</script> In recent years, important progress has been made in the field of two-dimensional statistical physics. One of the most striking achievements is the proof of the Cardy--Smirnov formula. This theorem, together with the introduction of Schramm--Loewner Evolution and techniques developed over the years in percolation, allow precise descriptions of the critical and near-critical regimes of the model. This survey aims to describe the different steps leading to the proof that the infinite-cluster density (theta(p)) for site percolation on the triangular lattice behaves like ((p-p_c)^{5/36+o(1)}) as (psearrow p_c=1/2).">
Home | Current | Past volumes | About | Login | Notify | Contact | Search | |||||
|
|||||
References[AB99] Aizenman, M. and Burchard, A., Hölder regularity and dimension bounds for random curves, Duke Math. J. 99 (1999), no. 3, 419–453. MR1712629 [BB07] Berger, N. and Biskup, M., Quenched invariance principle for simple random walk on percolation clusters, Probab. Theory Related Fields 137 (2007), no. 1, 83–120. MR2278453 [BCL10] Binder, I., Chayes, L., and Lei, H. K., On convergence to SLE6 I: Conformal invariance for certain models of the bond-triangular type, J. Stat. Phys. 141 (2010), no. 2, 359–390. MR2726646 [BCL12] Binder, I., Chayes, L., and Lei, H. K., On the rate of convergence for critical crossing probabilities, preprint, arXiv:1210.1917, 2012. [BDC12] Beffara, V. and Duminil-Copin, H., The self-dual point of the two-dimensional random-cluster model is critical for q ≥ 1, Probab. Theory Related Fields 153 (2012), 511–542. MR2948685 [Bef04] Beffara, V., Hausdorff dimensions for SLE6, Ann. Probab. 32 (2004), no. 3B, 2606–2629. MR2078552 [Bef07] Beffara, V., Cardy’s formula on the triangular lattice, the easy way, Universality and Renormalization (I. Binder and D. Kreimer, eds.), Fields Institute Communications, vol. 50, The Fields Institute, 2007, pp. 39–45. [Bef08a] Beffara, V., The dimension of the SLE curves, Ann. Probab. 36 (2008), no. 4, 1421–1452. MR2435854 [Bef08b] Beffara, V., Is critical 2D percolation universal? In and Out of Equilibrium 2, Progress in Probability, vol. 60, Birkhäuser, 2008, pp. 31–58. MR2477376 [BH57] Broadbent, S. R. and Hammersley, J. M., Percolation processes I. Crystals and mazes, Math. Proc. Cambridge Philos. Soc. 53 (1957), no. 3, 629–641. MR0091567 [BKK+92] Bourgain, J., Kahn, J., Kalai, G., Katznelson, Y., and Linial, N., The influence of variables in product spaces, Israel J. Math. 77 (1992), no. 1–2, 55–64. MR1194785 [BN11] Beffara, V. and Nolin, P., On monochromatic arm exponents for 2D critical percolation, Ann. Probab. 39 (2011), 1286–1304. MR2857240 [BPZ84a] Belavin, A. A., Polyakov, A. M., and Zamolodchikov, A. B., Infinite conformal cymmetry in two-dimensional quantum field theory, Nuclear Phys. B 241 (1984), no. 2, 333–380. MR0757857 [BPZ84b] Belavin, A. A., Polyakov, A. M., and Zamolodchikov, A. B., Infinite conformal symmetry of critical fluctuations in two dimensions, J. Stat. Phys. 34 (1984), no. 5–6, 763–774. MR0751712 [BR06a] Bollobás, B. and Riordan, O., The critical probability for random Voronoi percolation in the plane is 1∕2, Probab. Theory Related Fields 136 (2006), no. 3, 417–468. MR2257131 [BR06b] Bollobás, B. and Riordan, O., Percolation, Cambridge University Press, New York, 2006. MR2283880 [BR06c] Bollobás, B. and Riordan, O., A short proof of the Harris–Kesten theorem, Bull. Lond. Math. Soc. 38 (2006), no. 3, 470. MR2239042 [Car92] Cardy, J. L., Critical percolation in finite geometries, J. Phys. A 25 (1992), no. 4, L201–L206. MR1151081 [CN06] Camia, F. and Newman, C. M., Two-dimensional critical percolation: The full scaling limit, Comm. Math. Phys. 268 (2006), no. 1, 1–38. MR2249794 [CN07] Camia, F. and Newman, C. M., Critical percolation exploration path and SLE6: A proof of convergence, Probab. Theory Related Fields 139 (2007), no. 3–4, 473–519. MR2322705 [DCST13] Duminil-Copin, H., Sidoravicius, V., and Tassion, V., Absence of percolation for critical Bernoulli percolation on planar slabs, in preparation, 