Home | Current | Past volumes | About | Login | Notify | Contact | Search | |||||
|
|||||
References[1] M. Bauer, D. Bernard (2002), SLEκ growth processes and conformal field theories Phys. Lett. B543, 135-138. MR1927368 [2] M. Bauer, D. Bernard (2003), Conformal Field Theories of Stochastic Loewner Evolutions, Comm. Math. Phys. 239, 493-521. MR2000927 [3] M. Bauer, D. Bernard (2003), SLE martingales and the Virasoro algebra, Phys. Lett. B 557, 309-316. MR1972482 [4] M. Bauer, D. Bernard (2004), Conformal transformations and the SLE partition function martingale, Ann. Henri Poincaré 5, 289-326. MR2057676 [5] V. Beffara (2004), Hausdorff dimensions for SLE6, Ann. Probab. 32, 2606-2629. MR2078552 [6] V. Beffara (2002), The dimension of the SLE curves, preprint. [7] A.A. Belavin, A.M. Polyakov, A.B. Zamolodchikov (1984), Infinite conformal symmetry of critical fluctuations in two dimensions, J. Statist. Phys. 34, 763–774. MR751712 [8] A.A. Belavin, A.M. Polyakov, A.B. Zamolodchikov (1984), Infinite conformal symmetry in two-dimensional quantum field theory. Nuclear Phys. B 241, 333–380. MR757857 [9] K. Burdzy, G.F. Lawler (1990), Non-intersection exponents for random walk and Brownian motion II. Estimates and application to a random fractal, Ann. Prob. 18, 981-1009. MR1062056 [10] J.L. Cardy (1984), Conformal invariance and surface critical behavior, Nucl. Phys. B 240, 514-532. MR811991 [11] J.L. Cardy, Scaling and renormalization in statistical physics, Cambridge Lecture Notes in Physics 5, Cambridge University Press, 1996. MR1446000 [12] J.L. Cardy (2001), Lectures on Conformal Invariance and Percolation, Lectures delivered at Chuo University, Tokyo, preprint. MR1836567 [13] J. Dubédat (2005), SLE(κ,ρ) martingales and duality, Ann. Probab. 33, 223-243. MR2118865 [14] J. Dubédat (2004), Critical percolation in annuli and SLE6, Comm. Math. Phys. 245, 627-637. MR2045686 [15] B. Duplantier (1992), Loop-erased self-avoiding walks in two dimensions: exact critical exponents and winding numbers, Physica A 191, 516-522. [16] B. Duplantier (2000), Conformally invariant fractals and potential theory, Phys. Rev. Lett. 84, 1363-1367. MR1740371 [17] B. Duplantier, H. Saleur (1986), Exact surface and wedge exponents for polymers in two dimensions, Phys. Rev. Lett. 57, 3179-3182. MR869969 [18] P.L. Duren, Univalent functions, Springer, 1983. MR708494 [19] P.J. Flory (1949), The configuration of a real polymer chain, J. Chem. Phys. 17, 303-310. [20] R. Friedrich, W. Werner (2002), Conformal Fields, restriction properties, degenerate representations and SLE, C. R. Acad. Sci. Paris Ser. I 335, 947-952. MR1952555 [21] R. Friedrich, W. Werner (2003), Conformal restriction, highest-weight representations and SLE, Comm. Math. Phys. 243, 105-122. MR2020222 [22] R. Friedrich, J. Kalkkinen (2004), On conformal field theory and stochastic Loewner evolution, Nuclear Phys. B 687, 279-302. MR2059141 [23] T. Kennedy (2002), A faster implementation of the pivot algorithm for self-avoiding walks, J. Stat. Phys. 106, 407-429. MR1884540 [24] T. Kennedy (2002), Monte Carlo Tests of Stochastic Loewner Evolution Predictions for the 2D Self-Avoiding Walk, Phys. Rev. Lett. 88, 130601. [25] R. Kenyon (2000), Long-range properties of spanning trees in ℤ2, J. Math. Phys. 41 1338-1363. MR1757962 [26] H. Kesten, On the number of self-avoiding walks. J. Math. Phys. 4, 960-969 (1963). MR152026 [27] V.G. Knizhnik, A.M. Polyakov, A.B. Zamolodchikov (1988), Fractal structure of 2-D quantum gravity, Mod. Phys. Lett. A3, 819. MR947880 [28] G.F. Lawler (2004), An introduction to the stochastic Loewner evolution, in Random Walks and Geometry, 263-293, de Gruyter, Berlin. MR2087784 [29] G.F. Lawler (2005), Conformally invariant processes in the plane, AMS. MR2129588 [30] G.F. Lawler, O. Schramm, W. Werner (2001), Values of Brownian intersection exponents I: Half-plane exponents, Acta Mathematica 