</script> ">
Home | Current | Past volumes | About | Login | Notify | Contact | Search
 Probability Surveys > Vol. 15 (2018) open journal systems 


The Bethe ansatz for the six-vertex and XXZ models: An exposition

Hugo Duminil-Copin, I.H.E.S. and University of Geneva
Maxime Gagnebin, University of Geneva
Matan Harel, University of Geneva
Ioan Manolescu, University of Fribourg
Vincent Tassion, ETH Zurich


Abstract

In this paper, we review a few known facts on the coordinate Bethe ansatz. We present a detailed construction of the Bethe ansatz vector \(\psi\) and energy \(\Lambda\), which satisfy \(V \psi = \Lambda \psi\), where \(V\) is the transfer matrix of the six-vertex model on a finite square lattice with periodic boundary conditions for weights \(a= b=1\) and \(c > 0\). We also show that the same vector \(\psi\) satisfies \(H \psi = E \psi\), where \(H\) is the Hamiltonian of the XXZ model (which is the model for which the Bethe ansatz was first developed), with a value \(E\) computed explicitly.

Variants of this approach have become central techniques for the study of exactly solvable statistical mechanics models in both the physics and mathematics communities. Our aim in this paper is to provide a pedagogically-minded exposition of this construction, aimed at a mathematical audience. It also provides the opportunity to introduce the notation and framework which will be used in a subsequent paper by the authors [5] that amounts to proving that the random-cluster model on \(\mathbb{Z}^{2}\) with cluster weight \(q >4\) exhibits a first-order phase transition.



AMS 2000 subject classifications: 60K35, 82B20, 82B23, 82B26.

Keywords: Transfer matrix, Bethe ansatz, six vertex model, XXZ model.

Creative Common LOGO

Full Text: PDF


Duminil-Copin, Hugo, Gagnebin, Maxime, Harel, Matan, Manolescu, Ioan, Tassion, Vincent, The Bethe ansatz for the six-vertex and XXZ models: An exposition, Probability Surveys, 15, (2018), 102-130 (electronic). DOI: 10.1214/17-PS292.

References

[1]    R. J. Baxter. Partition function of the eight vertex lattice model. Annals Phys., 70:193–228, 1972. MR0290733

[2]    R. J. Baxter. Exactly solved models in statistical mechanics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1989. Reprint of the 1982 original. MR0998375

[3]    H. Bethe. Zur Theorie der Metalle I. Eigenwerte und Eigenfunktionen der Hnearen Atomkette. Zeitschrift für Physik, 71(3):205–226, 1931.

[4]    N. M. Bogoliubov, A. G. Izergin, and V. E. Korepin. Quantum inverse scattering method and correlation functions. Cambridge university press, 1997. MR1245942

[5]    H. Duminil-Copin, M. Gagnebin, M. Harel, I. Manolescu, and V. Tassion. Discontinuity of the phase transition for the planar random-cluster and Potts models with q > 4. Preprint, https://arxiv.org/abs/1611.09877, 2016. MR3675934

[6]    M. Jimbo and T. Miwa. Algebraic Analysis of Solvable Lattice Models. American Mathematical Soc., 1994. MR1308712

[7]    M. Karbach, K. Hu, and G. Müller. Introduction to the Bethe ansatz II. Computers in Physics, 12:565–573, 1998. MR3529417

[8]    M. Karbach, K. Hu, and G. Müller. Introduction to the Bethe ansatz III. 2000.

[9]    M. Karbach and G. Müller. Introduction to the Bethe ansatz I. Computers in Physics, 11:36–43, 1997. MR3529417

[10]    E. H. Lieb. Residual entropy of square ice. Physical Review, 162(1):162, 1967.

[11]    N. Reshetikhin. Lectures on the integrability of the 6-vertex model. https://arxiv.org/abs/1010.5031, 2010.

[12]    C. N. Yang and C. P. Yang. One-dimensional chain of anisotropic spin-spin interactions. I. Proof of Bethe’s hypothesis for ground state in a finite system. Phys. Rev., 150:321–327, 1966.




Home | Current | Past volumes | About | Login | Notify | Contact | Search

Probability Surveys. ISSN: 1549-5787