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Editorial

Leonardo Trujilloa

Departamento de Estadística, Facultad de Ciencias, Universidad Nacional de
Colombia, Bogotá, Colombia

Welcome to the first issue of the 35th volume of the Revista Colombiana de Esta-
distica (Colombian Journal of Statistics). This year we are repeating the success of
the previous year by publishing three numbers in the same year. The first number is
this one, the regular one and, additional to the traditional one in December, we are
publishing a Special Issue about Biostatistics with Professors Liliana Lopez-Kleine
and Piedad Urdinola as Guest Editors. We will keep also, as the last number, the
characteristic of being an issue entirely published in English language as part of
the requirements of being the winners of an Internal Grant for funding at the Na-
tional University of Colombia (Universidad Nacional de Colombia) among many
Journals (see last editorial of December).

The topics in this current issue range over diverse areas of statistics: Two papers
in Regression Models by Llinas and Carreno and another one by Ponsot-Balaguer,
Sinha, Gotia; two papers in Survey Methodology by Hussain, Shah and Shabbir
and another one by Zarate, Sanchez and Marin; one paper in Bayesian Statistics
by Usuga and Hernandez; one paper in Categorical Data Analysis by Tahata and
Kozai; one paper in Econometrics by Alonso and Serna; one paper in Industrial
Statistics by Srinivasa Rao; one paper in Longitudinal Data by Sosa and Diaz and
one paper in Nonparametric Statistics by Ojeda, Pulido, Quiroz and Rios.

Last May, there were celebrations in Colombia referring to the Mathematician
and the Statistician Day. This is a Colombian celebration known as the Paname-
rican Day of the Statistics. However, there is not a clear consensus of which one is
the agreed date to the Statistician Day in the world. This is good, as we statisti-
cians have many dates to celebrate. Recently, the General Assembly of the United
Nations has named the 20th of October as the World Day of Statistics at least until
2015 as this date will be rescheduled every five years. In Argentina, for example,
this day is celebrated every 27th of July or in Latin America is well-known the day
of “the statistician in health” either in April or September according to the host
country. African statisticians celebrate their day on the 18th of November every
year and Caribbean statisticians on the 15th of October. What is the purpose of
these celebrations? Perhaps for Colombian statisticians could be a good reason to
reincorporate the idea of organizing ourselves in a Statistics Society. The lack of
this society involving all the academic Statistics departments around the country

aGeneral Editor of the Colombian Journal of Statistics, Assistant Professor.
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is necessary as the number of alumni in Statistics is increasing exponentially du-
ring the last years the number of graduate students as well. Independent of what
day you celebrate this date: Happy day for all our statistician readers.

The Colombian Symposium in Statistics has traditionally been, every year, a
good way to update statisticians around the country with the last advances in the
area and to keep together all the related professionals independently of their city
of origin. This year the Symposium will be held at Bucaramanga with important
personalities in specialized areas such as Biostatistics, Categorical Data Analy-
sis, Industrial Statistics, Nonparametric Statistics, Quality Control and Survey
Sampling (www.simposioestadistica.unal.edu.co). Also, Colombia has been
designated as the host country for the XIII CLAPEM (Latin American Conferen-
ce in Probability and Mathematical Statistics) for 2014. Statisticians in Colombia
and neighbour countries should take advantage of these opportunities to gather
with statisticians around the world but also with local professionals.

This time as the last number in December, I would not like to finish this
Editorial without paying a tribute for the 50 years of the death of an eminent
statistician: Ronald Fischer (1890-1962). He was a leader scientific of the last
XX century: A British biologist, mathematician, and of course, statistician. He
was the creator of the inferential statistics in 1920. He introduced the analysis of
variance methodology which was considerably superior to the correlation analysis.
As being a researcher at the Rothamsted Experimental Station in the UK, he
began the study of an extensive collection of data and the results of this study
was published under the name of Studies in Crop Variation, a previous essay of all
the principles of the Design of Experiments. He was also the founder of the latin
squares methodology and his contribution to the Statistics was so huge, it cannot
be summarized in this short Editorial. I shall invite the interested readers to follow
this excellent web page of Professor John Aldrich at the University of Southampton
where almost all Fischer s work is presented as well as biographical notes (www.
economics.soton.ac.uk/staff/aldrich/fischerguide/rafreader.htm).

www.simposioestadistica.unal.edu.co
www.economics.soton.ac.uk/staff/aldrich/fischerguide/rafreader.htm
www.economics.soton.ac.uk/staff/aldrich/fischerguide/rafreader.htm


Editorial

Leonardo Trujilloa

Departamento de Estadística, Facultad de Ciencias, Universidad Nacional de
Colombia, Bogotá, Colombia

Bienvenidos al primer número del volumen 35 de la Revista Colombiana de Es-
tadística. Este año estaremos repitiendo el éxito de publicar tres números en un
mismo año. El primer número corresponde a este que es el número regular de Junio,
y adicional al tradicional en Diciembre, estaremos publicando un número especial
en Bioestadística con las Profesoras Liliana López-Kleine y Piedad Urdinola como
Editoras Invitadas. También hemos mantenido, al igual que el último número, la
condición de ser un número publicado completamente en inglés como parte de los
requisitos al ser ganadores de una convocatoria interna para financiación de revis-
tas científicas en la Universidad Nacional de Colombia entre varias revistas de la
misma Universidad (ver la última editorial de Diciembre). Para este número, los
tópicos varían en diversas áreas de la estadística como son: dos artículos en Me-
todología de Encuestas por Hussain, Shah and Shabbir y otro de Zárate, Sánchez
and Marín; dos artículos en Modelos de Regresión por Llinás y Carreño y otro de
Ponsot-Balaguer, Sinha, Gotia; un artículo en Análisis de Datos Categóricos de
Tahata y Kozai; uno en Análisis de Datos Longitudinales por Sosa y Díaz; uno
en Econometría por Alonso y Serna; uno en Estadística Bayesiana de Usuga y
Hernández; uno en Estadística Industrial de Srinivasa Rao; y uno en Estadística
no Paramétrica de Ojeda, Pulido, Quiroz and Ríos.

En el último mes de Mayo, el día doce, hubo varias celebraciones del Día del
Estadístico y del Matemático en Colombia. Esta es una celebración puramente
colombiana en referencia al Día Panamericano de la Estadística. Sin embargo,
no hay un claro concenso de cuál es el Día del Estadístico alrededor del mundo.
Esto es una buena razón que tenemos los estadísticos para celebrar nuestro día
varas veces al año. Recientemente, la Asamblea General de las Naciones Unidas
proclamó el día 20 de Octubre como el Día Mundial de la Estadística por lo menos
hasta el 2015, pues esta fecha se reevaluará cada cinco años. En Argentina, por
ejemplo, el día de los estadísticos se celebra cada 27 de Julio o en Latinoamérica
es bien conocido el “Día del Estadístico en la Salud” que bien se celebra en Abril
o Septiembre dependiendo del país en que se encuentre. Los estadísticos africanos
celebran su día el 18 de Noviembre y los estadísticos de las islas del Caribe el
15 de Octubre. Deberíamos preguntarnos antes que todo: cuál es el propósito de
una celebración del Día del Estadístico? Tal vez para los estadísticos en Colombia
sería una buena razón para reincorporar la idea de organizarnos en una Sociedad
de Estadísticos. La falta de esta sociedad que reúna a todos los departamentos
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de Estadística del país es necesario dado el aumento de programas en Estadística
a lo largo de la nación así como del número de estudiantes graduados de ellas.
Independiente de que día usted celebre esta fecha, feliz día a nuestros lectores
estadísticos.

El Simposio Colombiano de Estadística ha sido tradicionalmente, cada año, una
forma de reunir a los estadísticos de todo el país y mantenerlos actualizados en los
desarrollos recientes de todas las áreas de la estadística. En este año, 2012, el Sim-
posio tendrá lugar en la ciudad de Bucaramanga con importantes personalidades
en áreas especializadas tales como Análisis de Datos Categóricos, Bioestadística,
Control de Calidad, Estadística Industrial, Estadística no Paramétrica y Muestreo
(www.simposioestadistica.unal.edu.co). El Simposio Colombiano de Estadís-
tica es organizado en esta oportunidad por la Universidad Nacional de Colombia,
la Universidad Industrial de Santander y las Unidades Tecnológicas de Santander.
También, es grato anunciar que Colombia ha sido designada como la sede del XIII
CLAPEM (Congreso Latinoamericano en Probabilidad y Estadística Matemática)
para el año 2014. Los estadísticos en Colombia y en los países cercanos deberían
tomar ventaja de estas oportunidades para interactuar con estadísticos locales y
provenientes de otras partes del mundo.

