Home | Current | Past volumes | About | Login | Notify | Contact | Search | |||||
|
|||||
References[1] Adenstedt, R.K. (1974). On large-sample estimation for the mean of a stationary random sequence. Ann. Math. Statist 2 1095–1107. MR0368354 [2] Anh, V.V., Angulo, J.M. and Ruiz-Medina, M.D. (1999). Possible long-range dependence in fractional random fields. J. Statist. Plann. Inference 80 95–110. MR1713795 [3] Anh, V.V., Leonenko, N.N. and McVinish, R. (2001). Models for fractional Riesz-Bessel motion and related processes. Fractals 9 329–346. [4] Avram, F. (1988). On bilinear forms in Gaussian random variables and Toeplitz matrices. Probab. Theory Related Fields 79 37–45. MR0952991 [5] Bentkus, R. (1972). On the error of the estimate of the spectral function of a stationary process. Lit. Mat. Sb. 12 55–71. MR0319332 [6] Bercu, B., Gamboa, F. and Rouault, A. (1997). Large deviations for quadratic forms of Gaussian stationary processes. Stochastic Process. Appl. 71 75–90. MR1480640 [7] Beran, J. (1994). Statistics for Long-Memory Processes. Chapman & Hall, New York. MR1304490 [8] Beran, J., Feng, Y., Ghosh, S. and Kulik, R. (2013). Long-Memory Processes: Probabilistic Properties and Statistical Methods. Springer-Verlag, Berlin. MR3075595 [9] Bingham, N.H., Goldie, C.M. and Teugels, J.L. (1989). Regular Variation. Cambridge University Press, New York. MR1015093 [10] Bondon, P. and Palma, W. (2006). A class of antipersistent processes. J. Time Ser. Anal. 28 261–273. MR2345660 [11] Böttcher, A. and Silbermann, B. (2005). Analysis of Toeplitz Operators, 2nd ed. Springer-Verlag, Berlin. MR2223704 [12] Brockwell, P.J and Davis, R.A. (1991). Time Series: Theory and Methods, 2nd ed. Springer-Verlag, New York. MR1093459 [13] Bryc, W. and Dembo, A. (1997). Large deviations for quadratic functionals of Gaussian processes. J. Theoret. Probab. 10 307–332. MR1455147 [14] Butzer, P.L. and Nessel, R.J. (1971). Fourier Analysis and Approximation I. Academic Press, New York. MR0510857 [15] Coursol, J. and Dacunha-Castelle, D. (1979). Sur la formule de Chernoff pour deux processus gaussiens stationnaires. C. R. Acad. Sci. Paris Ser. A-B 288 A769–A770. MR0535808 [16] Cramér, H. and Leadbetter, M.R. (1967). Stationary and Related Stochastic Processes: Sample Function Properties and Their Applications. John Wiley & Sons, New York. MR0217860 [17] Dahlhaus, R. (1989). Efficient parameter estimation for self-similar processes. Ann. Statist. 17 1749–1766. MR1026311 [18] Dwight, H.B. (1961). Tables of Integrals and Other Mathematical Data. The Macmillan Company, New York. MR0129577 [19] Flandrin, P. (1989). On the spectrum of fractional Brownian motions. IEEE Trans. Inform. Theory 35 197–199. MR0995341 [20] Fox, R. and Taqqu, M.S. (1987). Central limit theorem for quadratic forms in random variables having long-range dependence. Probab. Theory Related Fields 74 213–240. MR0871252 [21] Fox, R. and Taqqu, M.S. (1986). Large-sample properties of parameter estimation for strongly dependent stationary Gaussian time series. Ann. Statist. 14 517–532. MR0840512 [22] Gamboa, F., Rouault, A. and Zani, M. (1999). A functional large deviations principle for quadratic forms of Gaussian stationary processes. Statist. Probab. Lett. 43 299–308. MR1708097 [23] Gao, J., Anh, V., Heyde, C. and Tieng, Q. (2001). Parameter estimation of stochastic processes with long-range dependence and intermittency. J. Time Ser. Anal. 22 517–535. MR1859563 [24] Ginovyan, M.S. (1988). Asymptotically efficient nonparametric estimation of functionals on spectral density with zeros, Theory Probab. Appl. 33 315–322. MR0954578 [25] Ginovyan, M.S. (1988). On estimate of the value of the linear functional in a spectral density of stationary Gaussian process. Theory Probab. Appl. 33 777–781. MR0979749 [26] Ginovyan, M.S. (1993). A note on central limit theorem for Toeplitz type quadratic forms in stationary Gaussian variables. J. Cont. Math. Anal. 28 78–81. MR1359889 [27] Ginovyan, M.S. (1994). On Toeplitz type quadratic functionals in Gaussian stationary process. Probab. Theory Related Fields 100 395–406. MR1305588 [28] Ginovyan, M.S. (1995). Asymptotic properties of spectrum estimate of stationary Gaussian process. J. Cont. Math. Anal. 30 1–17. MR1643528 [29] Ginovyan, M.S. (2003). Asymptotically efficient nonparametric estimation of nonlinear spectral functionals. Acta Appl. Math. 78 145–154. MR2024019 [30] Ginovyan, M.S. (2011). Efficient estimation of spectral functionals for Gaussian stationary models. Communications on Stochastic Analysis 5 211–232. MR2808543 [31] Ginovyan, M.S. (2011). Efficient estimation of spectral functionals for continuous-time stationary models. Acta Appl. Math. 115 233–254. MR2818916 [32] Ginovyan, M.S. and Sahakyan, A.A. (2005). On the central limit theorem for Toeplitz quadratic forms of stationary sequences. Theory Probab. Appl. 49 612–628. MR2142560 [33] Ginovyan, M.S. and Sahakyan, A.A. (2007). Limit theorems for Toeplitz quadratic functionals of continuous-time stationary process. Probab. Theory Related Fields 138 551–579. MR2299719 [34] Ginovyan, M.S. and Sahakyan, A.A. (2012). Trace approximations of products of truncated Toeplitz operators. Theory Probab. Appl. 56 57–71. MR2848419 [35] Ginovyan, M.S. and Sahakyan, A.A. (2013). On the trace approximations of products of Toeplitz matrices. Statist. Probab. Lett. 83 753–760. MR3040300 [36] Giraitis, L., Koul, H. and Surgailis, D. (2012). Large Sample Inference for Long Memory Processes. Imperial College Press, London. MR2977317 [37] Giraitis, L. and Surgailis, D. (1990). A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotical normality of Whittle’s estimate. Probab. Theory Related Fields 86 87–104. MR1061950 [38] Gohberg, I.C. and Krein, M.G. (1969). Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space. American Mathematical Society, Providence, Rhode Island. MR0246142 [39] Granger, C.W.J. and Joyeux, K. (1980). An introduction to long-memory time series and fractional differencing. J. Time Ser. Anal. 1 15–29. MR0605572 [40] Grenander, U. and Szegö, G. (1958). Toeplitz Forms and Their Applications. University of California Press, Berkeley and Los Angeles. MR0094840 [41] Guégan, D. (2005). How can we define the concept of long memory? An econometric survey. Econometric Reviews 24 113–149. MR2190313 [42] Hasminskii, R.Z. and Ibragimov, I.A. (1986). Asymptotically efficient nonparametric estimation of functionals of a spectral density function. Probab. Theory Related Fields 73 447–461. MR0859842 [43] Henry, M. and Zaffaroni, P. (2003). The long range dependence paradigm for macroeconomics and finance. In Long Range Dependence: Theory and Applications, Doukhan, P., Oppenheim, G., Taqqu, M.S., Eds., Birkhäuser, Boston, 417–438. MR1957502 [44] Hosking, J.R.M. (2002). Fractional differencing. Biometrika. 68 165–176. MR0614953 [45] Ibragimov, I.A. (1963). On estimation of the spectral function of a stationary Gaussian process. Theory Probab. Appl. 8 366–401. MR0160274 [46] Ibragimov, I.A. (1967). On maximum likelihood estimation of parameters of the spectral of stationary time series. Theory Probab. Appl. 12 115–119. MR0228095 [47] Ihara, S. (2000). Large deviation theorems for Gaussian processes and their applications in information theory. Acta Appl. Math. 63 165–174. MR1831254 [48] Inoue, A. and Kasahara, Y. (1999). On the asymptotic behavior of the prediction error of a stationary process. In Trends in Probability and Related Analysis, Kono, N., Shieh, N.R., Eds., World Scientific, River Edghe, NJ, 207–218. MR1819207 [49] Kac, M. (1954). Toeplitz matrices, translation kernels and a related problem in probability theory. Duke Math. J. 21 501–509. MR0062867 [50] Lieberman, O., Rousseau, J. and Zucker, D.M. (2001). Valid Edgeworth expansion for the sample autocorrelation function under long dependence. Econometric Theory. 