Home | Current | Past volumes | About | Login | Notify | Contact | Search | |||||
|
|||||
References[AS] Adhikari, A.K. and Sarkar, B.P. (1968), Distributions of most significant digit in certain functions whose arguments are random variables, Sankhya-The Indian Journal of Statistics Series B 30, 47–58. MR0236969 [Al] Allaart, P.C. (1997), An invariant-sum characterization of Benford’s law, J. Appl. Probab. 34, 288–291. MR1429075 [BB] Barlow, J.L. and Bareiss, E.H. (1985), On Roundoff Error Distributions in Floating Point and Logarithmic Arithmetic, Computing 34, 325–347. MR0804633 [Ben] Benford, F. (1938), The law of anomalous numbers, Proc. Amer. Philosophical Soc. 78, 551–572. [Ber1] Berger, A. (2001), Chaos and Chance, deGruyter, Berlin. MR1868729 [Ber2] Berger, A. (2005), Multi-dimensional dynamical systems and Benford’s Law, Discrete Contin. Dyn. Syst. 13, 219–237. MR2128801 [Ber3] Berger, A. (2005), Benford’s Law in power-like dynamical systems, Stoch. Dyn. 5, 587–607. MR2185507 [Ber4] Berger, A. (2010), Some dynamical properties of Benford sequences, to appear in J. Difference Equ. Appl. [Ber5] Berger, A. (2010), Large spread does not imply Benford’s law, preprint. [BBH] Berger, A., Bunimovich, L. and Hill, T.P. (2005), Onde-dimensional dynamical systems and Benford’s Law, Trans. Amer. Math. Soc. 357, 197–219. MR2098092 [BH1] Berger, A. and Hill, T.P. (2007), Newton’s method obeys Benford’s law, Amer. Math. Monthly 114, 588–601. MR2341322 [BH2] Berger, A. and Hill, T.P. (2009), Benford Online Bibliography; accessed May 15, 2011 at http://www.benfordonline.net. [BH3] Berger, A. and Hill, T.P. (2011), Benford’s Law strikes back: No simple explanation in sight for mathematical gem, Math. Intelligencer 33, 85–91. [BHKR] Berger, A., Hill, T.P., Kaynar, B. and Ridder, A. (2011), Finite-state Markov Chains Obey Benford’s Law, to appear in SIAM J. Matrix Analysis. [BS] Berger, A. and Siegmund, S. (2007), On the distribution of mantissae in nonautonomous difference equations, J. Difference Equ. Appl. 13, 829–845. MR2343033 [CT] Chow, Y.S. and Teicher, H. (1997), Probability Theory. Independence, Interchangeability, Martingales (3rd ed.), Springer. MR1476912 [Di] Diaconis, P. (1977), The Distribution of Leading Digits and Uniform Distribution Mod 1, Ann. Probab. 5, 72–81. MR0422186 [DT] Drmota, M. and Tichy, R.F. (1997), Sequences, Discrepancies and Applications, Springer. MR1470456 [DF] Dubins, L. and Freedman, D. (1967), Random distribution functions, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Vol. II: Contributions to Probability Theory, Part 1, 183–214, Univ. California Press, Berkeley, Calif. MR0214109 [Ei] Einsiedler, M. (2009), What is measure rigidity? Notices Amer. Math. Soc. 56 600–601. MR2509063 [EL] Engel, H. and Leuenberger, C. (2003), Benford’s law for exponential random variables, Statist. Probab. Lett. 63, 361–365. MR1996184 [FT] Feldstein, A. and Turner, P. (1986), Overflow, Underflow, and Severe Loss of Significance in Floating-Point Addition and Subtraction, IMA J. Numer. Anal. 6, 241–251. MR0967665 [Fel] Feller, W. (1966), An Introduction to Probability Theory and Its Applications vol 2, 2nd ed., J. Wiley, New York. [Few] Fewster, R. (2009), A simple Explanation of Benford’s Law, Amer. Statist. 