Esta vez, como en el último número de Diciembre, no quisiera finalizar esta
Editorial sin rendir tributo a los 50 años de la muerte de un eminente estadístico:
Ronald Fischer (1890-1962). Fischer fue uno de los científicos líderes del siglo XX:
un biólogo, matemático y por supuesto estadístico. Fue el creador de la inferencia
estadística hacia 1920. Introdujo la metodología del análisis de varianza la cual
se encontró considerablemente superior al análisis de correlación. Mientras era
investigador en la Estación Experimental de Rothamsted en el Reino Unido, inició
el studio de una extensa colección de datos que le llevaron a publicar sus estudios
bajo el nombre de Studies in Crop Variation, el cual fue un ensayo previo a todos los
principios del Diseño de Experimentos. También fue el fundador de la metodología
de cuadrados latinos en la investigación agrícola y su contribución fue tan extensa
que no podría ser resumida en esta corta Editorial. Por esta razón, invito a todos
los lectores interesados en conocer el trabajo de Fischer a visitar la excelente
página web del Profesor John Aldrich de la Universidad de Southampton donde se
resume casi toda la obra de Fischer así como importantes notas biográficas (www.
economics.soton.ac.uk/staff/aldrich/fischerguide/rafreader.htm).

www.simposioestadistica.unal.edu.co
www.economics.soton.ac.uk/staff/aldrich/fischerguide/rafreader.htm
www.economics.soton.ac.uk/staff/aldrich/fischerguide/rafreader.htm
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Linearity Measures of the P-P Plot in the
Two-Sample Problem

Aplicación de medidas de linealidad del gráfico P-P al problema de
dos muestras

Francisco M. Ojeda1,a, Rosalva L. Pulido2,b, Adolfo J. Quiroz2,3,c,
Alfredo J. Ríos1,d

1Departamento de Matemáticas Puras y Aplicadas, Universidad Simón Bolívar,
Caracas, Venezuela

2Departamento de Cómputo Científico y Estadística, Universidad Simón Bolívar,
Caracas, Venezuela

3Departamento de Matemáticas, Universidad de Los Andes, Bogotá, Colombia

Abstract

We present a non-parametric statistic based on a linearity measure of the
P-P plot for the two-sample problem by adapting a known statistic proposed
for goodness of fit to a univariate parametric family. A Monte Carlo com-
parison is carried out to compare the method proposed with the classical
Wilcoxon and Ansari-Bradley statistics and the Kolmogorov-Smirnov and
Cramér-von Mises statistics the two-sample problem, showing that, for cer-
tain relevant alternatives, the proposed method offers advantages, in terms
of power, over its classical counterparts. Theoretically, the consistency of
the statistic proposed is studied and a Central Limit Theorem is established
for its distribution.

Key words: Nonparametric statistics, P-P plot, Two-sample problem.

Resumen

Se presenta un estadístico no-paramétrico para el problema de dos mues-
tras, basado en una medida de linealidad del gráfico P-P. El estadístico
propuesto es la adaptación de una idea bien conocida en la literatura en el
contexto de bondad de ajuste a una familia paramétrica. Se lleva a cabo una
comparación Monte Carlo con los métodos clásicos de Wilcoxon y Ansari-
Bradley, Kolmogorov-Smirnov y Cramér-von Mises para el probelam de dos
muestras. Dicha comparación demuestra que el método propuesto ofrece una

aProfessor. E-mail: fojeda@usb.ve
bProfessor. E-mail: rosalvaph@gmail.com
cProfessor. E-mail: aj.quiroz1079@uniandes.edu.co
dProfessor. E-mail: alfrios@usb.ve
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2 Francisco M. Ojeda, Rosalva L. Pulido, Adolfo J. Quiroz & Alfredo J. Ríos

potencia superior frente a ciertas alternativas relevantes. Desde el punto de
vista teórico, se estudia la consistencia del método propuesto y se establece
un Teorema del Límite Central para su distribución.

Palabras clave: estadísticos no-paramétricos, gráfico P-P, problema de dos
muestras.

1. Introduction

Probability plots, usually refered to as P-P plots, are, together with quantile-
quantile plots, among the most commonly used tools for informal judgement of
the fit of a data set to a hypothesized distribution or parametric family.

Gan & Koehler (1990) propose statistics that can be interpreted as measures
of linearity of the P-P plot, for use in goodness of fit testing of univariate data
sets to parametric families. They offer, as well, an interesting discussion on how
the difference between a distribution and a hypothesized model will be reflected
on the corresponding P-P plot. Their discussion is relevant to interpret the results
in Section 3 below.

In order to describe the statistic that we will adapt to the two-sample problem,
let X1, . . . , Xm denote a univariate i.i.d. sample from a distribution that, we
believe, might belong in the location-scale parametric family

F (
x− µ
σ

), µ ∈ RI , σ > 0 (1)

for a fixed, continuous distribution F . Let µ̂ and σ̂ be consistent estimators of µ
and σ. Let pi = i/(n + 1) and Z(i) = F ((X(i) − µ̂)/σ̂), i = 1, . . . ,m. Let Z and
p denote, respectively, the averages of the Z(i) and the pi. Except for a squared
power irrelevant in our case, one of the statistics proposed by Gan & Koehler
(1990) is the following:

k(X̂) =

∑n
i=1(Z(i) − Z)(pi − p)(∑n

i=1(Z(i) − Z)2
∑n
i=1(pi − p)2

)1/2 (2)

Here, X̂ denotes the X sample. The pi’s used above, are the expected values,
when we assume that the Xi has a fully specified distribution given by (1), of the
transformed order statistics F ((X(i)−µ)/σ). Different possibilities for the plotting
positions to be used in P-P plots (that is, for the choice of pi’s) are discussed in
Kimball (1960). k(X̂) measures the linear correlation between the vectors (Z(i))i≤n
and (pi)i≤n, which should be high (close to 1) under the null hypothesis. In their
paper, Gan & Koehler study some of the properties of k(X̂), obtain approxi-
mate (Monte Carlo) quantiles and, by simulation, perform a power comparison
with other univariate goodness of fit procedures, including the Anderson-Darling
statistic.

In order to adapt the statistic just described to the two-sample problem, one
can apply the empirical c.d.f. of one sample to the ordered statistics of the other,

Revista Colombiana de Estadística 35 (2012) 1–14



Linearity Measures of the P-P Plot in the Two-Sample Problem 3

and substitute the values obtained for the Zi’s in formula (2). How this can be
done to obtain a fully non-parametric procedure for the univariate two-sample
problem is discussed in Section 2, where we consider, as well, the consistency of
the proposed statistic and establish a Central Limit Theorem for its distribution.
In Section 3, a Monte Carlo study is presented that investigates the convergence
of the finite sample quantiles of our statistic to their limiting values and compares,
in terms of power, the proposed method with the classical Wilcoxon and Ansari-
Bradley statistics for the two-sample problem.

2. Measures of Linearity for the Two-sample
Problem

We will consider the non-parametric adaptation of the statistic of Gan &
Koehler (1990), described above, to the univariate two-sample problem. In this
setting we have two i.i.d. samples: X1, . . . , Xm, produced by the continuous distri-
bution F (x) and Y1, . . . , Yn, coming from the continuos distribution G(y). These
samples will be denoted X̂ and Ŷ , respectively. Our null hypothesis is F = G
and the general alternative of interest is F 6= G. Let Fm(·) denote the empir-
ical cumulative distribution function (c.d.f.) of the X sample. By the classical
Glivenko-Cantelli Theorem, as m grows, Fm becomes an approximation to F and,
under our null hypothesis, to G. Therefore, if we apply Fm to the ordered statis-
tics for the Y sample, Y(1), . . . , Y(n), we will obtain, approximately (see below), the
beta distributed variables whose expected values are the pi of Gan and Koehler’s
statistics. Thus, the statistic that we will consider for the two-sample problem is

η(X̂, Ŷ ) =

∑n
i=1(Z(i) − Z)(pi − p)(∑n

i=1(Z(i) − Z)2
∑n
i=1(pi − p)2

)1/2 (3)

with Z(i) = Fm(Y(i)). Our first theoretical result is that η(·, ·), indeed, produces a
non-parametric procedure for the two-sample problem.

Theorem 1. Under the null hypothesis, the statistic η(X̂, Ŷ ), just defined, is
distribution free (non-parametric), for the two-sample problem, over the class of
i.i.d. samples from continuous distributions.

Proof . The argument follows the idea of the proof of Theorem 11.4.3 in Randles
& Wolfe (1979). Since the pi are constants, η(X̂, Ŷ ) is a function only of the
vector (Fm(Y1), Fm(Y2), . . . , Fm(Yn)) only. Thus, it is enough to show that the
distribution of this vector does not depend on F under the null hypothesis. Now,
for i1, i2, . . . , in in {0, 1, . . . ,m}, we have, by definition of Fm,

Pr(Fm(Y1) = i1/m,Fm(Y2) = i2/m, . . . , Fm(Yn) = in/m) =

Pr(X(i1) ≤ Y1 < X(i1+1), X(i2) ≤ Y2 < X(i2+1), . . . X(in) ≤ Yn < X(in+1)), (4)

where, if ij = 0, X(0) must be taken as −∞ and, similarly, if ij = m, X(m+1)

must be understood as +∞. Consider the variables Ui = F (Xi), for i ≤ m and

Revista Colombiana de Estadística 35 (2012) 1–14



4 Francisco M. Ojeda, Rosalva L. Pulido, Adolfo J. Quiroz & Alfredo J. Ríos

Vj = F (Yj), for j ≤ n. Under the null hypothesis, the Ui and Vj are i.i.d. Unif(0,1)
and, since F is non-decreasing, the probability in (4) equals

Pr(U(i1) ≤ V1 < U(i1+1), U(i2) ≤ V2 < U(i2+1), . . . U(in) ≤ Vn < U(in+1))

which depends only on i.i.d. uniform variables, finishing the proof.