2013. [DNS12] Damron, M., Newman, C. M., and Sidoravicius, V., Absence of site percolation at criticality in ℤ2 × {0,1}, 2012, arXiv:1211.4138. MR3059543 [DSB04] Desolneux, A., Sapoval, B., and Baldassarri, A., Self-organized percolation power laws with and without fractal geometry in the etching of random solids, Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot: Multifractals, Probability and Statistical Mechanics, Applications (M. L. Lapidus and M. van Frankenhuijsen, eds.), Proceedings of Symposia in Pure Mathematics, vol. 72, AMS, 2004, arXiv:cond-mat/0302072. MR2112129 [FK96] Friedgut, E. and Kalai, G., Every monotone graph property has a sharp threshold, Proceedings of the American Math. Society 124 (1996), no. 10, 2993–3002. MR1371123 [FKG71] Fortuin, C. M., Kasteleyn, P. W., and Ginibre, J., Correlation inequalities on some partially ordered sets, Comm. Math. Phys. 22 (1971), 89–103. MR0309498 [Fri04] Friedgut, E., Influences in product spaces: KKL and BKKKL revisited, Combinatorics, Probability and Computing 13 (2004), no. 1, 17–29. MR2034300 [Gar11] Garban, C., Oded Schramm’s contributions to noise sensitivity, Ann. Probab. 39 (2011), no. 5, 1702–1767. MR2884872 [Geo88] Georgii, H.-O., Gibbs Measures and Phase Transitions, de Gruyter Studies in Mathematics, vol. 9, Walter de Gruyter & Co., Berlin, 1988. MR0956646 [GM11a] Grimmett, G. R. and Manolescu, I., Inhomogeneous bond percolation on square, triangular, and hexagonal lattices, 2011, to appear in Ann. Probab., arXiv:1105.5535. [GM11b] Grimmett, G. R. and Manolescu, I., Universality for bond percolation in two dimensions, 2011, to appear in Ann. Probab., arXiv:1108.2784. [GM12] Grimmett, G. R. and Manolescu, I., Bond percolation on isoradial graphs, 2012, to appear in Prob. Theory Related Fields, arXiv:1204.0505. [GPS10] Garban, C., Pete, G., and Schramm, O., The Fourier spectrum of critical percolation, Acta Math. 205 (2010), no. 1, 19–104. MR2736153 [Gri99] Grimmett, G. R., Percolation, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Math. Sciences], vol. 321, Springer-Verlag, Berlin, 1999. MR1707339 [Gri06] Grimmett, G. R., The Random-Cluster model, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Math. Sciences], vol. 333, Springer-Verlag, Berlin, 2006. MR2243761 [Gri10] Grimmett, G. R., Probability on Graphs, Institute of Math. Statistics Textbooks, vol. 1, Cambridge University Press, Cambridge, 2010. MR2723356 [Har60] Harris, T. E., A lower bound for the critical probability in a certain percolation process, Math. Proc. Cambridge Philos. Soc. 56 (1960), no. 1, 13–20. MR0115221 [HS94] Hara, T. and Slade, G., Mean-field behaviour and the lace expansion, NATO ASI Series C, Math. and Physical Sciences 420 (1994), 87–122. MR1283177 [Kes80] Kesten, H., The critical probability of bond percolation on the square lattice equals 1∕2, Comm. Math. Phys. 74 (1980), no. 1, 41–59. MR0575895 [Kes82] Kesten, H., Percolation Theory for Mathematicians, Progress in Probability and Statistics, vol. 2, Birkhäuser, Boston, Mass., 1982. MR0692943 [Kes86] Kesten, H., The incipient infinite cluster in two-dimensional percolation, Probab. Theory Related Fields 73 (1986), no. 3, 369–394. MR0859839 [Kes87] Kesten, H., Scaling relations for 2D percolation, Comm. Math. Phys. 109 (1987), no. 1, 109–156. MR0879034 [KKL88] Kahn, J., Kalai, G., and Linial, N., The influence of variables on Boolean functions, Proceedings of 29th Symposium on the Foundations of Computer Science, Computer Science Press, 1988, pp. 68– 80. [KN09] Kozma, G. and Nachmias, A., The Alexander–Orbach conjecture holds in high dimensions, Invent. Math. 178 (2009), no. 3, 635–654. MR2551766 [KS06] Kalai, G. and Safra, S., Threshold Phenomena and Influence, Oxford University Press, 2006. MR2208732 [KS12] Kemppainen, A. and Smirnov, S., Random curves, scaling limits and Loewner evolutions, preprint, 2012, arXiv:1212.6215. [Lan99] Lang, S., Complex Analysis, vol. 103, Springer Verlag, 1999. MR1659317 [Law05] Lawler, G. F., Conformally Invariant Processes in the Plane, Math. Surveys and Monographs, vol. 