P. J. and Bühlmann, P. (1999). A new mixing notion and functional central limit theorems for a sieve bootstrap in time series. Bernoulli 5 413–446. MR1693612

   Bickel, P. J. and Freedman, D. A. (1981). Some asymptotic theory for the bootstrap. Ann. Statist. 9 1196–1217. MR0630103

   Billingsley, P. (1968). Convergence of Probability Measures. New-York: Wiley. MR0233396

   Birkhoff, G. D. (1931). Proof of the ergodic theorem. Proc. Natl. Acad. Sci. USA 17 656–660.

   Borovkova, S., Burton, R. and Dehling, H. (2001). Limit theorems for functionals of mixing processes with application to U-statistics and dimension estimation. Trans. Amer. Math. Soc. 353 4261–4318. MR1851171

   Bradley, R. C. (2005). Basic properties of strong mixing conditions. A survey and some open questions. Probab. Surv. 2 107–144. MR2178042

   Bradley, R. C. (2007). Introduction to Strong Mixing Conditions (in 3 volumes). Kendrick Press, Heber City, Utah.

   Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods, 2nd edition. Springer, New York. MR1093459

   Bulinski, A. and Shashkin, A. (2005). Strong invariance principle for dependent multi-indexed random rariables. Doklady Mathematics 72 (1) 503–506.

   Coulon-Prieur, C. and Doukhan, P. (2000). A triangular central limit theorem under a new weak dependence condition. Statist. Probab. Lett. 47 61–68. MR1745670

   Dedecker, J., Doukhan, P., Lang, G., León, J. R., Louhichi, S., Prieur, C. (2007). Weak Dependence: Models, Theory and Applications. Lecture Notes in Statistics 190, Springer-Verlag. MR2338725

   Dedecker, J. and Doukhan, P. (2003). A new covariance inequality and applications. Stoch. Process. Appl. 106 (1) 63–80. MR1983043

   Dedecker, J. and Prieur, C. (2004). Coupling for τ-dependent sequences and applications. J. Theor. Probab. 17 861–885. MR2105738

   Dedecker, J. and Prieur, C. (2005). New dependence coefficients. Examples and applications to statistics. Probab. Theory Related Fields 132 203–236. MR2199291

   Dedecker, J. and Rio, E. (2000). On the functional central limit theorem for stationary processes. Ann. Inst. H. Poincaré Probab. Statist. 36 1–34. MR1743095

   Dehling, H. and Philipp, W. (2002). Empirical process techniques for dependent data. In: Empirical Process Techniques for Dependent Data (H. Dehling, T. Mikosch and M. Sörensen, eds.), 3–113. Birkhäuser, Boston. MR1958777

   Dobrushin, R. L. (1970). Describing a system of random variables by conditional distributions. Teor. Veroyatn. Primen. 15 469–497 (in Russian). [English translation: Theory Probab. Appl. 15, 458–486.] MR0298716

   Doukhan, P. (1994). Mixing: Properties and Examples. Lecture Notes in Statistics 85, Springer-Verlag. MR1312160

   Doukhan, P. (2002). Limit theorems for stationary sequences. in Long Range Dependence, Theory and Applications, editors P. Doukhan, G. Oppenheim and M. Taqqu, Birkhäuser.

   Doukhan, P. and Louhichi, S. (1999). A new weak dependence condition and application to moment inequalities. Stoch. Process. Appl. 84 313–342. MR1719345

   Doukhan, P., Madre, H. and Rosenbaum, M. (2007). ARCH type bilinear weakly dependent models. Statistics 41 (1) 31–45. MR2303967

   Doukhan, P., Massart, P. and Rio, E. (1994). The functional central limit theorem for strongly mixing processes. Ann. Inst. H. Poincaré Probab. Statist. 30 (1) 63–82. MR1262892

   Doukhan, P., Massart, P. and Rio, E. (1995). Invariance principle for the empirical measure of a weakly dependent process. Ann. Inst. H. Poincaré Probab. Statist. 31 (2) 393–427. MR1324814

   Doukhan, P. and Neumann, M. H. (2007). Probability and moment inequalities for sums of weakly dependent random variables, with applications, Stoch. Process. Appl. 117 878–903. MR2330724

   Doukhan, P. and Portal, F. (1987). Principe d’invariance faible pour la fonction de répartition empirique dans un cadre multidimensionnel et mélangeant. Probab. Math. Statist. 8 (2) 117–132. MR0928125