Theorem 11.4.4 in Randles &Wolfe (1979) identifies the distribution of Fm(Y(i))
as the inverse hypergeometric distribution whose properties were studied in Guen-
ther (1975). The study of these results in Randles & Wolfe (1979) is motivated
by the consideration of the exceedance statistics of Mathisen (1943) for the two-
sample problem.

Theorem 1 allows us to obtain generally valid approximate null quantiles to
the distribution of η(X̂, Ŷ ), in the two-sample setting, by doing simulations in just
one case: F = G = the Unif(0,1) distribution.

We will now study the consistency of η(X̂, Ŷ ) (and a symmetrized version of
it) as a statistic for the two sample problem. We begin by establishing a Strong
Law of Large Numbers (SLLN) for η(X̂, Ŷ ).

Theorem 2. Suppose that F and G are continuous distributions on RI . Then, as
m and n go to infinity, η(X̂, Ŷ )→ cor(F (Y ), G(Y )), almost sure (a.s.), where Y
has distribution G and ‘cor’ stands for ‘correlation’.

Proof . We will only verify that 1
n

∑n
i=1(Zi−Z)(pi−p) converges, a.s., as n,m→

∞, to Cov(F (Y ), G(Y )). The quantities in the denominator of η are studied
similarly. Let Gn(·) denote the empirical c.d.f. associated to the Y sample and
let, also, Fm = (1/m)

∑
Fm(Yi) and Gn = (1/n)

∑
Gn(Yi). Observe that pi =

(n/(n+ 1))Gn(Y(i)). It follows that

1

n

n∑
i=1

(Zi − Z)(pi − p) =
1

n+ 1

n∑
i=1

(Fm(Y(i))− Fm)(Gn(Y(i))−Gn)

=
1

n

n∑
i=1

(F (Yi)− EI F (Y1))(G(Yi)− EI G(Y1)) + rm,n

(5)

Repeated application of the Glivenko-Cantelli Theorem and the SLLN shows
that rm,n → 0, a.s., as m,n→∞, finishing the proof.

According to Theorem 2, when the null hypothesis: F = G holds, η(X̂, Ŷ )
will converge to 1. In order to have consistency of the corresponding statistic for
the two-sample problem, we would like to have the reciprocal of this statement to
hold: If F 6= G then the limit of η(X̂, Ŷ ) is strictly less than one. Unfortunately,
this is not the case, as the following example shows.

Example 1. Let F and G be the Unif(0,2) distribution and the Unif(0,1) distri-
bution, respectively. Then, cor(F (Y ), G(Y )) = 1 and, therefore, η(X̂, Ŷ ) applied
to samples from F and G will converge to 1.

Revista Colombiana de Estadística 35 (2012) 1–14
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The counter-example just given suggests the consideration of a ‘symmetrized’
version of η in order to attain consistency of the statistic against the general
alternative F 6= G. For this purpose, one could define

ηsymm =
1

2
(η(X̂, Ŷ ) + η(Ŷ , X̂)) (6)

For ηsymm, we have the following result.

Theorem 3. Let the X and Y samples be obtained from the continuous distribu-
tions F and G with densities f and g, respectively, such that the sets Sf = {x :
f(x) > 0} and Sg = {x : g(x) > 0} are open. Then, ηsymm converges to 1, a.s., as
n,m→∞ if, and only if, F = G.

Proof . In view of Theorem 2, we only need to show that, if F 6= G, then either
corr(F (Y ), G(Y )) 6= 1 or corr(F (X), G(X)) 6= 1, where the variablesX and Y have
distributions F and G, respectively. Let λ denote Lebesgue measure in RI . Suppose
first that λ(Sg \ Sf ) > 0. Then, there is an interval J ⊂ RI such that g(x) > 0
for x ∈ J , while f(x) ≡ 0 on J . Suppose corr(F (Y ), G(Y )) = 1. Then, there are
constants a and b, with a 6= 0 such that, with probability 1, G(Y ) = aF (Y ) + b.
By the continuity of the distributions and the fact that g is positive on J , it follows
that

G(y) = aF (y) + b, for all y ∈ J (7)

Taking derivatives on both sides, we have, for all y ∈ J ,

0 < g(y) = a f(y) = 0

a contradiction. The case λ(Sf \ Sg) > 0 is treated similarly.
It only remains to consider the case when λ(Sf ∆ Sg) = 0, where ∆ denotes

“symmetric difference” of sets. In this case we will show that corr(F (Y ), G(Y )) = 1
implies F = G. Suppose that corr(F (Y ), G(Y )) = 1. For J any open interval
contained in Sg, we have, by the argument of the previous case, g(x) = a f(x) in
J . Since Sg is open, it follows that a f and g coincide on Sg. Since λ(Sf ∆ Sg) = 0
and f and g are probability densities, a must be 1 and F = G, as desired.

The result in Theorem 3 establishes the consistency of ηsymm against general
alternatives, and is, therefore, satisfactory from the theoretical viewpoint. Ac-
cording to the results given so far in this section, η would fail to be consistent
only in the case when one of the supports of the distributions considered is strictly
contained in the other and, in the smaller support, the densities f and g are pro-
portional, which is a very uncommon situation in statistical practice. Therefore,
we feel that, in practice, both the statistics η and ηsymm can be employed with
similar expectations for their performances. The results from the power analy-
sis in Section 3 support this belief, since the power numbers for both statistics
considered tend to be similar, with a slight superiority of ηsymm in some instances.

The purpose of next theorem is to show that an appropriate standarization of
the statistic η has a limiting Gaussian distribution, as m and n tend to infinite.
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This will allow the user to employ the Normal approximation for large enough
sample sizes. Of course, for smaller sample sizes the user can always employ Monte
Carlo quantiles for η, which are fairly easy to generate according to Theorem 1.
Some of these quantiles appear in the tables presented in Section 3.

Theorem 4. Suppose that the X and Y samples, of size m and n, respectively, are
obtained from the continuous distribution F (=G). Let N = m + n and suppose
that N → ∞ in such a way that m/N → α, with 0 < α < 1 (the “standard”
conditions in the two-sample setting). Let ξ1,0 = 0.00138̄ and ξ0,1 = 0.005̄/36,
where the bar over a digit means that this digit is to be repeated indefinitely. Let

D = D(X̂, Ŷ ) =
1

n

(
n∑
i=1

(Z(i) − Z)2
n∑
i=1

(pi − p)2
)1/2

D(X̂, Ŷ ) is the denominator of η(X̂, Ŷ ) after division by n. Then, as N →∞,
the distribution of

W = W (X̂, Ŷ ) =
√
N

(
η(X̂, Ŷ )− 1

12D

)
(8)

converges to a Gaussian distribution with mean 0 and variance

σ2
W = 144×

(
ξ1,0
α

+
9 ξ0,1
1− α

)
(9)

Proof . Let C = C(X̂, Ŷ ) = 1
n

∑n
i=1(Z(i) − Z)(pi − p). C is the numerator of

η(X̂, Ŷ ) after division by n. The idea of the proof is to show that, essentially, C
is a two sample V -statistic of degrees (1,3), and then to use the classical Central
Limit Theorem for V -statistics which, in the present case, gives the same limit dis-
tribution of the corresponding U -statistic. Then the result will follow by observing
that D satisfies a Law of Large Numbers.

Using, as in Theorem 2, that pi = Gn(Y(i)), we can show that, with probability
one (ignoring ties between sample points, which have probability zero)

C =
1

mn2(n+ 1)

∑
j,i,k,r

1l{Xj<Yi,Yk<Yi} − 1l{Xj<Yi,Yk<Yr} (10)

where, j goes from 1 to m, while i, k and r range from 1 to n. Thus, except for
an irrelevant multiplying factor of n/(n+ 1), C is the V -statistic associated to the
kernel

h∗(X;Y1, Y2, Y3) = 1l{X<Y1,Y2<Y1} − 1l{X<Y1,Y2<Y3} (11)

The symmetric version of this kernel is

h(X;Y1, Y2, Y3) =
1

6

∑
τ

1l{X<Yτ(1),Yτ(2)<Yτ(1)} − 1l{X<Yτ(1),Yτ(2)<Yτ(3)} (12)

Revista Colombiana de Estadística 35 (2012) 1–14



Linearity Measures of the P-P Plot in the Two-Sample Problem 7

where τ runs over the permutations of {1, 2, 3}. It is easy to see that, under
the null hypothesis, the expected value of h(X;Y1, Y2, Y3) is γ = 1/12. By the
two-sample version of the Lemma in Section 5.7.3 of Serfling (1980), it follows
that the limiting distribution of C, after standardization, is the same as that for
the corresponding U -statistic, for which the sum in (10) runs only over distinct
indices i, j and k. Then, according to Theorem 3.4.13 in Randles & Wolfe (1979),√
N(C − γ) converges, in distribution, to a zero mean Normal distribution, with

variance
σ2
C =

ξ1,0
α

+
9 ξ0,1
1− α

where

ξ1,0 = Cov(h(X;Y1, Y2, Y3), h(X;Y ′1 , Y
′
2 , Y

′
3)) while

ξ0,1 = Cov(h(X;Y1, Y2, Y3), h(X ′;Y1, Y
′
2 , Y

′
3))

for i.i.d. X,Y1, Y2, Y3, X ′, Y ′1 , Y ′2 and Y ′3 with distribution F . These covariances
depend on the probabilities of certain sets of inequalities between the variables
involved. Since the vector of ranks of the variables involved has the uniform
distribution on the set S7 of permutations of seven elements, the required proba-
bilities can be computed by inspection on S7 (with the help of an ad hoc computer
program), to obtain the numbers given in the statement of the Theorem.

