</script> Let (mu) be a Gaussian measure on some measurable space ({W = {w}, {mathcal B} (W)}) and let (nu) be a measure on the same space which is absolutely continuous with respect to (nu). The paper surveys results on the problem of constructing a transformation (T) on the (W) space such that (Tw = w+u(w)) where (u) takes values in the Cameron-Martin space and the image of (mu) under (T) is (mu). In addition we ask for the existence of transformations (T) belonging to some particular classes.">
Home | Current | Past volumes | About | Login | Notify | Contact | Search
 Probability Surveys > Vol. 3 (2006) open journal systems 


The realization of positive random variables via absolutely continuous transformations of measure on Wiener space

D. Feyel
A.S. Ustunel
M. Zakai, Technion - Israel Institute of Technology


Abstract
Let \(\mu\) be a Gaussian measure on some measurable space \(\{W = \{w\}, {\mathcal B} (W)\}\) and let \(\nu\) be a measure on the same space which is absolutely continuous with respect to \(\nu\). The paper surveys results on the problem of constructing a transformation \(T\) on the \(W\) space such that \(Tw = w+u(w)\) where \(u\) takes values in the Cameron-Martin space and the image of \(\mu\) under \(T\) is \(\mu\). In addition we ask for the existence of transformations \(T\) belonging to some particular classes.

Creative Common LOGO

Full Text: PDF


Feyel, D., Ustunel, A.S., Zakai, M., The realization of positive random variables via absolutely continuous transformations of measure on Wiener space, Probability Surveys, 3, (2006), 170-205 (electronic).

References

[1]     V.I. Bogachev, A.V. Kolesnikov, K.V. Medvedev. On triangular transformations of measures. Dokl. Russian Acad. Sci, v. 396, no. 6, pp. 727–732, 2004 (in Russian); English transl.: Dokl. Russian Acad. Sci, v. 69, no. 3, pp. 438–442, 2004. MR2115852

[2]     V.I. Bogachev, A.V. Kolesnikov, K.V. Medvedev. Triangular transformations of measures. To appear. MR2115852

[3]     Y. Brenier: “Polar factorization and monotone rearrangement of vector valued functions”. Comm. pure Appl. Math, 44, 375-417, 1991. MR1100809

[4]     C. Castaing and M. Valadier: Convex Analysis and Measurable Multifunctions. Lecture Notes in Math. Vol. 580. Springer, 1977. MR0467310

[5]     C. Dellacherie and P. A. Meyer: Probabilités et Potentiel, Ch. I à IV. Paris, Hermann, 1975. MR0488194

[6]     R.M. Dudley: Real Analysis and Probability. Cambridge University Press, Cambridge, 2003. MR1932358

[7]     X. Fernique: Extension du théorème de Cameron-Martin aux translations aléatoires. Ann. Probab, vol. 31, no. 3, pp. 1296–1304, 2003. MR1988473

[8]     D. Feyel and A.S. Üstünel. The notion of convexity and concavity on Wiener space. Journal of Functional Analysis, vol. 176,pp. 400-428, 2000. MR1784421

[9]     D. Feyel, A.S. Üstünel: Transport of measures on Wiener space and the Girsanov theorem. C.R. Acad. Sci. Paris, vol. 334, no. 1, pp. 1025–1028, 2002. MR1913729

[10]     D. Feyel, A.S. Üstünel: Monge-Kantorovitch measure transportation and Monge-Ampère equation on Wiener space. Probab. Theor. Relat. Fields, 128, no. 3, pp. 347–385, 2004. MR2036490

[11]     W. Gangbo and R. J. McCann: “The geometry of optimal transportation”. Acta Mathematica, 177, 113-161, 1996. MR1440931

[12]     H.H. Kuo: Gaussian Measures on Banach Spaces. Lecture Notes in Mathematics, vol. 463, Springer 1975. MR0461643

[13]     H.H. Kuo. White noise distribution theory. CRC Press, 1996. MR1387829

[14]     M. Ledoux and M. Talagrand: Probability in Banach Spaces. Springer, 1991. MR1102015

[15]     K. Ito and M. Nisio: On the convergence of sums of independent random variables. Osaka J. Math., vol. 5, pp. 35–48, 1968. MR0235593

[16]     D. Nualart, M. Zakai. Positive and strongly positive Wiener functionals: Barcelona Seminar on Stochastic Analysis (St. Feliu de Guixols, 1991), 132–146, Progr. Probab., 32 Birkhauser, Basel, 1993. MR1265047

[17]     S.T. Rachev and L. Rüchendorf: “A characterization of random variables with minimum L2-distance”. Journal of Multivariate Analysis, 32, 48-54, 1990. MR1035606

[18]     S.T. Rachev and L. Rüchendorf: Mass Transportation Problems, Vol. I and II. Probability and its Applications, Springer, 1998. MR1619170

[19]     T. Rockafellar: Convex Analysis. Princeton University Press, Princeton, 1972.

[20]     M. Talagrand: “Transportation cost for Gaussian and other product measures”. Geom. Funct. Anal., 6, 587-600, 1996. MR1392331

[21]     A.S. Üstünel: Introduction to Analysis on the Wiener Space. Lecture Notes in Math. Vol. 1610. Springer, 1995. MR1439752

[22]     A.S. Üstünel: Stochastic Analysis on Wiener Space. Electronic version in the cite http://www.finance-research.net/, 2004.

[23]     A.S. Üstünel, M. Zakai: Transformation of Measure on Wiener Space. Springer, Berlin, 2000. MR1736980

[24]     C. Villani: Topics in Optimal Transportation. Amer. Math. Soc., Rhode Island, Providence, 2003. MR1964483

[25]     E. Wong and M. Zakai. A characterization of kernels associated with the multiple integral representation of some functionals of the Wiener process. Systems and Control Lett., vol. 2, pp. 94–98, 1982/3. MR0671862

[26]     M. Zakai. Rotation and Tangent Processes on Wiener Space. Seminaire de Probabilities XXXVIII, Lecture Notes in Mathematics, vol. 1857, pp. 205–225, Springer 2004. MR2126976




Home | Current | Past volumes | About | Login | Notify | Contact | Search

Probability Surveys. ISSN: 1549-5787