Home | Current | Past volumes | About | Login | Notify | Contact | Search | |||||
|
|||||
References[1] Anderson, J.D. (1997): A history of aerodynamics and its impact on flying machines, Cambridge. MR1476911 [2] Aronszajn, N., K.T. Smith (1961): Theory of Bessel potentials I, Ann. Inst. Fourier (Grenoble) 11 385-475 MR143935 [3] Batchelor, G.K. (1977): An introduction to fluid dynamics. New York: Cambridge University Press. MR1744638 [4] Bhattacharya, R.N., E. Waymire (1990): Stochastic processes with applications, Wiley, NY. MR1054645 [5] Bhattacharya, R.N., R.R. Rao (1976) Normal approximation and asymptotic expansions, Wiley, NY. MR436272 [6] Bhattacharya, R., L. Chen, S. Dobson, R. B. Guenther, C. Orum, M. Ossiander, E. Thomann, E. C. Waymire (2003): Majorizing kernels and stochastic cascades with applications to incompressible Navier-Stokes equations, 355 (12), 5003-5040. MR1997593 [7] Bhattacharya, R., L. Chen, R. B. Guenther, C. Orum, M. Ossiander, E. Thomann, E. C. Waymire (2004): Semi-Markov cascade representations of local solutions to 3d-incompressible Navier-Stokes, in: IMA Volumes in Mathematics and its Applications 140, Probability and partial differential equations in modern applied mathematics, eds. J. Duan and E. C. Waymire, Springer-Verlag, NY. (in press). [8] Busnello, B. F. Flandoli, M. Romito (2003): A probabilistic representation for the vorticity of a 3D viscous fluid and for general systems of parabolic equations, arXiv:math.PR/0306075 [9] Cannone, M. (2004): Harmonic analysis tools for solving the incompressible Navier-Stokes equations, Handbook of Math. Fluid Dynamics, 3, eds Friedlander, S. and D. Serre, Elsevier. MR2099035 [10] Cannone, M (1995): Ondellettes, paraproduits et Navier-Stokes equations, Diderot Editeur, Paris. MR1688096 [11] Cannone, M., F. Planchon (2000): On the regularity of the bilinear form for solutions of the incompressible Navier-Stokes equations in R3, Rev. Mat. Iberoamericana 1 1-16. MR1768531 [12] Chen, L., S. Dobson, R. Guenther, C. Orum, M. Ossiander, E. Waymire (2003) On Itô’s complex measure condition, IMS Lecture-Notes Monographs Series, Papers in Honor of Rabi Bhattacharya,eds. K. Athreya, M. Majumdar, M. Puri, E. Waymire, 41 65-80. MR1999415 [13] Chorin A. J. (1973): Numerical study of slightly viscous flow J. Fluid Mechanics, 57 785-796. MR395483 [14] Chorin, A. J. (1994): Vorticity and turbulence. Springer, New York. MR1281384 [15] Chorin, A.J., J.E. Marsden (1992): A mathematical introduction to fluid mechanics, 3rd edition, Springer-Verlag, NY. [16] Esposito, R.Marra and H.T. Yau (1996): Navier-Stokes equations for stochastic particle systems on the lattice, Commun. Math. Phys. 182 395–456. MR1447299 [17] Fefferman, C. (2000): Existence & smoothness of the Navier-Stokes equation, The Clay Mathematics Institute, http://www.esi2.us.es/~mbilbao/claymath.htm [18] Finn, R. (1965): Stationary solutions of the Navier-Stokes equations, Proc. Symp. Appld. Math. 19 Amer. Math. Soc., 121-153. MR182816 [19] Folland, G. (1995): Introduction to partial differential equations, 2nd edition, Princeton, NJ. MR1357411 [20] Foias, C., R. Temam (1989): Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal. 87 359-369. MR1026858 [21] Fujita, H., T. Kato (1964): On the Navier-Stokes initial value problme I, Arch. Rat. Mech. Anal. 16 269-315. MR166499 [22] Furioli, G. P.G. Lemarié-Rieusset, E. Terraneo (1997): Su l’unicite’ dans L3(R3) des solutions mild des equations de Navier-Stokes, C.R. Acad. Sci. Pris, t.325, Serie 1, 1253-1256. MR1490408 [23] Galdi, G.P. (1994): An introduction to the mathematical theory of the Navier-Stokes Equations, Springer-Verlag, NY. [24] Goodman, J.(1987) The convergence of the random vortex method, Comm. Pure Appl. Math., 40 189–220. MR872384 [25] Gundy, R. F. (1989): Some martingale inequalities with applications to harmonic analysis, J. Functional Analysis 87 212-230. MR1025887 [26] Gundy, R.F., M. L. Silverstein (1981): On a probabilistic interpretation for the Riesz transforms, in: Functional Analysis in Markov Processes, Proceedings, Katata and Kyoto, Lecture Notes in Mathematics 923 Springer-Verlag, NY. MR661625 [27] Gundy, R., M., N.Th. Varopoulos (1979): Les transformations de Riesz et les integrales stochastiques, C.R. Acad. Sci. Paris Ser. A 289 13-16. MR545671 [28] Heywood, J. (1970): On stationary solutions of the Navier-Stokes equations as limits of non-stationary solutions, Arch. Rational Mech. Anal. 37 48-60. MR412639 [29] Itô, K.