Home | Current | Past volumes | About | Login | Notify | Contact | Search | |||||
|
|||||
References[1] D. J. Aldous. Representations for partially exchangeable arrays of random variables. J. Multivariate Anal., 11(4):581–598, 1981. MR0637937 [2] D. J. Aldous. On exchangeability and conditional independence. In Exchangeability in probability and statistics (Rome, 1981), pages 165–170. North-Holland, Amsterdam, 1982. MR0675972 [3] D. J. Aldous. Exchangeability and related topics. In École d’été de probabilités de Saint-Flour, XIII—1983, volume 1117 of Lecture Notes in Math., pages 1–198. Springer, Berlin, 1985. MR0883646 [4] D. J. Aldous and R. Lyons. Processes on Unimodular Random Networks. Electronic J. Probab., 12:1454–1508, 2007. MR2354165 [5] D. J. Aldous and J. M. Steele. The objective method: probabilistic combinatorial optimization and local weak convergence. In H. Kesten, editor, Probability on Discrete Structures, volume 110 of Enyclopaedia Math. Sci., pages 1–72. Springer, Berlin, 2004. MR2023650 [6] N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Efficient testing of large graphs. Combinatorica, 20:451–476, 2000. MR1804820 [7] N. Alon and A. Shapira. A Characterization of the (natural) Graph Properties Testable with One-Sided Error. preprint, available online at http://www.math.tau.ac.il/~nogaa/PDFS/heredit2.pdf. [8] N. Alon and A. Shapira. Every monotone graph property is testable. In Proc. of the 37th ACM STOC, Baltimore. ACM Press, 2005. available online at http://www.math.tau.ac.il/~nogaa/PDFS/MonotoneSTOC.pdf. MR2181610 [9] T. Austin. Razborov flag algebras as algebras of measurable functions. manuscript, available online at arXiv.org: 0801.1538, 2007. MR2371204 [10] T. Austin and T. Tao. On the testability and repair of hereditary hypergraph properties. preprint, available online at arXiv.org: 0801.2179, 2008. [11] H. Becker and A. S. Kechris. The Descriptive Set Theory of Polish Group Actions. Cambridge University Press, Cambridge, 1996. MR1425877 [12] I. Benjamini and O. Schramm. Recurrence of distributional limits of finite planar graphs. Electron. J. Probab., 6:no. 23, 13 pp. (electronic), 2001. MR1873300 [13] I. Benjamini, O. Schramm, and A. Shapira. Every Minor-Closed Property of Sparse Graphs is Testable. [14] Y. Benyamini and J. Lindenstrauss. Geometric Nonlinear Functional Analysis. American Mathematical Society, Providence, 2000. MR1727673 [15] V. Bergelson. Ergodic Ramsey Theory – an Update. In M. Pollicott and K. Schmidt, editors, Ergodic Theory of ℤd-actions: Proceedings of the Warwick Symposium 1993-4, pages 1–61. Cambridge University Press, Cambridge, 1996. MR1411215 [16] B. Bollobás. Modern Graph Theory. Springer, Berlin, 1998. MR1633290 [17] C. Borgs, J. Chayes, L. Lovász, V. T. Sós, B. Szegedy, and K. Vesztergombi. Graph limits and parameter testing. In STOC’06: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pages 261–270, New York, 2006. ACM. MR2277152 [18] B. de Finetti. Fuzione caratteristica di un fenomeno aleatorio. Mem. R. Acc. Lincei, 4(6):86–133, 1930. [19] B. de Finetti. La prévision: ses lois logiques, ses sources subjectives. Ann. Inst. H. Poincaré, 7:1–68, 1937. MR1508036 [20] P. Diaconis and S. Janson. Graph limits and exchangeable random graphs. Preprint; available online at arXiv.org: math.PR math.CO/0712.2749, 2007. MR2346812 [21] E. B. Dynkin. Classes of equivalent random quantities. Uspehi Matem. Nauk (N.S.), 8(2(54)):125–130, 1953. MR0055601 [22] G. Elek. On limits of finite graphs. preprint; available online at arXiv.org: math.CO/0505335, 2005. MR2359831 [23] G. Elek. A Regularity Lemma for Bounded Degree Graphs and Its Applications: Parameter Testing and Infinite Volume Limits. preprint; available online at arXiv.org: math.CO/0711.2800, 2007. [24] G. Elek and B. Szegedy. Limits of Hypergraphs, Removal and Regularity Lemmas. A Nonstandard Approach. preprint; available online at arXiv.org: math.CO/0705.2179, 2007. [25] P. Erds and A. Hajnal. Some remarks on set theory, IX. Combinatorial problems in measure theory and set theory. Michigan Math. J., 11:107–127, 1964. MR0171713 [26] D. G. Fon-Der-Flaass. A method for constructing (3,4)-graphs. Mat. Zametki, 44(4):546–550, 559, 1988. MR0975195
[27] D. H. Fremlin. list of problems. available online at
[28] D. H. Fremlin. Random equivalence relations. preprint, available online
