Home | Current | Past volumes | About | Login | Notify | Contact | Search
 Probability Surveys > Vol. 14 (2017) open journal systems 


Coagulation and diffusion: A probabilistic perspective on the Smoluchowski PDE

Alan Michael Hammond, U.C. Berkeley


Abstract
The Smoluchowski coagulation-diffusion PDE is a system of partial differential equations modelling the evolution in time of mass-bearing Brownian particles which are subject to short-range pairwise coagulation. This survey presents a fairly detailed exposition of the kinetic limit derivation of the Smoluchowski PDE from a microscopic model of many coagulating Brownian particles that was undertaken in [11]. It presents heuristic explanations of the form of the main theorem before discussing the proof, and presents key estimates in that proof using a novel probabilistic technique. The survey’s principal aim is an exposition of this kinetic limit derivation, but it also contains an overview of several topics which either motivate or are motivated by this derivation.

AMS 2000 subject classifications: 60-02

Keywords: Smoluchowski PDE; kinetic limit; constant mean free path; Stosszahlansatz

Creative Common LOGO

Full Text: PDF


Hammond, Alan Michael, Coagulation and diffusion: A probabilistic perspective on the Smoluchowski PDE, Probability Surveys, 14, (2017), 205-288 (electronic). DOI: 10.1214/15-PS263.

References

[1]    David J. Aldous. Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists. Bernoulli, 5(1):3–48, 1999. MR1673235

[2]    Omer Angel, Nathanaël Berestycki, and Vlada Limic. Global divergence of spatial coalescents. Probab. Theory Related Fields, 152(3–4):625–679, 2012. MR2892958

[3]    J. M. Ball and J. Carr. The discrete coagulation-fragmentation equations: existence, uniqueness, and density conservation. J. Statist. Phys., 61(1–2):203–234, 1990. MR1084278

[4]    Nathanaël Berestycki. Recent progress in coalescent theory, volume 16 of Ensaios Matemáticos [Mathematical Surveys]. Sociedade Brasileira de Matemática, Rio de Janeiro, 2009. MR2574323

[5]    Ludwig Boltzmann. Lectures on gas theory. Translated by Stephen G. Brush. University of California Press, Berkeley, 1964. MR0158708

[6]    J. T. Cox. Coalescing random walks and voter model consensus times on the torus in Zd. Ann. Probab., 17(4):1333–1366, 1989. MR1048930

[7]    László Erd˝o   s, Benjamin Schlein, and Horng-Tzer Yau. Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate. Ann. of Math. (2), 172(1):291–370, 2010. MR2680421

[8]    Lawrence C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1998. MR1625845

[9]    Isabelle Gallagher, Laure Saint-Raymond, and Thierry Bodineau. The Brownian motion as the limit of a deterministic system of hard-spheres. arXiv:1305.7405, 2013. MR3455156

[10]    Alan Hammond and Fraydoun Rezakhanlou. Kinetic limit for a system of coagulating planar Brownian particles. J. Stat. Phys., 124(2–4):997–1040, 2006. MR2264632

[11]    Alan Hammond and Fraydoun Rezakhanlou. The kinetic limit of a system of coagulating Brownian particles. Arch. Ration. Mech. Anal., 185(1):1–67, 2007. MR2308858

[12]    Alan Hammond and Fraydoun Rezakhanlou. Moment bounds for the Smoluchowski equation and their consequences. Comm. Math. Phys., 276(3):645–670, 2007. MR2350433

[13]    Reinhard Illner and Mario Pulvirenti. Global validity of the Boltzmann equation for a two-dimensional rare gas in vacuum. Comm. Math. Phys., 105(2):189–203, 1986. MR0849204

[14]    J. F. C. Kingman. The coalescent. Stochastic Process. Appl., 13(3):235–248, 1982. MR0671034

[15]    J. F. C. Kingman. On the genealogy of large populations. J. Appl. Probab., (Special Vol. 19A):27–43, 1982. Essays in statistical science. MR0633178