63(1), 20–25. MR2655700 [Fl] Flehinger, B.J. (1966), On the Probability that a Random Integer has Initial Digit A, Amer. Math. Monthly 73, 1056–1061. MR0204395 [GG] Giuliano Antonioni, R. and Grekos, G. (2005), Regular sets and conditional density: an extension of Benford’s law, Colloq. Math. 103, 173–192. MR2197847 [Ha] Hamming, R. (1970), On the distribution of numbers, Bell Syst. Tech. J. 49(8), 1609–1625. MR0267809 [Hi1] Hill, T.P. (1995), Base-Invariance Implies Benford’s Law, Proc. Amer. Math. Soc. 123(3), 887–895. MR1233974 [Hi2] Hill, T.P. (1995), A Statistical Derivation of the Significant-Digit Law, Statis. Sci. 10(4), 354–363. MR1421567 [Ka] Kallenberg, O. (1997), Foundations of modern probability, Springer. MR1464694 [KH] Katok, A. and Hasselblatt, B. (1995), Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge. MR1326374 [Kn] Knuth, D. (1997), The Art of Computer Programming, pp 253-264, vol. 2, 3rd ed, Addison-Wesley, Reading, MA. MR0378456 [KM] Kontorovich, A.V. and Miller, S.J. (2005), Benford’s Law, Values of L-functions and the 3x+1 Problem, Acta Arithm. 120(3), 269–297. MR2188844 [KN] Kupiers, L. and Niederreiter, H. (1974), Uniform distribution of sequences, John Wiley & Sons, New York. MR0419394 [LP] Lacey, M. and Phillip, W. (1990), A note on the almost sure central limit theorem, Statist. Probab. Lett. 63, 361–365. MR1045184 [LS] Lagarias, J.C. and Soundararajan, K. (2006), Benford’s law for the 3x+1 function, J. London Math. Soc. 74, 289–303. MR2269630 [LSE] Leemis, L.M., Schmeiser, B.W. and Evans, D.L. (2000), Survival Distributions Satisfying Benford’s Law, Amer. Statist. 54(4), 236–241. MR1803620 [Ly] Lyons, R. (1995), Seventy years of Rajchman measures, J. Fourier Anal. Appl., Kahane Special Issue, 363–377. MR1364897 [MN] Miller, S.J. and Nigrini, M.J. (2008), Order Statistics and Benford’s Law, to appear in: Int. J. Math. Math. Sci. MR2461421 [Mo] Morrison, K.E. (2010), The Multiplication Game, Math. Mag. 83, 100–110. MR2649322 [Ne] Newcomb, S. (1881), Note on the frequency of use of the different digits in natural numbers, Amer. J. Math. 9, 201–205. [Ni] Nigrini, M.J. (1992), The Detection of Income Tax Evasion Through an Analysis of Digital Frequencies, PhD thesis, University of Cincinnati, OH, USA. [Pa] Palmer, K. (2000), Shadowing in dynamical systems, Kluwer. MR1885537 [Pi] Pinkham, R. (1961), On the Distribution of First Significant Digits, Ann. Math. Statist. 32(4), 1223–1230. MR0131303 [Ra1] Raimi, R. (1976), The First Digit Problem, Amer. Math. Monthly 83(7), 521–538. MR0410850 [Ra2] Raimi, R. (1985), The First Digit Phenomenon Again, Proc. Amer. Philosophical Soc. 129, 211–219. [Ro] Robbins, H. (1953), On the equidistribution of sums of independent random variables, Proc. Amer. Math. Soc. 4, 786–799. MR0056869 [Scha1] Schatte, P. (1988), On random variables with logarithmic mantissa distribution relative to several bases, Elektron. Informationsverarbeit. Kybernetik 17, 293–295. MR0653759 [Scha2] Schatte, P. (1988), On a law of the iterated logarithm for sums mod 1 with application to Benford’s law, Probab. Theory Related Fields 77, 167–178. MR0927235 [Schü1] Schürger, K. (2008), Extensions of Black-Scholes processes and Benford’s law, Stochastic Process. Appl. 118, 1219–1243. MR2428715 [Schü2] Schürger, K. (2011), Lévy Processes and Benford’s Law, preprint. [Se] Serre, J.P. (1973), A course in arithmetic, Springer. MR0344216 [Sh] Shiryayev, A.N. (1984), Probability, Springer. MR0737192 [Sm] Smith, S.W. (1997), Explaining Benford’s Law, Chapter 34 in: The Scientist and Engineer’s Guide to Digital Signal Processing. Republished in softcover by Newnes, 2002 [Wa] Walter, W. (1998), Ordinary Differential Equations, Springer. MR1629775 [Wh] Whitney, R.E. (1972), Initial digits for the sequence of primes, Amer. Math. Monthly 79(2), 150–152. MR0304337 |
|||||
Home | Current | Past volumes | About | Login | Notify | Contact | Search Probability Surveys. ISSN: 1549-5787 |