Home | Current | Past volumes | About | Login | Notify | Contact | Search
 Probability Surveys > Vol. 2 (2005) open journal systems 


Probability & incompressible Navier-Stokes equations: An overview of some recent developments

Edward C. Waymire, Oregon State University


Abstract
This is largely an attempt to provide probabilists some orientation to an important class of non-linear partial differential equations in applied mathematics, the incompressible Navier-Stokes equations. Particular focus is given to the probabilistic framework introduced by LeJan and Sznitman (1997) and extended by Bhattacharya et al (2003, 2004). In particular this is an effort to provide some foundational facts about these equations and an overview of some recent results with an indication of some new directions for probabilistic consideration.

AMS 2000 subject classifications: Primary 60H30, 35Q30; secondary 60J80, 76D05.

Keywords: incompressible Navier-Stokes, Fourier transform, mild solution, multi-type branching random walk, multiplicative cascade, background radiation process, majorizing kernels, stochastic iteration.

Creative Common LOGO

Full Text: PDF


Waymire, Edward C., Probability & incompressible Navier-Stokes equations: An overview of some recent developments, Probability Surveys, 2, (2005), 1-32 (electronic).

References

[1]    Anderson, J.D. (1997): A history of aerodynamics and its impact on flying machines, Cambridge. MR1476911

[2]    Aronszajn, N., K.T. Smith (1961): Theory of Bessel potentials I, Ann. Inst. Fourier (Grenoble) 11 385-475 MR143935

[3]    Batchelor, G.K. (1977): An introduction to fluid dynamics. New York: Cambridge University Press. MR1744638

[4]    Bhattacharya, R.N., E. Waymire (1990): Stochastic processes with applications, Wiley, NY. MR1054645

[5]    Bhattacharya, R.N., R.R. Rao (1976) Normal approximation and asymptotic expansions, Wiley, NY. MR436272

[6]    Bhattacharya, R., L. Chen, S. Dobson, R. B. Guenther, C. Orum, M. Ossiander, E. Thomann, E. C. Waymire (2003): Majorizing kernels and stochastic cascades with applications to incompressible Navier-Stokes equations, 355 (12), 5003-5040. MR1997593

[7]    Bhattacharya, R., L. Chen, R. B. Guenther, C. Orum, M. Ossiander, E. Thomann, E. C. Waymire (2004): Semi-Markov cascade representations of local solutions to 3d-incompressible Navier-Stokes, in: IMA Volumes in Mathematics and its Applications 140, Probability and partial differential equations in modern applied mathematics, eds. J. Duan and E. C. Waymire, Springer-Verlag, NY. (in press).

[8]    Busnello, B. F. Flandoli, M. Romito (2003): A probabilistic representation for the vorticity of a 3D viscous fluid and for general systems of parabolic equations, arXiv:math.PR/0306075

[9]    Cannone, M. (2004): Harmonic analysis tools for solving the incompressible Navier-Stokes equations, Handbook of Math. Fluid Dynamics, 3, eds Friedlander, S. and D. Serre, Elsevier. MR2099035

[10]   Cannone, M (1995): Ondellettes, paraproduits et Navier-Stokes equations, Diderot Editeur, Paris. MR1688096

[11]   Cannone, M., F. Planchon (2000): On the regularity of the bilinear form for solutions of the incompressible Navier-Stokes equations in R3, Rev. Mat. Iberoamericana 1 1-16. MR1768531

[12]   Chen, L., S. Dobson, R. Guenther, C. Orum, M. Ossiander, E. Waymire (2003) On Itô’s complex measure condition, IMS Lecture-Notes Monographs Series, Papers in Honor of Rabi Bhattacharya,eds. K. Athreya, M. Majumdar, M. Puri, E. Waymire, 41 65-80. MR1999415

[13]   Chorin A. J. (1973): Numerical study of slightly viscous flow J. Fluid Mechanics, 57 785-796. MR395483

[14]   Chorin, A. J. (1994): Vorticity and turbulence. Springer, New York. MR1281384

[15]   Chorin, A.J., J.E. Marsden (1992): A mathematical introduction to fluid mechanics, 3rd edition, Springer-Verlag, NY.

[16]   Esposito, R.Marra and H.T. Yau (1996): Navier-Stokes equations for stochastic particle systems on the lattice, Commun. Math. Phys. 182 395–456. MR1447299

[17]   Fefferman, C. (2000): Existence & smoothness of the Navier-Stokes equation, The Clay Mathematics Institute, http://www.esi2.us.es/~mbilbao/claymath.htm

[18]   Finn, R. (1965): Stationary solutions of the Navier-Stokes equations, Proc. Symp. Appld. Math. 19 Amer. Math. Soc., 121-153. MR182816

[19]   Folland, G. (1995): Introduction to partial differential equations, 2nd edition, Princeton, NJ. MR1357411

[20]   Foias, C., R. Temam (1989): Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal. 87 359-369. MR1026858

[21]   Fujita, H., T. Kato (1964): On the Navier-Stokes initial value problme I, Arch. Rat. Mech. Anal. 16 269-315. MR166499

[22]   Furioli, G. P.G. Lemarié-Rieusset, E. Terraneo (1997): Su l’unicite’ dans L3(R3) des solutions mild des equations de Navier-Stokes, C.R. Acad. Sci. Pris, t.325, Serie 1, 1253-1256. MR1490408

[23]   Galdi, G.P. (1994): An introduction to the mathematical theory of the Navier-Stokes Equations, Springer-Verlag, NY.