On the other hand, under the null hypothesis, using that F (Yi) has the U(0,1)
distribution, and following the procedure in the proof of Theorem 2, one can check
that both (1/n)

∑n
i=1(Z(i) − Z)2 and (1/n)

∑n
i=1(pi − p)2 converge, a.s. to 1/12.

It follows that D(X̂, Ŷ ) converges, in probability, to 1/12. Then, Theorem 2.4
follows from an application of Slutsky’s Theorem.

For small values of m and n, the distribution of W in (8) displays a negative
skewness, that makes inadequate the use of the Gaussian approximation given
by Theorem 4. Figure 1 displays the histogram of a sample of 10,000 values of
W obtained from simulated X and Y samples of size 500 (m = n = 500) from
the Unif(0,1) distribution. We see that for these sample sizes, the distribution of
W , displayed in Figure 1, is near the bell shape of the Gaussian family. For this
combination of m and n, the asymptotic variance of W , given by (9), is σ2

W =
0.8. Figure 2 shows the P-P plot obtained by applying the N(0,0.8) cummulative
distribution function to the order statistics of the W sample and plotting these
against the plotting positions, pi. The closeness to a 45◦ straight line suggests that
the Gaussian approximation is valid for this combination of m and n. We conclude
that, when the smaller of m and n is, at least, 500, the Gaussian approximation
given by Theorem 4 can be used for the distribution of η(X̂, Ŷ ), rejecting the
null hypothesis when W falls below a prescribed quantile, say 5%, of the N(0,σ2

W )
distribution.

3. Monte Carlo Evaluation of η(X̂, Ŷ )

All the simulations described here were programmed using the R Statistical
Language (see R Development Core Team 2011) on a laptop computer. Tables 1
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Figure 1. Histogram of W for m=n=500
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Figure 1: Histogram of W for m = n = 500.
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Figure 2: P-P plot of W for m = n = 500.

and 2 display Monte Carlo null quantiles for the statistics η and ηsymm, obtained
from 10,000 independent pairs of samples for each choice ofm and n, using, without
loss of generality, data with the Unif(0,1) distribution. Table 2 contains entries for
sample size pairs of the form m ≤ n only, since, by the symmetry of the statistic,
the quantiles are the same when the roles of m and n are interchanged. We see
in these tables the convergence towards 1 of all quantiles, as m and n grow, as
predicted by Theorem 3. We see, as well, that the quantiles are very similar for
both statistics.

In order to evaluate the performance of η and ηsymm as test statistics for the null
hypothesis of equality of distributions, we will consider their power against different
alternatives, in comparison to the classical non-parametric tests of Wilcoxon and
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Table 1: Monte Carlo null quantiles for η(X̂, Ŷ ).
m n 1% 2.5% 5% 10%
25 25 0.8956 0.9137 0.9290 0.9436
25 50 0.9203 0.9371 0.9469 0.9576
50 25 0.9235 0.9365 0.9472 0.9578
25 100 0.9363 0.9466 0.9555 0.9646
100 25 0.9360 0.9479 0.9569 0.9656
50 50 0.9471 0.9572 0.9644 0.9715
50 100 0.9624 0.9682 0.9740 0.9788
100 50 0.9598 0.9680 0.9735 0.9786
100 100 0.9744 0.9787 0.9822 0.9858

Table 2: Monte Carlo null quantiles for ηsymm.
m n 1% 2.5% 5% 10%
25 25 0.8969 0.9171 0.9313 0.9441
25 50 0.9248 0.9374 0.9482 0.9584
25 100 0.9348 0.9474 0.9565 0.9652
50 50 0.9483 0.9581 0.9649 0.9720
50 100 0.9602 0.9682 0.9738 0.9791
100 100 0.9743 0.9790 0.9823 0.9857

Ansari-Bradley, described, for instance, in Hollander & Wolfe (1999). Wilcoxon’s
test is specifically aimed at detecting differences in location while the statistic of
Ansari-Bradley is designed to discover differences in scale. We will also include
in our comparison two of the classical tests based on the empirical distribution
function (EDF), namely, the two-sample versions of the Kolmogorov-Smirnov and
Cramér-von Mises statistics, which are consistent against arbitrary differences in
the distribution functions of the samples. These EDF statistics are described in
Darling (1957). We will use the particular implementation of the Cramér-von
Mises statistic studied by Anderson (1962). As alternatives, we include first the
classical scenarios of difference in mean and difference in scale, between Gaussian
populations. More precisely, in our first alternative, denoted ∆-mean in the tables
below, the sample X̂ has a N(0, 1) distribution and Ŷ has the N(0.4, 1) distribu-
tion, while for our second alternative, denoted ∆-scale in the tables, X̂ has the
N(0, 1) distribution and Ŷ has a normal distribution with mean zero and variance
σ2
Y = 3. Our remaining alternatives seek to explore the advantages of η and ηsymm

when the X and Y distributions have the same mean and variance, but differ in
their shape. The Weibull distribution, as described in Johnson, Kotz & Balakr-
ishnan (1995), Chapter 21, with shape parameter a = 1.45 and scale parameter
b = 2.23, has mean and variance both nearly 2.0, and exhibits right skewness.
For our third alternative, denoted Gaussian vs. right-skewed, the sample X̂ has
the N(2, 2) distribution, while Ŷ has the Weibull distribution with parameters
(1.45,2.23). In order to produce a distribution with mean and variance equal 2
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and left skewness, we take X = 4−Z, where Z has the Gamma distribution with
shape parameter a = 2 and scale s = 1. In our fourth scenario, denoted left-skewed
vs. Gaussian, the sample X̂ comes from the distribution just described, while Ŷ
has the N(2, 2) distribution. Finally, we consider the situation of right skewness
vs. left skewness, in which X̂ comes from the Weibull(1.45,2.23) distribution, while
Ŷ is distributed as 4− Z, with Z ∼ Gamma(2,1).

Tables 3 to 7 display, as percentages, the power against the alternatives just
described, of the six statistics compared, namely, Wilcoxon (W), Ansari-Bradley
(AB), Kolmogorov-Smirnov (KS), Cramér-von Mises (CvM), η, and ηsymm, at level
10%. The power is computed based on 1,000 independent pair of samples for each
m and n combination with the given alternative distributions, using as reference
the 10% quantiles given in Tables 1 and 2 for η and ηsymm.

Table 3: Monte Carlo power against ∆-mean at level 10%.
m n W AB KS CvM η ηsymm

25 25 38.5 8.5 32.4 36.1 22.8 23.5
25 50 47.9 10.0 43.7 45.0 29.5 27.0
50 25 49.3 10.6 42.9 44.1 24.3 28.1
50 50 63.9 10.1 58.3 61.5 36.2 39.8
50 100 73.4 9.8 65.3 70.0 43.2 44.6
100 50 72.2 9.4 63.0 69.7 44.2 43.8
100 100 87.3 10.2 80.7 85.3 55.5 56.1

Table 4: Monte Carlo power against ∆-scale at level 10%.
m n W AB KS CvM η ηsymm

25 25 10.9 66.6 25.4 24.0 13.9 22.3
25 50 7.9 77.2 33.2 28.9 13.9 22.1
50 25 14.7 76.1 39.7 32.0 21.8 29.2
50 50 6.3 88.0 47.5 50.0 27.4 35.6
50 100 8.1 96.2 56.4 62.9 36.1 34.9
100 50 13.1 95.1 56.7 64.8 42.7 45.6
100 100 11.5 99.2 77.6 85.5 61.7 56.1

In Table 3 we see, as expected, that for the shift in mean scenario, the Wilcoxon
test has the best performance, followed by the KS and CvM statistics. In this case
the performances of η and ηsymm are similar and inferior to that of the EDF
statistics, while the Ansari-Bradley statistic has practically no power beyond the
test level against the location alternative. The situation depicted in Table 4 (shift
in scale) is similar, but now the Ansari-Bradley statistic is the one displaying
the best power by far, followed by KS, CvM, ηsymm, and η, in that order, while
the Wilcoxon test shows basically no power against this alternative, as should be
expected.
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Table 5: Monte Carlo power for Gaussian vs. right-skewed at level 10%.
m n W AB KS CvM η ηsymm

25 25 9.4 10.3 16.0 14.3 23.5 22.3
25 50 10.9 10.9 18.5 14.8 28.8 29.6
50 25 9.9 12.9 18.8 14.6 25.9 27.6
50 50 11.9 10.8 19.6 19.1 35.3 35.3
50 100 11.8 10.5 24.5 22.5 41.5 42.8
100 50 13.3 13.7 23.0 22.1 41.8 43.9
100 100 14.3 14.1 27.6 24.4 55.8 53.2

Table 6: Monte Carlo power for left-skewed vs. Gaussian at level 10%.
m n W AB KS CvM η ηsymm