   Doukhan, P., Teyssière, G. and Winant, M. H. (2006). A LARCH() vector valued process, in Dependence in Probability and Statistics, Lecture Notes in Statistics 187, Bertail, Doukhan & Soulier editors, Springer-Verlag. MR2269087

   Doukhan, P. and Wintenberger, O. (2007). An invariance principle for weakly dependent stationary general models. Probab. Math. Statist. 1 45–73. MR2353271

   Eberlein, E. and Taqqu, M. S. (eds.) (1986). Dependence in Probability and Statistics. Birkhäuser, Boston. MR0899982

   Esseen, C.-G. and Janson, S. (1985). On moment conditions for normed sums of independent variables and martingale differences. Stoch. Process. Appl. 19 173–182. MR0780729

   Giraitis, L. and Surgailis, D. (2002). ARCH-type bilinear models with double long memory. Stoch. Process. Appl. 100 275–300. MR1919617

   Gordin, M. I. (1969). The central limit theorem for stationary processes. Dokl. Akad. Nauk SSSR 188 739–741, (in Russian). [English translation: Soviet Math. Dokl. 10, 1174–1176.] MR0251785

   Gorodetskii, V. V. (1977). On the strong mixing property for linear sequences. Teor. Veroyatn. Primen. 22 421–423, (in Russian). [English translation: Theory Probab. Appl. 22, 411–413.] MR0438450

   Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and its Applications, Academic Press, New York. MR0624435

   Ibragimov, I. A. (1962). Some limit theorems for stationary processes. Teor. Veroyatn. Primen. 7 361–392, (in Russian). [English translation: Theory Probab. Appl. 7, 349–382.] MR0148125

   Kallabis, R. S. and Neumann, M. H. (2006). An exponential inequality under weak dependence. Bernoulli 12 333–350. MR2218558

   Mallows, C. L. (1972). A note on asymptotic joint normality. Ann. Math. Statist. 43 508–515. MR0298812

   Marden, M. (1949). The Geometry of the Zeros of a Polynomial in a Complex Variable. Mathematical Surveys Number III, Amer. Math. Soc., New York. MR0031114

   Merlevède, F. and Peligrad, M. (2002). On the coupling of dependent random variables and applications. In Empirical Process Techniques for Dependent Data. pp. 171–193, Birkhäuser. MR1958781

   Neumann, M. H. and Paparoditis, E. (2007). Goodness-of-fit tests for Markovian time series models: Central limit theory and bootstrap approximations. Bernoulli 14 14–46.

   Pitt, L. (1982). Positively correlated normal variables are associated. Ann. Probab. 10 496–499. MR0665603

   Rio, E. (1993). Covariance inequalities for strongly mixing processes. Ann. Inst. H. Poincaré Probab. Statist. 29 (4) 587–597. MR1251142

   Rio, E. (1995). About the Lindeberg method for strongly mixing sequences. ESAIM Probab. Stat. 1 35–61. MR1382517

   Rio, E. (2000). Théorie asymptotique pour des processus aléatoires faiblement dépendants. SMAI, Mathématiques et Applications 31, Springer. MR2117923

   Rosenblatt, M. (1956). A central limit theorem and a strong mixing condition. Proc. Natl. Acad. Sci. USA 42 43–47. MR0074711

   Rosenblatt, M. (1980). Linear processes and bispectra. J. Appl. Probab. 17 265–270. MR0557456

   Rosenblatt, M. (1985). Stationary Sequences and Random Fields. Birkhäuser. MR0885090

   Shao, Q. M. (1988). Remark on the invariance principle for ρ-mixing sequences of random variables. Chinese Ann. Math. Ser. A 9 409–412. MR0996917

   Shao, Q. M. (1995). Maximal inequalities for partial sums of ρ-mixing sequences. Ann. Probab. 23 948–965. MR1334179

   Shao, Q. M. and Yu, H. (1996). Weak convergence for weighted empirical processes of dependent sequences. Ann. Probab. 24 2052–2078. MR1415243

   Stout, W. (1974). Almost Sure Convergence. Academic Press, New York. MR0455094

   Wu, W. B. (2005). Nonlinear system theory: Another look at dependence. Proc. Natl. Acad. Sci. USA 102 14150–14154. MR2172215




Home | Current | Past volumes | About | Login | Notify | Contact | Search

Probability Surveys. ISSN: 1549-5787