[24]   Goodman, J.(1987) The convergence of the random vortex method, Comm. Pure Appl. Math., 40 189–220. MR872384

[25]   Gundy, R. F. (1989): Some martingale inequalities with applications to harmonic analysis, J. Functional Analysis 87 212-230. MR1025887

[26]   Gundy, R.F., M. L. Silverstein (1981): On a probabilistic interpretation for the Riesz transforms, in: Functional Analysis in Markov Processes, Proceedings, Katata and Kyoto, Lecture Notes in Mathematics 923 Springer-Verlag, NY. MR661625

[27]   Gundy, R., M., N.Th. Varopoulos (1979): Les transformations de Riesz et les integrales stochastiques, C.R. Acad. Sci. Paris Ser. A 289 13-16. MR545671

[28]   Heywood, J. (1970): On stationary solutions of the Navier-Stokes equations as limits of non-stationary solutions, Arch. Rational Mech. Anal. 37 48-60. MR412639

[29]   Itô, K.(1965): Generalized uniform complex measures in the Hilbertian metric space with the application to the Feynman integral, Proc. Fifth Berkeley Symp. Math. Stat. Probab. II, 145-161. MR216528

[30]   Kato, T. (1984): Strong Lp solutions of the Navier-Stokes equations in Rm with applications to weak solutions, Math. Z. 187 471-480. MR760047

[31]   Kolokoltsov, V.N. (2000): Semiclassical analysis for diffusions and stochastic processes, Springer Lecture Notes in Mathematics, 1724, Springer-Verlag, NY. MR1755149

[32]   Ladyzhenskaya, O.A. (1969): The mathematical theory of viscous incompressible flows, 2nd ed., Gordon and Breach, NY. MR254401

[33]   Ladyzhenskaya, O.A. (2003): Sixth problem of the millennium: Navier-Stokes equations, existence and smoothness, Uspekhi Mat. Nauk. 58:2, 45-78. MR1992564

[34]   Landau, L.D. and Lifschitz, E.M. (1987): Fluid mechanics, 2nd ed. Course of Theoretical Physics Vol 6.

[35]   Lemarié-Rieusett, P.G. (2000): Une remarque sur l’analyticité des soutions milds des équations de Navier-Stokes dans R3, C.R. Acad. Sci. Paris, t.330, Série 1, 183-186. MR1748305

[36]   Leray, J. (1934): Su le mouvement d’un liquide visqueux empissant l’espace, Acta. Math. 63 193-248.

[37]   LeJan, Y. and A.S. Sznitman (1997): Stochastic cascades and 3-dimensional Navier-Stokes equations, Prob. Theory and Rel. Fields 109 343-366.. MR1481125

[38]   Long, D.G. (1988): Convergence of the random vortex method in two dimensions J. Amer. Math. Soc, 1 779-804. MR958446

[39]   Marchioro, C., M. Pulverenti (1989): Hydrodynamics in two dimensions and vortex theory, Comm. Math. Phys. 84 483-503. MR667756

[40]   McKean, H.P. (1975): Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov, Comm.Pure. Appl.Math., 28 323-331. MR400428

[41]   Meleard, S. (2000): A trajectorial proof of the vortex method for the two-dimensional Navier-Stokes equation Ann. Appl. Probab. 10(4), 11971211.

[42]   Meyer, Y. (1993): Wavelets and operators, Cambridge Studies in Adv. Math, 37 Cambridge University Press, Cambridge.

[43]   Meyer, Y. (2004): Oscillating patterns in some nonlinear evolution equations, in Mathematical foundations of turbulent viscous flows, eds. M. Cannone, T. Miiyakwaw, Springer Lecture Notes in Mathematics, Springer-Verlag, NY. MR1852741

[44]   Montgomery-Smith, S. (2001): Finite time blow up for a Navier-Stokes like equation, Proc. A.M.S. 129, 3017-3023. MR1840108

[45]   Orum, C. (2004): Branching processes and partial differential equations, PhD Thesis, Oregon State University.

[46]   Oseen, F.K.G. (1927): Neuere methoden und ergebnisse in der hydrodynamik, Academische Velagsgesellschaft, Leipzig.

[47]   Ossiander, M. (2005): A probabilistic representation of solutions of the incompressible Navier-Stokes equations in R3, Prob. Theory and Rel. Fields, (to appear).

[48]   Peetre, J. (1976): New thoughts on Besov spaces, Duke University Mathematics Series I, Durham NC. MR461123

[49]   Ramirez, J. (2004): Monte-Carlo imulation of multiplicative cascades (application to two PDEs), MS Thesis, Oregon State University.

[50]   Solonnikov (1964): Estimates for solutions of a non-stationary linearized system of Navier-Stokes equations, Trudy Math. Inst. Steklov, 70 213-317. MR171094

[51]   J. Szumbarski, P. Wald (1996): The stochastic vortex simulation of an unsteady viscous flow in a multiconnected domain, ESIAM Proc., 1 153-167. MR1443220

[52]   Temam, R. (1995): Navier Stokes equations and nonlinear functional analysis, SIAM, Philadelphia, PA. MR1318914

[53]   Thomann, E., R. Guenther (2004): The fundamental solution of the linearized Navier-Stokes equations for spinning bodies in three spatial dimensions - time dependent case, J. Math. Fluid Mechanics, (in press).

[54]   Woyczynski,W., P. Biler, and T. Funaki (1998): Fractal Burgers equations, J. Diff. Equations 148, 9-46. MR1637513

[55]   Yau, H.T. (1999): Scaling limit of particle systems, incompressible NavierStokes equations and Boltzmann equation. In:Proceedings of the International Congress of Mathematics, Berlin 1998, 3 193-205, Birkhauser. MR1648154

[56]   Waymire, E. (2002): Lectures on multiscale and multiplicative processes in fluid flows, MaPhySto Lecture Notes NO 11, Aarhus University, Aarhus, Denmark.




Home | Current | Past volumes | About | Login | Notify | Contact | Search

Probability Surveys. ISSN: 1549-5787