(1965): Generalized uniform complex measures in the Hilbertian metric space with the application to the Feynman integral, Proc. Fifth Berkeley Symp. Math. Stat. Probab. II, 145-161. MR216528 [30] Kato, T. (1984): Strong Lp solutions of the Navier-Stokes equations in Rm with applications to weak solutions, Math. Z. 187 471-480. MR760047 [31] Kolokoltsov, V.N. (2000): Semiclassical analysis for diffusions and stochastic processes, Springer Lecture Notes in Mathematics, 1724, Springer-Verlag, NY. MR1755149 [32] Ladyzhenskaya, O.A. (1969): The mathematical theory of viscous incompressible flows, 2nd ed., Gordon and Breach, NY. MR254401 [33] Ladyzhenskaya, O.A. (2003): Sixth problem of the millennium: Navier-Stokes equations, existence and smoothness, Uspekhi Mat. Nauk. 58:2, 45-78. MR1992564 [34] Landau, L.D. and Lifschitz, E.M. (1987): Fluid mechanics, 2nd ed. Course of Theoretical Physics Vol 6. [35] Lemarié-Rieusett, P.G. (2000): Une remarque sur l’analyticité des soutions milds des équations de Navier-Stokes dans R3, C.R. Acad. Sci. Paris, t.330, Série 1, 183-186. MR1748305 [36] Leray, J. (1934): Su le mouvement d’un liquide visqueux empissant l’espace, Acta. Math. 63 193-248. [37] LeJan, Y. and A.S. Sznitman (1997): Stochastic cascades and 3-dimensional Navier-Stokes equations, Prob. Theory and Rel. Fields 109 343-366.. MR1481125 [38] Long, D.G. (1988): Convergence of the random vortex method in two dimensions J. Amer. Math. Soc, 1 779-804. MR958446 [39] Marchioro, C., M. Pulverenti (1989): Hydrodynamics in two dimensions and vortex theory, Comm. Math. Phys. 84 483-503. MR667756 [40] McKean, H.P. (1975): Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov, Comm.Pure. Appl.Math., 28 323-331. MR400428 [41] Meleard, S. (2000): A trajectorial proof of the vortex method for the two-dimensional Navier-Stokes equation Ann. Appl. Probab. 10(4), 11971211. [42] Meyer, Y. (1993): Wavelets and operators, Cambridge Studies in Adv. Math, 37 Cambridge University Press, Cambridge. [43] Meyer, Y. (2004): Oscillating patterns in some nonlinear evolution equations, in Mathematical foundations of turbulent viscous flows, eds. M. Cannone, T. Miiyakwaw, Springer Lecture Notes in Mathematics, Springer-Verlag, NY. MR1852741 [44] Montgomery-Smith, S. (2001): Finite time blow up for a Navier-Stokes like equation, Proc. A.M.S. 129, 3017-3023. MR1840108 [45] Orum, C. (2004): Branching processes and partial differential equations, PhD Thesis, Oregon State University. [46] Oseen, F.K.G. (1927): Neuere methoden und ergebnisse in der hydrodynamik, Academische Velagsgesellschaft, Leipzig. [47] Ossiander, M. (2005): A probabilistic representation of solutions of the incompressible Navier-Stokes equations in R3, Prob. Theory and Rel. Fields, (to appear). [48] Peetre, J. (1976): New thoughts on Besov spaces, Duke University Mathematics Series I, Durham NC. MR461123 [49] Ramirez, J. (2004): Monte-Carlo imulation of multiplicative cascades (application to two PDEs), MS Thesis, Oregon State University. [50] Solonnikov (1964): Estimates for solutions of a non-stationary linearized system of Navier-Stokes equations, Trudy Math. Inst. Steklov, 70 213-317. MR171094 [51] J. Szumbarski, P. Wald (1996): The stochastic vortex simulation of an unsteady viscous flow in a multiconnected domain, ESIAM Proc., 1 153-167. MR1443220 [52] Temam, R. (1995): Navier Stokes equations and nonlinear functional analysis, SIAM, Philadelphia, PA. MR1318914 [53] Thomann, E., R. Guenther (2004): The fundamental solution of the linearized Navier-Stokes equations for spinning bodies in three spatial dimensions - time dependent case, J. Math. Fluid Mechanics, (in press). [54] Woyczynski,W., P. Biler, and T. Funaki (1998): Fractal Burgers equations, J. Diff. Equations 148, 9-46. MR1637513 [55] Yau, H.T. (1999): Scaling limit of particle systems, incompressible NavierStokes equations and Boltzmann equation. In:Proceedings of the International Congress of Mathematics, Berlin 1998, 3 193-205, Birkhauser. MR1648154 [56] Waymire, E. (2002): Lectures on multiscale and multiplicative processes in fluid flows, MaPhySto Lecture Notes NO 11, Aarhus University, Aarhus, Denmark. |
|||||
Home | Current | Past volumes | About | Login | Notify | Contact | Search Probability Surveys. ISSN: 1549-5787 |