187, 237-273. MR1879850 [31] G.F. Lawler, O. Schramm, W. Werner (2001), Values of Brownian intersection exponents II: Plane exponents, Acta Mathematica 187, 275-308. MR1879851 [32] G.F. Lawler, O. Schramm, W. Werner (2002), Values of Brownian intersection exponents III: Two sided exponents, Ann. Inst. Henri Poincaré 38, 109-123. MR1899232 [33] G.F. Lawler, O. Schramm, W. Werner (2001), The dimension of the planar Brownian frontier is 4∕3, Math. Res. Lett. 8, 401-411. MR1849257 [34] G.F. Lawler, O. Schramm, W. Werner (2002), One-arm exponent for critical 2D percolation, Electronic J. Probab. 7, paper no.2. MR1887622 [35] G.F. Lawler, O. Schramm, W. Werner (2004), Conformal invariance of planar loop-erased random walks and uniform spanning trees, Ann. Prob. 32, 939-996. MR2044671 [36] G.F. Lawler, O. Schramm, W. Werner (2002), On the scaling limit of planar self-avoiding walks, in Fractal Geometry and applications, a jubilee of Benoît Mandelbrot, Proc. Symp. Pure Math. 72, vol. II, 339-364. MR2112127 [37] G.F. Lawler, O. Schramm, W. Werner (2003), Conformal restriction properties. The chordal case, J. Amer. Math. Soc., 16, 917-955. MR1992830 [38] G.F. Lawler, W. Werner (1999), Intersection exponents for planar Brownian motion, Ann. Probab. 27, 1601-1642. MR1742883 [39] G.F. Lawler, W. Werner (2000), Universality for conformally invariant intersection exponents, J. Europ. Math. Soc. 2, 291-328. MR1796962 [40] G.F. Lawler, W. Werner (2004), The Brownian loop-soup, Probab. Theory Rel. Fields Probab. Th. Rel. Fields 128, 565-588. MR2045953 [41] J.F. Le Gall (1992), Some properties of planar Brownian motion, Ecole d’été de Probabilités de St-Flour XX, L.N. Math. 1527, 111-235. MR1229519 [42] P. Lévy, Processus Stochastiques et Mouvement Brownien, Gauthier-Villars, Paris, 1948. MR29120 [43] N. Madras, G. Slade, The Self-Avoiding Walk, Birkhäuser, 1993. MR1197356 [44] B.B. Mandelbrot, The Fractal Geometry of Nature, Freeman, 1982. MR665254 [45] B. Nienhuis (1982), Exact critical exponents for the O(n) models in two dimensions, Phys. Rev. Lett. 49, 1062-1065. MR675241 [46] A.M. Polyakov (1974), A non-Hamiltonian approach to conformal field theory, Sov. Phys. JETP 39, 10-18. MR395598 [47] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer-Verlag, 1991. MR1083357 [48] S. Rohde, O. Schramm (2005), Basic properties of SLE, Ann. Math. 161, 879-920. MR2112631 [49] O. Schramm (2000), Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math. 118, 221-288. MR1776084 [50] S. Smirnov (2001), Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits, C. R. Acad. Sci. Paris Sr. I Math. 333, 239-244. [51] B. Tsirelson (2004), Scaling limit, noise, stability, Lecture notes from the 2002 St-Flour summer school, L.N. Math. 1840, pp. 1-106, Springer. MR2079671 [52] S.R. Varadhan, R. Williams (1985), Brownian motion in a wedge with oblique reflection, Comm. Pure Appl. Math. 38, 405-443. MR792398 [53] B. Virág (2003), Brownian beads, Probab. Th. Rel. Fields 127, 367-387 MR2018921 [54] W. Werner (2001), Critical exponents, conformal invariance and planar Brownian motion, in Proceedings of the 4th ECM Barcelona 2000, Prog. Math. 202, Birkhäuser, 87-103. MR1905353 [55] W. Werner (2004), Random planar curves and Schramm-Loewner Evolutions, in 2002 St-Flour summer school, L.N. Math. 1840, pp. 107-195. MR2079672 [56] W. Werner (2004), Girsanov’s theorem for SLE(κ,ρ) processes, intersection exponents and hiding exponents, Ann. Fac. Sci. Toulouse 13, 121-147. MR2060031 [57] D.B. Wilson (1996), Generating random spanning trees more quickly than the cover time, Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996), 296–303. MR1427525 [58] D. Zhan (2004), Stochastic Loewner Evolution in doubly connected domains, Probab. Theory Rel. Fields 129, 340-380. MR2128237 |
|||||
Home | Current | Past volumes | About | Login | Notify | Contact | Search Probability Surveys. ISSN: 1549-5787 |