25 25 12.9 13.2 18.2 17.5 23.9 27.4
25 50 15.3 13.5 22.9 18.7 28.1 33.2
50 25 11.5 15.9 20.7 15.8 30.6 33.7
50 50 16.6 16.0 25.1 23.2 39.5 42.0
50 100 18.2 15.8 28.4 25.7 46.7 53.8
100 50 14.9 18.9 30.2 27.5 52.9 53.9
100 100 19.6 18.9 36.4 35.4 66.7 65.4

Table 7: Monte Carlo power for right-skewed vs. left-skewed at level 10%.
m n W AB KS CvM η ηsymm

25 25 17.7 14.7 31.5 28.7 53.7 54.1
25 50 22.4 15.4 43.3 38.3 69.1 70.5
50 25 20.5 15.2 43.9 38.1 65.4 70.9
50 50 25.9 15.0 50.4 48.4 84.5 85.2
50 100 30.7 15.8 60.2 60.8 92.6 93.0
100 50 27.8 17.7 60.3 61.7 93.2 92.0
100 100 38.2 15.4 80.5 83.2 98.7 98.8

In Tables 5, 6 and 7, in which the distributions considered have the same mean
and variance, with differences in their skewness, the results change significantly
respect to the previous tables. In these scenarios, the best power clearly corre-
sponds to ηsymm and η, which for some of the sample sizes nearly double the power
of the KS and CvM statistics, which come next in power after ηsymm and η. In
order to understand why the proposed statistics enjoy such good power in the
“difference in skewness” scenarios, the reader is advised to see Section 2 in Gan
& Koehler (1990), where through several examples (and figures) it is shown the
marked departure from linearity that differences in skewness can produce on a P-P
plot.

From the power results above, we conclude that η and ηsymm can be considered
a useful non-parametric statistic for the null hypothesis of equality of distributions,
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and its application can be recommended specially when differences in shape be-
tween F and G are suspected, instead of differences in mean or scale. The power
of the two statistics studied here tends to be similar, with ηsymm being slightly
superior in some cases.

We finish this section with the application of our statistic to a real data set. For
this purpose, we consider the well known drilling data of Penner & Watts (1991),
that has been used as illustrative example of a two-sample data set in Hand,
Daly, Lunn, McConway & Ostrowski (1994) and Dekking, Kraaikamp, Lopuhaa
& Meester (2005). In these data, the times (in hundreths of a minute) for drilling
5 feet holes in rock were measured under two different conditions: wet drilling,
in which cuttings are flushed with water, and dry drilling, in which cuttings are
flushed with compressed air. Each drilling time to be used in our analysis is
actually the average of three measures performed at the same depth with the same
method, except when some of the three values might be missing, in which case the
reported value is the average of the available measurements at the given depth.
The sample sizes for these data are m = n = 80. Figure 3 shows the P-P plot
for the drilling data. In this case, in order to compare the empirical cummulative
distribution for the two data sets, the plot consists of the pairs (Fm(z), Gn(z)),
where z varies over the combined data set and Fm and Gn are, respectively, the
EDFs for the dry drilling and wet drilling data. In this figure a strong departure
from linearity is evident. This is due to the fact that most of the smallest drilling
times correspond to dry drilling, while a majority of the largest drilling times
reported correspond to wet drilling, making the plot very flat in the left half and
steep in the right half.
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Fig. 3. P−P Plot for dry drilling vs. wet drilling data
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Figure 3: P-P Plot for dry drilling vs. wet drilling data.

In order to apply the statistic η to the drilling data, we compute first Monte
Carlo null quantiles for η in the case m = n = 80, using, as done for Table 1,
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10,000 pairs of samples of size 80 from the Unif(0,1) distribution. These quantiles
turn out to be the following

1% 2.5% 5% 10%
0.9664 0.9728 0.9777 0.9821

The value of η(X̂, Ŷ ), taking the dry drilling data as X̂, is 0.9508, which is
significant against the null hypothesis of equality of distributions, at the 1% level.
Furthermore, comparing the actual value of η(X̂, Ŷ ) for the drilling data with the
10,000 values calculated for the Monte Carlo null quantile estimation, we obtain
an approximate p-value for this data set of 0.0013. Thus, the evidence against
equality of distribution is strong in this case.

Statistics based on ideas similar to those leading to η(X̂, Ŷ ) have been con-
sidered in the multivariate case by Liu, Parelius & Singh (1999), who consider
statistics based on the Depth-Depth plot. Although generalization of η(X̂, Ŷ )
to the multivariate case is possible, we do not pursue this line of work, since in
the generalization, the full non-parametric character of the statistic is lost and
the computation of reference quantiles becomes computationally expensive, thus
losing the ease of computation that the statistic enjoys in the univariate case.

4. Conclusions

A modified non-parametric version of the statistic proposed by Gan & Koehler
(1990) for the goodness of fit of a univariate parametric family was presented
based on a linearity measure of the P-P plot for the two-sample problem. A
Monte Carlo comparison was carried out to compare the proposed method with
the classical ones of Wilcoxon and Ansari-Bradley for the two-sample problem
and the two-sample versions of the Kolmogorov-Smirnov and Cramer-von Mises
statistics, showing that, for certain relevant alternatives, the method proposed
offers advantages, in terms of power, over its classical counterparts. Theoretically,
the consistency of the statistic proposed was studied and a Central Limit Theorem
was established for its distribution.[
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Abstract

Changepoint regression models have originally been developed in connec-
tion with applications in quality control, where a change from the in-control
to the out-of-control state has to be detected based on the available random
observations. Up to now various changepoint models have been suggested
for differents applications like reliability, econometrics or medicine. In many
practical situations the covariate cannot be measured precisely and an al-
ternative model are the errors in variable regression models. In this paper
we study the regression model with errors in variables with changepoint
from a Bayesian approach. From the simulation study we found that the
proposed procedure produces estimates suitable for the changepoint and all
other model parameters.

Key words: Bayesian analysis, Changepoint models, Errors in variables
models.

Resumen

Los modelos de regresión con punto de cambio han sido originalmente
desarrollados en el ámbito de control de calidad, donde, basados en un con-
junto de observaciones aleatorias, es detectado un cambio de estado en un
proceso que se encuentra controlado para un proceso fuera de control. Hasta
ahora varios modelos de punto de cambio han sido sugeridos para diferentes
aplicaciones en confiabilidad, econometría y medicina. En muchas situa-
ciones prácticas la covariable no puede ser medida de manera precisa, y un
modelo alternativo es el de regresión con errores en las variables. En este
trabajo estudiamos el modelo de regresión con errores en las variables con

aAssistant professor. E-mail: ousuga@udea.edu.co
bPh.D. Student in Statistic. E-mail: fhernanb@ime.usp.br
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punto de cambio desde un enfoque bayesiano. Del estudio de simulación
se encontró que el procedimiento propuesto genera estimaciones adecuadas
para el punto de cambio y todos los demás parámetros del modelo.

Palabras clave: análisis bayesiano, modelos con errores en las variables,
modelos con punto de cambio.

1. Introduction

Linear regression is one of the most widely used statistical tools to analyze the
relationship between a response variable Y and a covariate x. Under the classic
model of simple linear regression the relationship between Y and x is given by

Yi = α+ βxi + ei, i = 1, . . . , n (1)

where α and β are unknown constants and ei
ind∼ N(0, σ2

e), for i = 1, . . . , n, where
N(a, b2) denotes the normal distribution with location parameter a and scale pa-
rameter b > 0. Usually it is assumed that xi is measured without error in many
practical situations this assumption is violated. Instead of observing xi is observed

Xi = xi + ui i = 1, . . . , n (2)

where xi is the unobservable variable and ui ∼ N(0, σ2
u). Measurements errors

(ei, ui) are assumed independent and identically distribuited; see, for example,
Cheng & Van Ness (1999) and Fuller (1987).

Measurement error (ME) model (also called errors-in-variables model) is a
generalization of standard regression models. For the simple linear ME model,
the goal is to estimate from bivariate data a straight line fit between X and Y ,
both of which are measured with error. Applications in which the variables are
measured with error are perhaps more common than those in which the variables
are measured without error. Many variables in the medical field, such as blood
pressure, pulse frequency, temperature, and other blood chemical variables, are
measured with error. Variables of agriculture such as rainfalls, content of nitrogen
of the soil and degree of infestation of plagues can not be measured accurately.
In management sciences, social sciences, and in many other sciences almost all
measurable variables are measured with error.

There are three ME models depending on the assumptions about xi. If the
x,is are unknown constan, then the model is known as a functional ME model;
whereas, if the x,is are independent identically distributed random variables and
independent of the errors, the model is known as a structural ME model. A third
model, the ultrastructural ME model, assumes that the x,is are independent ran-
dom variables but not identically distributed, instead of having possibly different
means, µi, and common variance σ2. The ultrastructural model is a generalization
of the functional and structural models: if µ1 = · · · = µn, then the ultrastructural
model reduces to the structural model; whereas if σ2 = 0, then the ultrastructural
model reduces to the functional model (Cheng & Van Ness 1999).
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Bayesian Analysis for Errors in Variables with Changepoint Models 17

It is common to assume that all the random variables in the ME model are
jointly normal in this case the structural ME model, is not identifiable. This means
that different sets of parameters can lead to the same joint distribution ofX and Y .
For this reason, the statistical literature have considered six assumptions about
the parameters which lead to an identifiable structural ME model. The six as-
sumptions have been studied extensively in econometrics; see for example Reiersol
(1950), Bowden (1973), Deistler & Seifert (1978) and Aigner, Hsiao, Kapteyn &
Wansbeek (1984). They make identifiable the structural ME model.