114, American Math. Society, Providence, RI, 2005. MR2129588 [LPSA94] Langlands, R., Pouliot, P., and Saint-Aubin, Y., Conformal invariance in two-dimensional percolation, Bull. Amer. Math. Soc. (N.S.) 30 (1994), no. 1, 1–61. MR1230963 [LSW01a] Lawler, G. F., Schramm, O., and Werner, W., Values of Brownian intersection exponents. I. Half-plane exponents, Acta Math. 187 (2001), no. 2, 237–273. MR1879850 [LSW01b] Lawler, G. F., Schramm, O., and Werner, W., Values of Brownian intersection exponents. II. Plane exponents, Acta Math. 187 (2001), no. 2, 275–308. MR1879851 [LSW02] Lawler, G. F., Schramm, O., and Werner, W., One-arm exponent for critical 2D percolation, Electron. J. Probab. 7 (2002), 13 pp. (electronic). MR1887622 [LSW04] Lawler, G. F., Schramm, O., and Werner, W., Conformal invariance of planar loop-erased random walks and uniform spanning trees, Ann. Probab. 32 (2004), no. 1B, 939–995. MR2044671 [MNW12] Mendelson, D., Nachmias, A., and Watson, S. S., Rate of convergence for Cardy’s formula, preprint, arXiv:1210.4201, 2012. [MP07] Mathieu, P. and Piatnitski, A., Quenched invariance principles for random walks on percolation clusters, Proc. R Soc. A: Math., Physical and Engineering Science 463 (2007), 2287–2307. MR2345229 [Nol08] Nolin, P., Near-critical percolation in two dimensions, Electron. J. Probab. 13 (2008), 1562–1623. MR2438816 [Rei00] Reimer, D., Proof of the van den Berg–Kesten conjecture, Combinatorics, Probability and Computing 9 (2000), no. 1, 27–32. MR1751301 [RS05] Rohde, S. and Schramm, O., Basic properties of SLE, Ann. Math. (2) 161 (2005), no. 2, 883–924. MR2153402 [Rus78] Russo, L., A note on percolation, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 43 (1978), no. 1, 39–48. MR0488383 [Sch00] Schramm, O., Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math. 118 (2000), 221–288. MR1776084 [Smi01] Smirnov, S., Critical percolation in the plane: Conformal invariance, Cardy’s formula, scaling limits, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 3, 239–244. MR1851632 [Smi06] Smirnov, S., Towards Conformal Invariance of 2D Lattice Models, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1421–1451. MR2275653 [Smi10] Smirnov, S., Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model, Ann. Math. (2) 172 (2010), no. 2, 1435–1467. MR2680496 [SRG85] Sapoval, B., Rosso, M., and Gouyet, J.-F., The fractal nature of a diffusion front and the relation to percolation, Journal de Physique Lettres 46 (1985), no. 4, 149–156. [SS10] Schramm, O. and Steif, J., Quantitative noise sensitivity and exceptional times for percolation, Ann. Math. 171 (2010), no. 2, 619–672. MR2630053 [Sun11] Sun, N., Conformally invariant scaling limits in planar critical percolation, Probability Surveys 8 (2011), 155–209. MR2846901 [SW78] Seymour, P. D. and D. J. A. Welsh, Percolation probabilities on the square lattice, Ann. Discrete Math. 3 (1978), 227–245. MR0494572 [SW01] Smirnov, S. and Werner, W., Critical exponents for two-dimensional percolation, Math. Res. Lett. 8 (2001), no. 5–6, 729–744. MR1879816 [SW12] Sheffield, S. and Werner, W., Conformal loop ensembles: the Markovian characterization and the loop-soup construction, Ann. Math. 176 (2012), 1827–1917. MR2979861 [vdBK85] van den Berg, J. and Kesten, H., Inequalities with applications to percolation and reliability, Journal of applied probability (1985), 556–569. MR0799280 [Wer04] Werner, W., Random planar curves and Schramm–Loewner evolutions, Lecture Notes in Math. 1840 (2004), 107–195. MR2079672 [Wer05] Werner, W., Conformal restriction and related questions, Probability Surveys 2 (2005), 145–190. MR2178043 [Wer09a] Werner, W., Lectures on two-dimensional critical percolation, Statistical mechanics, IAS/Park City Math. Ser., vol. 16, Amer. Math. Soc., 2009, pp. 297–360. MR2523462 [Wer09b] Werner, W., Percolation et modèle d’Ising, Cours Spécialisés [Specialized Courses], vol. 16, Société Mathématique de France, Paris, 2009. |
|||||
Home | Current | Past volumes | About | Login | Notify | Contact | Search Probability Surveys. ISSN: 1549-5787 |