Home | Current | Past volumes | About | Login | Notify | Contact | Search | |||||
|
|||||
References[1] Abramowitz, M. and Stegun, I.A.. Handbook of Mathematical Functions. Dover, New York, 9th edition, 1972. [2] Alexanderian, A., Le Maître, O.P., Najm, H.N., Iskandarani, M., and Knio, O.M. Multiscale stochastic preconditioners in non-intrusive spectral projection. Journal of Scientific Computing, 50:306–340, 2012. MR2886330 [3] Alexanderian, A., Rizzi, F., Rathinam, M., Le Maître, O., and Knio, O. Preconditioned Bayesian regression for stochastic chemical kinetics. Journal of Scientific Computing, 2013. In press. [4] Alexanderian, A., Winokur, J., Sraj, I., Srinivasan, A., Iskandarani, M., Thacker, W.C., and Knio, O.M. Global sensitivity analysis in ocean global circulation models: A sparse spectral projection approach. Computational Geosciences, 16(3):757–778, 2012. [5] Archer, G.E.B., Saltelli, A., and Sobol, I.M. Sensitivity measures, ANOVA-like techniques and the use of bootstrap. Journal of Statistical Computation and Simulation, 58(2):99–120, 1997. [6] Athreya, K.B. and Lahiri, S.N. Measure Theory and Probability Theory. New York, NY: Springer, 2006. MR2247694 [7] Cameron, R.H. and Martin, W.T. The orthogonal development of non-linear functionals in series of fourier-hermite functionals. Ann. Math., 48:385–392, 1947. MR0020230 [8] Crestaux, T., Le Maitre, O.P., and Martinez, J.-M. Polynomial chaos expansion for sensitivity analysis. Reliability Engineering & System Safety, 94(7):1161 – 1172, 2009. Special Issue on Sensitivity Analysis. [9] Ernst, O.G., Mugler, A., Starkloff, H.-J. and Ullmann, E. On the convergence of generalized polynomial chaos expansions. ESAIM: Mathematical Modelling and Numerical Analysis, 46:317–339, 2012. MR2855645 [10] Ghanem, R.G. and Spanos, P.D. Stochastic Finite Elements: A Spectral Approach. Dover, 2nd edition, 2002. [11] Homma, T. and Saltelli, A. Importance measures in global sensitivity analysis of nonlinear models. Reliability Engineering & System Safety, 52(1):1–17, 1996. [12] Janson, S. Gaussian Hilbert Spaces. Cambridge University Press, 1997. MR1474726 [13] Kallenberg, O. Foundations of Modern Probability. Springer, 2nd edition, 2002. MR1876169 [14] Le Maître, O.P. and Knio, O.M. Spectral Methods for Uncertainty Quantification with Applications to Computational Fluid Dynamics. Scientific Computation, Springer, 2010. MR2605529 [15] Le Maître, O.P., Mathelin, L., Knio, O.M., and Hussaini, M.Y. Asynchronous time integration for polynomial chaos expansion of uncertain periodic dynamics. Discrete and Continuous Dynamical Systems, 28(1):199–226, 2010. MR2629479 [16] Le Maître, O.P., Najm, H.N., Pebay, P.P., Ghanem, R.G., and Knio, O.M. Multi-resolution-analysis scheme for uncertainty quantification in chemical systems. SIAM Journal on Scientific Computing, 29(2):864–889, 2007. MR2306272 [17] Najm, H.N. Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. Ann. Rev. Fluid Mech., 41:35–52, 2009. MR2512381 [18] Reagan, M.T., Najm, H.N., Debusschere, B.J., Le Maître, O.P. Knio, O.M., and Ghanem, R.G. Spectral stochastic uncertainty quantification in chemical systems. Combustion Theory and Modelling, 8:607–632, 2004. [19] Saltelli, A. Sensitivity analysis for importance assessment. Risk Analysis, 22(3):579–590, 2002. [20] Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and Tarantola, S. Global Sensitivity Analysis: The Primer. Wiley.com, 2008. MR2382923 [21] Sargsyan, K., Debusschere, B., Najm, H.N., and Le Maître, O.P. Spectral representation and reduced order modeling of the dynamics of stochastic reaction networks via adaptive data partitioning. SIAM J. Sci. Comput., 31:4395–4421, 2010. MR2594987 [22] Sobol, I.M. Estimation of the sensitivity of nonlinear mathematical models. Matematicheskoe Modelirovanie, 2(1):112–118, 1990. MR1052836 [23] Sobol, I.M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation, 55(1–3):271–280, 2001. The Second IMACS Seminar on Monte Carlo Methods. MR1823119 [24] Sobol, I.M., Tarantola, S., Gatelli, D., Kucherenko, S.S., and Mauntz, W. Estimating the approximation error when fixing unessential factors in global sensitivity analysis. Reliability Engineering & System Safety, 92(7):957–960, 2007. [25] Sudret, B. Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering & System Safety, 93(7):964–979, 2008. [26] Wiener, N. The Homogeneous chaos. Amer. J. Math., 60:897–936, 1938. MR1507356 [27] Williams, D. Probability with Martingales. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991. MR1155402 [28] Xiu, D.B. and Karniadakis, G.E. The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput., 24:619–644, 2002. MR1951058 |
|||||
Home | Current | Past volumes | About | Login | Notify | Contact | Search Probability Surveys. ISSN: 1549-5787 |