1. The ratio of the error variances, λ = σ2
e/σ

2
u, is known

2. The ratio kx = σ2
x/(σ

2
x + σ2

u) is known

3. σ2
u is known

4. σ2
e is known

5. The error variances, σ2
u and σ2

e , are known

6. The intercept, α, is known and E(X) 6= 0

Assumption 1 is the most popular of these assumptions and is the one with
the most published theoretical results; the assumption 2 is commonly found in the
social science and psychology literatures; the assumption 3 is a popular assumption
when working with nonlinears models; the assumption 4 is less useful and cannot
be used to make the equation error model or the measurement error model with
more than one explanatory variable identifiable; the assumption 5 frequently leads
to the same estimates as those for assumption 1 and also leads to an overidentified
model, and finally the assumption 6 does not make the normal model, with more
than one identifiable explanatory variable.

In the structural ME model, usually it is assumed that xi ∼ N(µx, σ
2
x), ei ∼

N(0, σ2
e) and ui ∼ N(0, σ2

u) with xi, ei and ui independent. A variation of the
structural ME model proposed by Chang & Huang (1997) consists in relaxing the
assumption of xi ∼ N(µx, σ

2
x), so that the x,is are not identically distributed.

Consider an example that can be stated as follows. Let xi denote some family’s
true income at time i, let Xi denote the family’s measured income, let Yi denote its
measured consumption. During the observations (Xi, Yi), some new impact on the
financial system in the society may occur, for instance, a new economic policy may
be announced. The family’s true income structure may start to change some time
after the announcement; however, the relation between income and consumption
remains unchanged. Under this situation Chang & Huang (1997) considered the
structural ME model defined by (1) and (2), where the covariate xi has a change
in its distribution given by:

xi ∼ N(µ1, σ
2
x) i = 1, . . . , k

xi ∼ N(µ2, σ
2
x) i = k + 1, . . . , n

This model with change in the mean of xi at time k is called structural ME
model with changepoint.
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The problems with changepoint have been extensively studied. Hinkley (1970)
developed a frequentist approach to the changepoint problems and Smith (1975)
developed a Bayesian approach. The two works were limited to the inference
about the point in a sequence of random variables at which the underlying dis-
tribution changes. Carlin, Gelfand & Smith (1992) extended the Smith approach
using Markov chain Monte Carlo (MCMC) methods for changepoint with continuos
time. Lange, Carlin & Gelfand (1994) and Kiuchi, Hartigan, Holford, Rubinstein
& Stevens (1995) used MCMC methods for longitudinal data analysis in AIDS
studies. Although there are works in the literature on changepoint problems with
Bayesian approach, the Bayesian approach for ME models has not been studied.
Hernandez & Usuga (2011) proposed a Bayesian approach for reliability models.
The goal of this paper is to propose a Bayesian approach to make inferences in
structural ME model with changepoint.

The plan of the paper is as follows. Section 2 presents the Bayesian formulation
of the model, Section 3 presents the simulation study and Section 4 presented an
application with a real dataset and finally some concluding remarks are presents
in Section 5.

2. Structural Errors in Variables Models with
Changepoint

The structural ME model with one changepoint that will be studied in this
paper is defined by the following equations:

Yi = α1 + β1xi + ei i = 1, . . . , k

Yi = α2 + β2xi + ei i = k + 1, . . . , n

}
(3)

and

Xi = xi + ui i = 1, . . . , n
}

(4)

where Xi and Yi are observable random variables, xi is an unobservable random
variable, ei and ui are random errors with the assumption that (ei, ui, xi)

T are
independents for i = 1, . . . , n with distribution given by:

 ei
ui
xi

 ∼ N3

 0

0

µ1

 ,

 σ2
e1 0 0

0 σ2
u1

0

0 0 σ2
x1

 , i = 1, . . . , k

 ei
ui
xi

 ∼ N3

 0

0

µ2

 ,

 σ2
e2 0 0

0 σ2
u2

0

0 0 σ2
x2

 , i = k + 1, . . . , n
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The observed data (Yi, Xi) have the following joint distribution for i = 1, . . . , n.(
Yi
Xi

)
i.i.d∼ N2

((
α1 + β1µ1

µ1

)
,

(
β2
1σ

2
x1 + σ2

e1 β1σ
2
x1

β1σ
2
x1 σ2

x1 + σ2
u1

))
, i = 1, . . . , k(

Yi
Xi

)
i.i.d∼ N2

((
α2 + β2µ2

µ2

)
,

(
β2
2σ

2
x2 + σ2

e2 β2σ
2
x2

β2σ
2
x2 σ2

x2 + σ2
u2

))
, i = k + 1, . . . , n

The likelihood function L(θ |X,Y ), where θ = (k, α1, β1, µ1, σ
2
x1
, σ2
e1 , σ

2
u1
, α2,

β2, µ2, σ
2
x2
, σ2
e2 , σ

2
u2
)T , X = (X1, . . . , Xn)

T and Y = (Y1, . . . , Yn)
T can be written

as:

L(θ |X,Y ) ∝ (β2
1σ

2
u1
σ2
x1

+ σ2
e1σ

2
x1

+ σ2
u1
σ2
e1)
−k/2 exp

{
−A
C

}
× (β2

2σ
2
u2
σ2
x2

+ σ2
e2σ

2
x2

+ σ2
u2
σ2
e2)
−(n−k)/2 exp

{
−B
D

} (5)

where

A =(β2
1σ

2
x1

+ σ2
e1)

k∑
i=1

(Xi − µ1)
2 − 2β1σ

2
x1

k∑
i=1

(Yi − α1 − β1µ1)(Xi − µ1)

+ (σ2
x1

+ σ2
u1
)

k∑
i=1

(Yi − α1 − β1µ1)
2

B =(β2
2σ

2
x2

+ σ2
e2)

n∑
i=k+1

(Xi − µ2)
2 − 2β2σ

2
x2

n∑
i=k+1

(Yi − α2 − β2µ2)(Xi − µ2)

+ (σ2
x2

+ σ2
u2
)

n∑
i=k+1

(Yi − α2 − β2µ2)
2

C =2(β2
1σ

2
u1
σ2
x1

+ σ2
e1σ

2
x1

+ σ2
u1
σ2
e1)

D =2(β2
2σ

2
u2
σ2
x2

+ σ2
e2σ

2
x2

+ σ2
u2
σ2
e2)

2.1. Prior and Posterior Distributions

It was considered the discrete uniform distribution for k in the range 1, . . . , n
allowing values of k = 1 or k = n, which would indicate the absence of change-
point. Also, it was considered inverse Gamma distribution for each of the variances
and normal distributions for the remaining parameters to obtain posterior distri-
butions. The above distributions with their hyperparameters are given below.

p(k) =

{
P (K = k) = 1

n , k = 1, . . . , n,

0, otherwise,

σ2
e1 ∼ GI(ae1 , be1) σ2

e2 ∼ GI(ae2 , be2)
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σ2
u1
∼ GI(au1

, bu1
) σ2

u2
∼ GI(au2

, bu2
)

σ2
x1
∼ GI(ax1

, bx1
) σ2

x2
∼ GI(ax2

, bx2
)

α1 ∼ N(α01, σ
2
α1
) α2 ∼ N(α02, σ

2
α2
)

β1 ∼ N(β01, σ
2
β1
) β2 ∼ N(β02, σ

2
β2
)

µ1 ∼ N(µ01, σ
2
µ1
) µ2 ∼ N(µ02, σ

2
µ2
)

where GI(a, b) denotes the inverse Gamma distribution with shape parameter
a > 0 and scale parameter b > 0. The hyperparameters ae1 , be1 , ae2 , be2 , au1

,
bu1 , au2 , bu2 , ax1 , bx1 , ax2 y bx2 , α01, σ2

α1
, α02, σ2

α2
, β01, σ2

β1
, β02, σ2

β2
, µ01, σ2

µ1
,

µ02 and σ2
µ2

are considered as known. The prior distribution for the vector x is
denoted by π(x) and it is based on the assumption of independence and normality
of the model.

The likelihood function based on complete data X, Y and x = (x1, . . . , xn)
T

is denoted by L∗(θ |X,Y ) and can be expressed as

L∗(θ |X,Y ) ∝
k∏
i=1

(σ2
e1σ

2
u1
σ2
x1
)−

1
2 eE

n∏
i=k+1

(σ2
e2σ

2
u2
σ2
x2
)−

1
2 eF (6)

where

E = − (Yi − α1 − β1xi)2

2σ2
e1

− (Xi − xi)2

2σ2
u1

− (xi − µ1)
2

2σ2
x1

F = − (Yi − α2 − β2xi)2

2σ2
e2

− (Xi − xi)2

2σ2
u2

− (xi − µ2)
2

2σ2
x2

Based on the prior distributions for each parameter the posterior distribution
for θ can be written as

π(θ,x |X,Y ) ∝
k∏
i=1

(σ2
e1σ

2
u1
)−

1
2 eG

n∏
i=k+1

(σ2
e2σ

2
u2
)−

1
2 eH p(k)

× π(α1)π(α2)π(β1)π(β2)π(µ1)π(µ2)

× π(σ2
e1)π(σ

2
e2)π(σ

2
u1
)π(σ2

u2
)π(σ2

x1
)π(σ2

x2
)π(x)

(7)

where

G = − (Yi − α1 − β1xi)2

2σ2
e1

− (Xi − xi)2

2σ2
u1

H = − (Yi − α2 − β2xi)2

2σ2
e2

− (Xi − xi)2

2σ2
u2

The conditional posterior distributions for the parameters obtained from the
previous posterior distribution are given in Appendix. For almost all the parame-
ters posterior distributions with pdf known were obtained, except for the param-
eter k. The conditional posterior distribution of the changepoint k in the model
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has not pdf known, making it necessary to use the Gibbs sampler, introduced by
Geman & Geman (1984) to approximate this distribution. The sampler Gibbs is
an iterative algorithm that constructs a dependent sequence of parameter values
whose distribution converges to the target joint posterior distribution (Hoff 2009).

