Home | Current | Past volumes | About | Login | Notify | Contact | Search | |||||
|
|||||
References[1] D. Aldous and J. Steele. The objective method: Probabilistic combinatorial optimization and local weak convergence. Probability on Discrete Structures (Volume 110 of Encyclopaedia of Mathematical Sciences), ed. H. Kesten, 110:1–72, 2003. MR2023650 [2] R. J. Aumann. Agreeing to disagree. The Annals of Statistics, 4(6):1236–1239, 1976. MR0433654 [3] V. Bala and S. Goyal. Learning from neighbours. Review of Economic Studies, 65(3):595–621, July 1998. [4] A. V. Banerjee. A simple model of herd behavior. The Quarterly Journal of Economics, 107(3):797–817, 1992. [5] F. Benezit, P. Thiran, and M. Vetterli. Interval consensus: from quantized gossip to voting. In ICASSP 2009, pages 3661–3664, 2009. [6] I. Benjamini, S.-O. Chan, R. O’Donnell, O. Tamuz, and L.-Y. Tan. Convergence, unanimity and disagreement in majority dynamics on unimodular graphs and random graphs. Stochastic Processes and their Applications, 126(9):2719–2733, 2016. MR3522298 [7] I. Benjamini and O. Schramm. Recurrence of distributional limits of finite planar graphs. Selected Works of Oded Schramm, pages 533–545, 2011. MR2883381 [8] E. Berger. Dynamic monopolies of constant size. Journal of Combinatorial Theory, Series B, 83(2):191–200, 2001. MR1866395 [9] S. Bikhchandani, D. Hirshleifer, and I. Welch. A theory of fads, fashion, custom, and cultural change as informational cascades. Journal of political Economy, pages 992–1026, 1992. [10] D. Cartwright and F. Harary. Structural balance: a generalization of heider’s theory. Psychological review, 63(5):277, 1956. [11] P. Clifford and A. Sudbury. A model for spatial conflict. Biometrika, 60(3):581–588, 1973. MR0343950 [12] J.-A.-N. Condorcet. Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix. De l’Imprimerie Royale, 1785. [13] M. H. DeGroot. Reaching a consensus. Journal of the American Statistical Association, 69(345):118–121, 1974. [14] P. DeMarzo and C. Skiadas. On the uniqueness of fully informative rational expectations equilibria. Economic Theory, 13(1):1–24, 1999. MR1658993 [15] J. L. Doob. Stochastic Processes. John Wiley and Sons, 1953. MR0058896 [16] J. L. Doob. Classical potential theory and its probabilistic counterpart, volume 262. Springer, 2001. MR1814344 [17] D. Gale and S. Kariv. Bayesian learning in social networks. Games and Economic Behavior, 45(2):329–346, November 2003. MR2023667 [18] J. Geanakoplos. Common knowledge. Handbook of game theory with economic applications, 2:1437–1496, 1994. MR1313236 [19] J. Geanakoplos and H. Polemarchakis. We can’t disagree forever. Journal of Economic Theory, 28(1):192–200, 1982. [20] Y. Ginosar and R. Holzman. The majority action on infinite graphs: strings and puppets. Discrete Mathematics, 215(1–3):59–72, 2000. MR1746448 [21] E. Goles and J. Olivos. Periodic behaviour of generalized threshold functions. Discrete Mathematics, 30(2):187–189, 1980. MR0566436 [22] B. Golub and M. O. Jackson. Naive learning in social networks and the wisdom of crowds. American Economic Journal: Microeconomics, 2(1):112–149, 2010. [23] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American statistical association, 58(301):13–30, 1963. MR0144363 [24] R. A. Holley and T. M. Liggett. Ergodic theorems for weakly interacting infinite systems and the voter model. The annals of probability, pages 643–663, 1975. MR0402985 [25] J. Kahn, G. Kalai, and N. Linial. The influence of variables on boolean functions. In Proceedings of the 29th Annual Symposium on Foundations of Computer Science, pages 68–80, 1988. [26] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov chains and mixing times. AMS Bookstore, 2009. MR2466937 [27] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4):115–133, 1943. MR0010388 [28] G. Moran. On the period-two-property of the majority operator in infinite graphs. Transactions of the American Mathematical Society, 347(5):1649–1668, 1995. MR1297535 [29] E. Mossel, J. Neeman, and O. Tamuz. Majority dynamics and aggregation of information in social networks. Autonomous Agents and Multi-Agent Systems, pages 1–22, 2013. [30] E. Mossel, N. Olsman, and O. Tamuz. Efficient bayesian learning in social networks with gaussian estimators. In Proceedings of the 54th annual Allerton conference on Communication, control, and computing. IEEE Press, 2016. [31] E. Mossel and G. Schoenebeck. Reaching consensus on social networks. In Proceedings of 1st Symposium on Innovations in Computer Science, pages 214–229, 2010. [32] E. Mossel, A. Sly, and O. Tamuz. On agreement and learning. Preprint at http://arxiv.org/abs/1207.5895, 2012. [33] E. Mossel, A. Sly, and O. Tamuz. Asymptotic learning on bayesian social networks. Probability Theory and Related Fields, pages 1–31, 2013. MR3152782 [34] E. Mossel, A. Sly, and O. Tamuz. Strategic learning and the topology of social networks. Econometrica, 83(5):1755–1794, 2015. MR3414192 [35] M. J. Osborne and A. Rubinstein. A course in game theory. MIT press, 1994. MR1301776 [36] M. Ostrovsky. Information aggregation in dynamic markets with strategic traders. Econometrica, 80(6):2595–2647, 2012. MR3001136 [37] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking: bringing order to the web. Stanford InfoLab, 1999. [38] D. Rosenberg, E. Solan, and N. Vieille. Informational externalities and emergence of consensus. Games and Economic Behavior, 66(2):979–994, 2009. MR2543312 [39] A. Rubinstein. Economic fables. Open Book Publishers, 2012. [40] L. Saloff-Coste. Lectures on finite markov chains. In P. Bernard, editor, Lectures on Probability Theory and Statistics, volume 1665 of Lecture Notes in Mathematics, pages 301–413. Springer Berlin Heidelberg, 1997. MR1490046 [41] J. Sebenius and J. Geanakoplos. Don’t bet on it: Contingent agreements with asymmetric information. Journal of the American Statistical Association, 78(382):424–426, 1983. MR0711118 [42] L. Smith and P. Sørensen. Pathological outcomes of observational learning. Econometrica, 68(2):371–398, 2000. MR1748010 [43] M. Talagrand. On Russo’s approximate zero-one law. The Annals of Probability, 22(3):1576–1587, 1994. MR1303654 [44] O. Tamuz and R. J. Tessler. Majority dynamics and the retention of information. Israel Journal of Mathematics, 206(1):483–507, 2015. MR3319649 |
|||||
Home | Current | Past volumes | About | Login | Notify | Contact | Search Probability Surveys. ISSN: 1549-5787 |