[16]    O.E. Lanford III. Time evolution of large classical systems. Lecture Notes in Physics, 38:1–111, 1975. MR0479206

[17]    Reinhard Lang and Xuan-Xanh Nguyen. Smoluchowski’s theory of coagulation in colloids holds rigorously in the Boltzmann-Grad limit. Z. Wahrsch. Verw. Gebiete, 54:227–280, 1980. MR0602510

[18]    Philippe Laurençot and Stéphane Mischler. Global existence for the discrete diffusive coagulation-fragmentation equations in L1. Rev. Mat. Iberoamericana, 18(3):731–745, 2002. MR1954870

[19]    J. B. McLeod. On an infinite set of non-linear differential equations. Quart. J. Math. Oxford Ser. (2), 13:119–128, 1962. MR0139822

[20]    J. B. McLeod. On the scalar transport equation. Proc. London Math. Soc. (3), 14:445–458, 1964. MR0162110

[21]    J. R. Norris. Smoluchowski’s coagulation equation: uniqueness, nonuniqueness and a hydrodynamic limit for the stochastic coalescent. Ann. Appl. Probab., 9(1):78–109, 1999.

[22]    J. R. Norris. Cluster coagulation. Comm. Math. Phys., 209(2):407–435, 2000. MR1737990

[23]    J. R. Norris. Measure solutions for the Smoluchowski coagulation-diffusion equation. arXiv:1408.5228, 2014. MR1682596

[24]    Mojtaba Ranjbar and Fraydoun Rezakhanlou. Equilibrium fluctuations for a model of coagulating-fragmenting planar Brownian particles. Comm. Math. Phys., 296(3):769–826, 2010. MR2628822

[25]    Fraydoun Rezakhanlou. The coagulating Brownian particles and Smoluchowski’s equation. Markov Process. Related Fields, 12(2):425–445, 2006. MR2249642

[26]    Fraydoun Rezakhanlou. Gelation for Marcus-Lushnikov process. Ann. Probab., 41(3B):1806–1830, 2013. MR3098059

[27]    L. C. G. Rogers and David Williams. Diffusions, Markov processes, and martingales. Vol. 1. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2000. Foundations, Reprint of the second (1994) edition. MR1780932

[28]    M. Smoluchowski. Drei Vorträge über Diffusion, Brown’sche Molekularbewegung und Koagulation von Kolloidteilchen. Phys. Z. XVII, pages 557–571, 585–599, 1916.

[29]    A.-S. Sznitman. Propagation of chaos for a system of annihilating Brownian spheres. Comm. Pure Appl. Math., 40(6):663–690, 1987. MR0910949

[30]     Terence Tao. From Bose-Einstein condensates to the nonlinear Schrödinger equation (blog post). http://terrytao.wordpress.com/2009/11/26/from- bose-einstein-condensates-to-the-nonlinear-schrodinger-equation/, 2009.

[31]    Cédric Villani. A review of mathematical topics in collisional kinetic theory. In Handbook of mathematical fluid dynamics, Vol. I, pages 71–305. North-Holland, Amsterdam, 2002. MR1942465

[32]    Warren H. White. A global existence theorem for Smoluchowski’s coagulation equations. Proc. Amer. Math. Soc., 80(2):273–276, 1980. MR0577758

[33]    Dariusz Wrzosek. Mass-conserving solutions to the discrete coagulation-fragmentation model with diffusion. Nonlinear Anal., 49(3, Ser. A: Theory Methods):297–314, 2002. MR1886116

[34]    Mohammad Reza Yaghouti, Fraydoun Rezakhanlou, and Alan Hammond. Coagulation, diffusion and the continuous Smoluchowski equation. Stochastic Process. Appl., 119(9):3042–3080, 2009. MR2554038




Home | Current | Past volumes | About | Login | Notify | Contact | Search

Probability Surveys. ISSN: 1549-5787