The procedure used to implement the Gibbs sampler to the problem was:

1. Generate appropriate initial values for each of the 13 parameters to create
the initial parameter vector θ = (θ1, . . . , θ13)

T .

2. Update the component j = 1, . . . , 13 of θ generating a random observation
for the parameter θj using the corresponding posterior distribution of Ap-
pendix and the subset of parameters of θ present in the posterior distribution
of θj .

3. Repeat step 2 a number of times until obtaining convergence in all the pa-
rameters.

3. Simulation Study

In this section we present the results of implementation of the Gibbs sampler
for the model given in equations (3) and (4) under three different assumptions of
the parameters. In the first case we analyze the model with a simulated dataset
considering λ = σ2

ei/σ
2
ui

known; in the second case we consider the variances σ2
u1

and σ2
u2

known and equal, and in the third case we consider the variances σ2
e1

and σ2
e2 known and equals. In addition to the above cases we also analized the

changepoint estimate of the model for different n values with the aim of observing
the behavior of the estimate of k with respect to its true value.

3.1. λ Known

In Table 1 we present a dataset of n = 60 observations generated in R Deve-
lopment Core Team (2011) from the model given in equations (3) and (4) with the
assumption of λ = 1 considering the following set of parameters: k = 20, α1 = 2,
β1 = 2, µ1 = 1, σ2

x1
= 1, σ2

e1 = 1.5, σ2
u1

= σ2
e1/λ, α2 = −1, β2 = 4, µ2 = 5,

σ2
x2

= 2, σ2
e2 = 2.5 and σ2

u2
= σ2

e2/λ. Figure 1 shows the scatter plot for the
data generated and there is not clear indication of the changepoint in the model
structure.

We use the Gibbs sampler to obtain estimates of the parameters. The prior
distributions used to run the Gibbs sampler were as follows: α1 ∼ N(2, 15), β1 ∼
N(2, 15), µ1 ∼ N(1, 15), σ2

x1
∼ GI(2, 5), σ2

e1 ∼ GI(2, 5), σ2
u1
∼ GI(2, 5), α2 ∼

N(−1, 15), β2 ∼ N(4, 15), µ2 ∼ N(5, 15), σ2
x2
∼ GI(2, 5), σ2

e2 ∼ GI(2, 5) and
σ2
u2
∼ GI(2, 5).
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Table 1: Random sample of simulated data with λ = 1.
X 0.05 4.34 1.18 0.65 1.47 −0.57 2.42 0.78 1.63 −1.02 −0.78 0.48
Y 0.03 4.92 4.42 1.62 5.91 3.81 6.60 4.97 2.79 2.37 1.45 5.24

X 1.05 2.50 3.76 0.61 1.46 0.98 1.59 −0.95 4.89 2.28 7.09 7.18
Y 1.74 6.07 6.96 6.65 2.08 2.63 5.55 1.39 17.84 9.15 16.82 25.40

X 6.58 4.85 6.23 5.30 7.29 6.73 6.78 7.46 2.86 3.33 3.80 9.66
Y 18.51 18.86 13.12 19.57 17.16 22.71 22.16 26.90 21.30 12.82 27.43 27.96

X 3.63 3.66 5.70 5.64 2.15 3.13 9.10 9.88 4.73 7.48 2.55 11.11
Y 9.53 12.68 18.54 19.15 20.43 21.36 32.97 27.38 13.67 18.73 14.54 23.11

X 7.10 4.95 9.17 2.03 9.54 5.08 7.36 6.37 4.35 1.45 7.67 2.97
Y 25.54 21.00 27.77 9.75 27.62 22.29 19.45 17.34 23.68 13.99 25.15 11.38

0 2 4 6 8 10

0

5

10

15

20

25

30

X

Y

Figure 1: Scatter plot for simulated data with λ = 1.

We ran five chains of the Gibbs sampler. Each sequence was run for 11000
iterations with a burn-in of 1000 samples. The vectors of initial values for each of
the chains were:

θ
(0)
1 = (5, 1.886, 1.827, 2.4, 0.942, 1.134, 1.015,−1.5, 2.100, 1.3, 0.6, 0.893, 1.8)

θ
(0)
2 = (10, 2.537, 1.225, 2.2, 1.404, 2.171, 0.552, 0.2, 3.500, 4.3, 1.1, 0.903, 3.4)

θ
(0)
3 = (30, 1.856, 1.855, 2.6, 0.928, 1.087, 1.029,−0.3, 3.829, 4.5, 2.0, 0.900, 2.1)

θ
(0)
4 = (40, 2.518, 1.242, 2.8, 1.386, 2.142, 0.571,−2.0, 3.829, 3.5, 2.8, 0.901, 1.4)

θ
(0)
5 = (50, 2.516, 1.244, 1.8, 1.383, 2.138, 0.573,−1.3, 3.829, 2.5, 3.5, 0.899, 2.4)

The above vectors were obtained by the following procedure. For fixed values of
k = 5, 10, 30, 40, 50 numerical methods were used to determine the values of θ that
maximize the likelihood function given in (5). These estimates were obtained using
the function optim of R Development Core Team (2011), which uses optimization
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Bayesian Analysis for Errors in Variables with Changepoint Models 23

methods quasi-Newton such as the bounded limited-memory algorithm L-BFGS-
B (Limited memory, Broyden- Fletcher-Goldfarb-Shanno, Bounded) proposed by
Byrd, Lu, Nocedal & Zhu (1995).

In order to verify the convergence of the chains we use the diagnostic indicator
proposed by Brooks & Gelman (1998). The diagnostic value of R found in this case
was 1.04; values close to 1 indicate convergence of the chains. Additionally, for
each parameter, the posterior distribution was examined visually by monitoring
the density estimates, the sample traces, and the autocorrelation function. We
found not evidence of trends or high correlations. Figures 2 and 3 show the
Highest Density Region (HDR) graphics for the parameters of the chain 1. These
graphics show that the true values of the model parameters are in the Highest
Density Regions.

−2 0 2 4

0.0

0.2

0.4

α1

D
en

si
ty

−1 0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

β1

D
en

si
ty

−1 0 1 2 3

0.0

0.5

μ1

D
en

si
ty

0 2 4 6 8

0.0

0.2

0.4

0.6

σ2
x1

D
en

si
ty

0 2 4 6 8 12

0.0

0.1

0.2

0.3

0.4

σ2
e1

D
en

si
ty

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

σ2
u1

D
en

si
ty

Figure 2: HDR plot for α1, β1, µ1, σ2
x1 ,σ

2
e1 and σ2

u1
.

Table 2 presents the posterior mean and standard deviation (SD) for the model
parameters and the 90% HDR interval. Note that the true values parameters are
close to mean and are within the HDR interval.
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Figure 3: HDR plot for α2, β2, µ2, σ2
x2 ,σ

2
e2 and σ2

u2
.

Table 2: Posterior mean, standard deviation (SD), HDRlower and HDRupper of pa-
rameters with λ = 1.

Parameter Mean SD HDRlower HDRupper
k 19.99 0.10 - -
α1 2.21 0.83 0.94 3.57
β1 1.50 0.54 0.64 2.38
µ1 1.09 0.40 0.44 1.74
σ2
x1

1.64 0.72 0.60 2.61
σ2
e1

2.28 1.14 0.62 3.77
σ2
u1

1.47 0.59 0.56 2.24
α2 0.17 2.54 −3.97 4.46
β2 3.44 0.45 2.71 4.20
µ2 5.72 0.38 4.10 5.34
σ2
x2

2.86 0.94 1.39 4.22
σ2
e2

3.77 2.68 0.53 7.32
σ2
u2

3.18 0.81 1.86 4.42

Revista Colombiana de Estadística 35 (2012) 15–38



Bayesian Analysis for Errors in Variables with Changepoint Models 25

3.2. σ2
u1

and σ2
u2

Known

In this case we consider the structural ME model with σ2
u1

= σ2
u2

= 2. Table
3 shows a dataset of size n = 60 generated from the model given in equations (3)
and (4) with the following set of parameters: α1 = 2, β1 = 2, µ1 = 1, σ2

x1
= 1,

σ2
e1 = 1.5, α2 = −1, β2 = 4, µ2 = 5, σ2

x2
= 2 and σ2

e2 = 2.5. Figure 4 shows the
scatter plot for the simulated data.