at [29] D. H. Fremlin and M. Talagrand. Subgraphs of random graphs. Trans. Amer. Math. Soc., 291(2):551–582, 1985. MR0800252 [30] H. Furstenberg. Ergodic behaviour of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J. d’Analyse Math., 31:204–256, 1977. MR0498471 [31] H. Furstenberg. Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton University Press, Princeton, 1981. MR0603625 [32] H. Furstenberg and Y. Katznelson. An ergodic Szemerédi Theorem for commuting transformations. J. d’Analyse Math., 34:275–291, 1978. MR0531279 [33] H. Furstenberg and Y. Katznelson. An ergodic Szemerédi theorem for IP-systems and combinatorial theory. J. d’Analyse Math., 45:117–168, 1985. MR0833409 [34] H. Gaifman. Concerning measures in first-order calculi. Israel J. Math., 2:1–18, 1964. MR0175755 [35] E. Glasner. Ergodic Theory via Joinings. American Mathematical Society, Providence, 2003. MR1958753 [36] W. T. Gowers. Hypergraph regularity and the multidimensional Szemerédi Theorem. preprint. [37] W. T. Gowers. A new proof of Szemerédi’s theorem. Geom. Funct. Anal., 11(3):465–588, 2001. MR1844079 [38] W. T. Gowers. Quasirandomness, counting and regularity for 3-uniform hypergraphs. Combin. Probab. Comput., 15(1-2):143–184, 2006. MR2195580 [39] M. Gromov. Metric Structures for Riemannian and Non-Riemannian Spaces. Birkhäuser, Boston, 1999. MR1699320 [40] E. Hewitt and L. J. Savage. Symmetric measures on Cartesian products. Trans. Amer. Math. Soc., 80:470–501, 1955. MR0076206 [41] D. N. Hoover. Relations on probability spaces and arrays of random variables. 1979. [42] D. N. Hoover. Row-columns exchangeability and a generalized model for exchangeability. In Exchangeability in probability and statistics (Rome, 1981), pages 281–291, Amsterdam, 1982. North-Holland. MR0675982 [43] B. Host and B. Kra. Nonconventional ergodic averages and nilmanifolds. Ann. Math., 161(1):397–488, 2005. MR2150389 [44] O. Kallenberg. Symmetries on random arrays and set-indexed processes. J. Theoret. Probab., 5(4):727–765, 1992. MR1182678 [45] O. Kallenberg. Foundations of modern probability. Probability and its Applications (New York). Springer-Verlag, New York, second edition, 2002. MR1876169 [46] O. Kallenberg. Probabilistic symmetries and invariance principles. Probability and its Applications (New York). Springer, New York, 2005. MR2161313 [47] J. F. C. Kingman. The representation of partition structures. J. London Math. Soc. (2), 18(2):374–380, 1978. MR0509954 [48] J. F. C. Kingman. Uses of exchangeability. Ann. Probability, 6(2):183–197, 1978. MR0494344 [49] R. Kopperman. Model Theory and its Applications. Allyn and Bacon, Boston, 1972. MR0363873 [50] A. V. Kostochka. A class of constructions for Turán’s (3,4)-problem. Combinatorica, 2:187–192, 1982. MR0685045 [51] P. H. Krauss. Representation of symmetric probability models. J. Symbolic Logic, 34:183–193, 1969. MR0275482 [52] L. Lovász and B. Szegedy. Limits of dense graph sequences. J. Combin. Theory Ser. B, 96(6):933–957, 2006. MR2274085 [53] B. Nagle, V. Rödl, and M. Schacht. The counting lemma for regular k-uniform hypergraphs. Random Structures and Algorithms, to appear. MR2198495 [54] A. Razborov. Flag Algebras. J. Symbolic Logic, 72(4):1239–1282, 2007. MR2371204 [55] A. Razborov. On the minimal density of triangles in graphs. preprint; available online at http://www.mi.ras.ru/~razborov/triangles.pdf, 2007. [56] V. Rödl and M. Schacht. Generalizations of the removal lemma. preprint, available online at http://www.informatik.hu-berlin.de/ ~schacht/pub/preprints/gen_removal.pdf. [57] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications to program testing. SIAM Journal on Computing, 25(2):252–271, 1996. MR1379300 [58] C. Ryll-Nardzewski. On stationary sequences of random variables and the de finetti’s equivalence. Colloq. Math., 4:149–156, 1957. MR0088823 [59] O. Schramm. Hyperfinite graph limits. preprint, available online at arXiv.org: math.CO/0711.3808, 2007. MR2334202 [60] A. Sidorenko. What We Know and What We Do not Know about Turán Numbers. Graphs and Combinatorics, 11:179–199, 1995. MR1341481 [61] E. Szemerédi. On sets of integers containing no k elements in arithmetic progression. Acta Arith., 27:199–245, 1975. MR0369312 [62] T. Tao. A correspondence principle between (hyper)graph theory and probability theory, and the (hyper)graph removal lemma. J. d’Analyse Mathematique. to appear; available online at arXiv.org: math.CO/0602037. MR2373263 [63] T. Tao. A quantitative ergodic theory proof of Szemerédi’s theorem. Electron. J. Combin., 13(1):Research Paper 99, 49 pp. (electronic), 2006. MR2274314 [64] T. Tao and V. Vu. Additive combinatorics. Cambridge University Press, Cambridge, 2006. MR2289012 [65] P. Wojtaszczyk. Banach spaces for analysts. Cambridge University Press, Cambridge, 1991. MR1144277 [66] K. Yosida. Functional analysis. Classics in Mathematics. Springer-Verlag, Berlin, 1995. Reprint of the sixth (1980) edition. MR1336382 [67] T. Ziegler. Universal characteristic factors and Furstenberg averages. J. Amer. Math. Soc., 20(1):53–97 (electronic), 2007. MR2257397 [68] R. J. Zimmer. Ergodic actions with generalized discrete spectrum. Illinois J. Math., 20(4):555–588, 1976. MR0414832 [69] R. J. Zimmer. Extensions of ergodic group actions. Illinois J. Math., 20(3):373–409, 1976. MR0409770 |
|||||
Home | Current | Past volumes | About | Login | Notify | Contact | Search Probability Surveys. ISSN: 1549-5787 |