Home | Current | Past volumes | About | Login | Notify | Contact | Search | |||||
|
|||||
References[1] G.E. Andrews, R. Askey, and R. Roy. Special functions. Cambridge University Press, 2000. MR1688958 [2] M. Anshelevich. Free martingale polynomials. J. Func. Anal., 201(1):228–261, 2003. MR1986160 [3] M. Anshelevich and W. Młotkowski. The free Meixner class for pairs of measures. arXiv:1003.4025v1, 2010. MR2595336 [4] D. Appelbaum. Lévy Processes and Stochastic Calculus. Cambridge Studies in Advanced Mathematics, 2004. [5] F. Aurzada and S. Dereich. Small deviations of general Lévy processes. Ann. Prob., 37(5):2066–2092, 2009. MR2561441 [6] L. Bachelier. Théorie de la spéculation. Ann. Sci. de l’ École Norm. Sup., 17:21–86, Jan. 1900. MR1508978 [7] R.A. Bagnold and O.E. Barndorff-Nielsen. The pattern of natural size distributions. Sedimentology, 27(2):199–207, April 1980. [8] O.E. Barndorff-Nielsen. Hyperbolic distributions and distributions on hyperbolae. Scand. J. Statist, 5:151–157, 1978. MR0509451 [9] O.E. Barndorff-Nielsen and C. Halgreen. Infinite divisibility of the hyperbolic and generalized inverse gaussian distributions. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 38:309–311, 1977. MR0436260 [10] F. Bellini and M. Frittelli. On the existence of minimax martingale measures. Math. Finance, 12(1):1–21, 2002. MR1883783 [11] J. Bertoin. Lévy Processes. Number 121 in Cambridge Tracts in Mathematics. Cambridge University Press, 1996. MR1406564 [12] T. Björk. Arbitrage theory in continuous time. Oxford University Press, third edition, 2009. [13] F. Black and M. Scholes. The pricing of options and corporate liabilities. Journal of Political Economy, 81:637–654, May-Jun. 1973. [14] B. Böttcher and N. Jacob. Remarks on Meixner-type processes. In Probabilistic methods in fluids: proceedings of the Swansea 2002 workshop, pages 35–47, Singapore, 2003. World Scientific Co. [15] M. Bożejko and E. Lytvynov. Meixner class of non-commutative generalized stochastic processes with freely independent values I. A characterization. arXiv:0812.0895v2, 2009. MR2540072 [16] M. Bożejko and E. Lytvynov. Meixner class of non-commutative generalized stochastic processes with freely independent values II. The generating function. arXiv:1003.2998v1, 2010. [17] R. Brown. A brief account of microscopical observations made in the months of June, July, and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Edinburgh new philosophical journal, pages 358–371, 1828. [18] P. Carr, H. Geman, D.P. Madan, and M. Yor. The fine structure of asset returns: An empirical investigation. Journal of Business, 72(2):305–332, 2002. [19] T. Chan. Pricing contingent claims on stocks driven by Lévy processes. Ann. App. Prob., 9(2):504–528, 1999. MR1687394 [20] F. Comte and V. Genon-Catalot. Nonparametric estimation for pure jump Lévy processes based on high frequency data. Stoch. Proc. and their Applications, 119:4088–4123, Dec. 2009. MR2565560 [21] F. Comte and V. Genon-Catalot. Nonparametric adaptive estimation for pure jump Lévy processes. Ann. Inst. H. Poincaré Probab. Statist., 46(3):595–617, 2010. MR2682259 [22] R. Cont. Empirical properties of asset returns: stylized facts and statistical issues. Quantitative Finance, 1:223–236, 2001. [23] R. Cont and P. Tankov. Financial Modelling with Jump Processes. CRC Financial Mathematics Series. Chapman & Hall, 2003. MR2042661 [24] D. Dominici. Fisher information of orthogonal polynomials I. J. Comput. Appl. Math., 233(6):1511–1518, 2010. MR2559339 [25] E. Eberlein. Jump-type Lévy processes. In Handbook of Financial Time Series, pages 439–455. Springer Verlag, 2009. [26] E. Eberlein and U. Keller. Hyperbolic distributions in finance. Bernoulli, 1(3):281–99, 1995. [27] A. Einstein. Über die von molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Physik, 17:549–560, 1905. [28] F. Esche and M. Schweizer. Minimal entropy preserves the Lévy property: how and why. Stoch. Proc. Appl, 115(2):299–327, 2005. MR2111196 [29] F. Esscher. On the probability function in the collective theory of risk. Skandinavisk Aktuarietidskrift, 15:175–195, 1932. [30] E. Fama. Mandelbrot and the stable paretian hypothesis. Journal of Business, 36:420–429, 1963. [31] W. Feller. An Introduction to Probability Theory and Its Applications, volume 2. J.Wiley and sons, 2nd edition, 1971. MR0270403 [32] H. Föllmer and M. Schweizer. Hedging of Contingent Claims under Incomplete Information, chapter Applied Stochastic Analysis, pages 389–414. Gordon and Breach, 1991. MR1108430 [33] M. Frittelli. The minimal entropy martingale measure and the valuation problem in incomplete markets. Math. Finance, 10(1):39–52, 2000. MR1743972 [34] T. Fujiwara and Y. Miyahara. The minimal entropy martingale measures for geometric Lévy processes. Finance and Stochastics, 7:509–531, 2003. MR2014248 [35] H.U. Gerber and E.S.W. Shiu. Option pricing