17 257–275. MR1863573 [51] Lieberman, O. and Phillips, P.C.B. (2004). Error bounds and asymptotic expansions for Toeplitz product functionals of unbounded spectra. J. Time Ser. Anal. 25 733–753. MR2089192 [52] Nourdin, I. and Peccati, G. (2009). Stein’s method and exact Berry-Esséen asymptotics for functionals of Gaussian fields. Ann. Probab. 37 2231–2261. MR2573557 [53] Palma, W. (2007). Long-Memory Time Series. Wiley, New York. MR2297359 [54] Robinson, P.M. (1995). Gaussian semiparametric estimation of long-range dependence. Ann. Statist. 23 1630–1661. MR1370301 [55] Robinson, P.M. (2003). Long memory time series. In Time Series with Long Memory, Robinson, P.M., Ed., Oxford University Press, Oxford, 4–32. MR2077520 [56] Rosenblatt, M. (1961). Independence and dependence. In Proc. 4th Berkeley Symp. Math. Stat. Probab. 2 431–443. MR0133863 [57] Rosenblatt, M. (1962). Asymptotic behavior of eigenvalues of Toeplitz forms. J. Math. and Mech. 11 941–950. MR0150841 [58] Rosenblatt, M. (1979). Some limit theorems for partial sums of quadratic forms in stationary Gaussian variables. Z. Wahr. verw. Gebiete 49 125–132. MR0543988 [59] Samorodnisky, G. and Taqqu, M.S. (1994). Stable Non-Gaussian Random Peocesses. Chapman & Hall/CRC, New York. MR1280932 [60] Sato, T., Kakizawa, Y. and Tahiguchi, M. (1998). Large deviations results for statistics of short– and long–memory Gaussian processes. Austral. & New Zeland J. Statist. 40 17–29. MR1628204 [61] Solo, V. (1992). Intrinsic random functions and the paradox of 1/f noise. SIAM J. Appl. Math. 52 270–291. MR1148328 [62] Taniguchi, M. (1983). On the second order asymptotic efficiency of estimators of Gaussian ARMA processes. Ann. Statist. 11 157–169. MR0684873 [63] Taniguchi, M. (1986). Berry-Esséen theorems for quadratic forms of Gaussian stationary processes. Probab. Theory Related Fields 72 185–194. MR0836274 [64] Taniguchi, M. and Kakizawa, Y. (2000). Asymptotic Theory of Statistical Inference for Time Series. Academic Press, New York. MR1785484 [65] Taqqu, M.S. (1975). Weak convergence to fractional Brownian motion and the Rosenblatt process. Z. Wahr. verw. Gebiete 31 287–302. MR0400329 [66] Taqqu, M.S. (1987). Toeplitz matrices and estimation of time series with long-range dependence. In Proc. of the First World Congress of the Bernoulli Society. VNU Science Press, BV: Utrecht, The Netherlands, 1 75–83. MR1092337 [67] Taqqu, M.S. (2003). Fractional Brownian motion and long-range dependence. In Long Range Dependence: Theory and Applications, Doukhan, P., Oppenheim, G., Taqqu, M.S., Eds., Birkhäuser, Boston, 5–38. MR1956042 [68] Taqqu, M.S. (2011). The Rosenblatt process. In Selected Works of Murray Rosenblatt, Selected Works in Probab. and Statist., Davis, R.A. et al., Eds., Springer, Boston, 29–45. [69] Terrin, N. and Taqqu, M.S. (1990). A noncentral limit theorem for quadratic forms of Gaussian stationary sequences. J. Theoret. Probab. 3 449–475. MR1057525 [70] Terrin, N. and Taqqu, M.S. (1991). Convergence to a Gaussian limit as the normalization exponent tends to 1/2. Statist. Probab. Lett. 11 419–427. MR1114532 [71] Veillette, M. and Taqqu, M.S. (2013). Properties and numerical evaluation of the Rosenblatt distribution. Bernoulli 19 982–1005. MR3079303 [72] Yaglom, A.M. (1986). The Correlation Theory of Stationary and Related Random Processes, Vol. 1. Springer, New York. |
|||||
Home | Current | Past volumes | About | Login | Notify | Contact | Search Probability Surveys. ISSN: 1549-5787 |