by Esscher transforms. Trans. Soc. Act., 46:99–191, 1994. [36] B. Grigelionis. Processes of Meixner type. Lithuanian Mathematical Journal, 39(1):33–41, 1999. MR1711971 [37] B. Grigelionis. Generalized z distributions and related stochastic processes. Lithuanian Mathematical Journal, 41(3):239–251, 2001. MR1874897 [38] M. Grigoletto and C. Provasi. Simulation and estimation of the Meixner distribution. Communications in Statistics: Simulation and Computation, 38(1):58–77, 2009. MR2518332 [39] F. Hubalek and C. Sgarra. Esscher transforms and the minimal entropy martingale measure for exponential Lévy models. Technical Report 13, Thiele Centre for applied mathematics in natural science, November 2005. [40] F. Hubalek and C. Sgarra. On the Esscher transform and the minimal entropy martingale measure for exponential Lévy models. Quantitative Finance, 6(2):125–145, 2006. MR2221625 [41] M. Jeanblanc, S. Klöppel, and Y. Miyahara. Minimal fq-martingale measures for exponential Lévy processes. Ann. Appl. Probab., 17(5/6):1615–1638, 2007. MR2358636 [42] J. Kallsen and A.N. Shiryaev. The cumulant process and Esscher’s change of measure. Finance and Stochastics, 6:397–428, 2002. MR1932378 [43] R. Koekoek and R.F. Swarttouw. The askey scheme of hypergeometric orthogonal polynomials and its q-analogous. http://fa.its.tudelft/ ˜koekoek/askey.html, 1998. Delft University of Technology, Faculty of Information Technology and Systems,Department of Technical Mathematics and Informatics, Report no. 98-17. [44] N.N. Lebedev. Special functions and their applications. Dover Publications Inc., 1972. MR0350075 [45] S. Lev. Integral equations in the theory of Lévy processes. In D. Alpay and V. Vinnikov, editors, Characteristic Functions, Scattering Functions and Transfer Functions, volume 197 of Operator Theory: Advances and Applications, pages 337–373. Birkhäuser, 2010. MR2647543 [46] E. Lukacs. Characteristic functions. Ch. Griffin, London, 2nd edition, 1970. MR0346874 [47] E. Lytvynov. Orthogonal decompositions for Lévy processes with an application to the Gamma, Pascal, and Meixner processes. To appear. [48] D.B. Madan and M. Yor. Representing the CGMY and Meixner Lévy processes as time changed Brownian motions. J. Comp. Fin., 12(1):27–47, Fall 2008. MR2504899 [49] M. Manstavičius. Hausdorff-Besicovitch dimension of graphs and p-variation of some Lévy processes. Bernoulli, 13(1):40–53, 2007. MR2307393 [50] E. Mazzola. Profiling processes of Meixner type. PhD thesis, Università Commerciale L.Bocconi, Milano, 2010. [51] J. Meixner. Orthogonale polynomsysteme mit einer besonderen gestalt der erzeugende funktion. J. London Math. Soc., 9:6–13, 1934. [52] Y. Miyahara. Canonical martingale measures of incomplete assets markets. In Probability Theory and Mathematical Statistics: Proceedings of the 7th Japan-Russia Symposium, pages 343–352, Tokyo, 1995. MR1467952 [53] Y. Miyahara. A note on Esscher transformed martingale measures for geometric Lévy processes. Technical report, Nagoya City University, 2004. [54] Y. Miyahara. Martingale measures for the geometric Lévy process models. Technical report, Graduate School of Economics, Nagoya City University, November 2005. [55] I. Monroe. Processes that can be embedded in brownian motion. Ann. Prob., 6(1):42–56, 1978. MR0455113 [56] J. Pitman and M. Yor. Infinitely divisible laws associated with hyperbolic functions. Can. J. Math., 55(2):292–330, 2003. MR1969794 [57] R.L. Prentice. Discrimination among some parametric models. Biometrika, 62:607–614, 1975. MR0394992 [58] P.A. Samuelson. Rational theory of warrant pricing. Industrial Management Review, 6(2):13–31, 1965. [59] J. Sánchez-Ruiz and J.S. Dehesa. Fisher information for orthogonal hypergeometric polynomials. J. Comput. Appl. Math., 182(1):150–164, 2005. MR2146490 [60] K.I. Sato. Lévy processes and infinitely divisible distributions. Cambridge University Press, 1999. MR1739520 [61] W. Schoutens. Stochastic Processes and Orthogonal Polynomials. Lecture Notes in Statistics 146. Springer-Verlag, New York, 2000. MR1761401 [62] W. Schoutens. The Meixner process: Theory and applications in finance. Technical report, K.U.Leuven, February 2002. [63] W. Schoutens. Lévy Processes in Finance - Pricing Financial Derivatives. Wiley series in probability and statistics. John Wiley & Sons, 2003. [64] W. Schoutens and J.L. Teugels. Lévy processes; polynomials and martingales. Commun. Statist.-Stochastic Models, 14(1,2):335–349, 1998. MR1617536 [65] M. Schweizer. On the minimal martingale measure and the Föllmer-Schweizer decomposition. Stochastic Analysis and Applications, 13:573–599, 1995. MR1353193 [66] J. Woerner. Estimating the skewness parameter in discretely observed Lévy processes. Econometric Theory, 20:927–942, 2004. MR2089148 |
|||||
Home | Current | Past volumes | About | Login | Notify | Contact | Search Probability Surveys. ISSN: 1549-5787 |