Table 3: Random sample of data simulated with σ2
u1

= σ2
u2

= 2.
X 2.03 2.16 1.68 −0.07 1.00 −0.82 1.42 −0.42 3.36 0.88 0.12 0.80
Y 5.11 4.31 5.33 2.73 0.33 1.69 7.48 3.06 2.65 0.48 1.82 5.37

X 2.84 4.15 −1.54 0.84 1.55 0.99 −0.27 4.16 6.13 5.01 5.09 1.12
Y 0.42 5.20 3.75 4.88 3.87 0.73 6.01 8.41 20.03 18.82 15.29 8.10

X 5.40 3.28 8.06 5.78 5.68 3.26 2.48 3.72 2.85 6.13 2.85 8.47
Y 8.55 16.47 26.13 15.54 16.11 14.48 11.52 21.86 9.55 24.49 14.44 24.76

X 3.18 3.90 2.58 7.58 5.59 6.79 7.20 4.01 6.10 5.73 1.82 7.95
Y 20.74 15.84 4.54 20.84 20.96 24.59 23.95 11.74 18.99 15.13 9.98 29.01

X 4.42 4.01 7.72 9.25 4.60 4.73 0.52 0.46 2.76 5.44 7.22 3.33
Y 13.82 14.92 23.08 32.71 10.53 22.03 11.28 14.74 8.30 15.60 30.96 17.54
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Figure 4: Scatter plot for the simulated data with σ2
u1

= σ2
u2

= 2.

The prior distributions for α1, β1, µ1, σ
2
x1
, σ2
e1 , α2, β2, µ2, σ

2
x2
, and σ2

e2 were the
same considered in the case of λ known. The vectors of initial values for the model
parameters in each of the five Markov chain were as follows:
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θ
(0)
1 = (5, 1.0, 2.305, 1.063, 0.189, 3.0, 2,−2.0, 4.071, 4.727, 2.0, 1.984, 2)

θ
(0)
2 = (10, 1.5, 2.800, 1.063, 0.189, 1.7, 2,−2.0, 4.071, 3.300, 3.0, 1.980, 2)

θ
(0)
3 = (30, 3.1, 2.305, 0.300, 2.000, 2.0, 2,−0.5, 1.500, 3.200, 2.0, 2.700, 2)

θ
(0)
4 = (40, 3.1, 1.900, 1.063, 1.400, 2.1, 2,−2.0, 4.071, 4.727, 1.4, 1.981, 2)

θ
(0)
5 = (50, 2.9, 0.500, 1.063, 0.189, 2.6, 2, 0.7, 2.400, 1.500, 3.1, 1.981, 2).

The diagnostic value of convergence R was 1.01 indicating the convergence of
the chains. A visual monitoring of the density estimates, the sample traces, and
the correlation function for each parameter in each of the chains did not show any
problem. In Figures 5 and 6 we present the HDR graphics for the parameters
in the chain 1. The graphics show that true values of the parameters model are
within the Highest Density Regions.
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Figure 5: HDR plot for α1, β1, µ1, σ2
x1 and σ2

e1 .

Table 4 shows the posterior mean and standard deviation (SD) for each of the
parameters model and the 90% HDR interval. It is noted again that the true
values of the parameters are close to the mean and within the HDR intervals.
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Figure 6: HDR plot for α2, β2, µ2, σ2
x2 and σ2

e2 .

Table 4: Posterior mean, standard deviation (SD), HDRlower and HDRupper of pa-
rameters with σ2

u1
= σ2

u2
.

Parameter Mean SD HDRlower HDRupper
k 19.25 0.61 - -
α1 2.48 1.24 0.48 4.47
β1 0.89 0.99 −0.69 2.46
µ1 1.15 0.43 0.44 1.86
σ2
x1

1.51 0.73 0.52 2.47
σ2
e1

3.85 1.72 1.05 6.18
α2 −1.00 2.31 −4.62 2.91
β2 3.82 0.46 3.04 4.55
µ2 4.79 0.36 4.20 5.36
σ2
x2

3.02 0.94 1.53 4.39
σ2
e2

3.21 2.16 0.53 6.07

3.3. σ2
e1

and σ2
e2

Known

In this case we consider the structural ME model with σ2
e1 = σ2

e2 = 2. Table
5 shows a dataset of size n = 60 generated from the model given in equations (3)
and (4) considering the same parameters values of the case λ known. Figure 7
presents the scatter plot of the simulated data.
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Table 5: Random sample of the simulated data with σ2
e1 = σ2

e2 = 2.
X −0.82 1.06 −2.25 0.76 1.71 −0.93 0.50 −0.08 1.12 −0.14 1.59 0.99
Y 2.72 2.75 1.88 8.66 5.12 2.51 7.00 7.64 4.55 7.50 2.89 2.55

X −1.69 −0.14 2.32 −1.42 2.99 0.70 0.99 0.06 5.20 2.18 6.69 8.79
Y 2.47 0.43 5.32 3.10 6.63 1.99 5.57 3.39 11.10 13.80 17.71 32.28

X 4.98 8.05 6.29 5.99 5.32 5.80 7.73 5.45 4.27 2.84 7.69 10.61
Y 16.11 19.64 16.59 17.86 16.14 19.01 34.01 19.65 19.77 21.84 23.58 30.02

X 5.90 3.51 2.15 3.10 9.42 3.31 4.06 1.44 7.18 1.72 6.61 5.28
Y 21.45 11.51 17.44 17.75 29.13 18.25 20.95 8.24 24.11 8.12 29.31 19.54

X 4.68 1.88 5.02 1.76 7.67 5.31 6.42 7.79 4.32 1.20 3.22 3.37
Y 17.90 17.81 16.27 14.20 23.72 27.51 28.17 18.41 18.28 11.89 15.10 19.96
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Figure 7: Scatter plot for the simulated data with σ2
e1 = σ2

e2 = 2.

The prior distributions for α1, β1, µ1, σ
2
x1
, σ2
u1
, α2, β2, µ2, σ

2
x2

and σ2
u2

were the
same considered in the case of λ known. The vectors of the initial values for each
of the five Markov chains were as follows:

θ
(0)
1 = (5, 3.264, 2.650, 0.366, 0.437, 2.001, 1.276, 4.287, 3.0, 5.106, 3.793, 2.001, 2.394)

θ
(0)
2 = (10, 1.000, 1.904, 1.500, 1.370, 2.001, 0.500, 4.512, 5.0, 2.000, 2.700, 2.001, 1.000)

θ
(0)
3 = (30, 2.500, 2.650, 1.000, 0.437, 2.001, 1.500, 4.286, 2.0, 4.000, 3.792, 2.001, 0.700)

θ
(0)
4 = (40, 0.500, 1.904, 0.900, 1.369, 2.000, 2.000, 4.512, 1.8, 5.500, 4.000, 2.001, 2.100)

θ
(0)
5 = (50, 3.600, 2.652, 1.900, 0.437, 2.000, 0.700, 4.287, 4.1, 4.200, 3.792, 2.001, 2.000)

The diagnostic value of convergence was of 1.04 indicating the convergence of
the chains. In Figures 8 and 9 we present the HDR graphics of the parameters
for the chain 1. Note that the true values of the parameters model are within the
Highest Density Regions.
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Figure 8: HDR plot for α1, β1, µ1, σ2
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.
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Figure 9: HDR plot for α2, β2, µ2, σ2
x2 and σ2

u2
.

Table 6 shows the posterior mean and the standard deviation (SD) for the
model parameters and the 90% HDR interval. As in the previous cases the poste-
rior means are close to the true values and are within the HDR interval.
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Table 6: Posterior mean, standard deviation (SD), HDRlower and HDRupper of pa-
rameters with σ2

e1 = σ2
e2 .

Parameter Mean SD HDRlower HDRupper
k 20.22 0.47 - -
α1 2.95 0.62 0.96 2.98
β1 2.09 0.61 1.09 3.02
µ1 0.59 0.37 −0.01 1.20
σ2
x1

1.41 0.64 0.53 2.26
σ2
u1

1.76 0.64 0.80 2.64
α2 0.60 2.62 −2.01 0.97
β2 3.70 0.49 2.93 4.49
µ2 5.16 0.35 4.57 5.73
σ2
x2

2.85 0.93 1.41 4.19
σ2
u2

2.62 0.63 1.59 3.53

3.4. Constant Sample Size and Variable Changepoint

In this case our objective was determine if the estimated changepoint of the
model given in equations (3) and (4) differs from its true value when n = 60 is
fixed. We generated nine random samples of size n = 60 based on the structure
considered in Section 3.1; the values of the parameters were the same ones used in
this section. The changepoint k for each nine random samples had different values,
and the values were k = 3, 5, 10, 20, 30, 40, 50, 55 and 58. For each of the random
samples were run five Markov chains of size 150000 with a burn in of 15000. Table
7 presents for the estimated changepoint k the posterior mean, standard deviation
and percentiles of 10% and 90% when n = 60. Note that posterior mean of
the changepoint is very close to the true value and the standard deviation tends
to increase as the changepoint approach to the extreme values. Also the Table 7
shows that the distance between the percentiles 10% and 90% is at most 1%, which
indicates that the posterior distribution for the parameter k is highly concentrated
in one or two possible values and they match with the true value of k.

3.5. Sample Size and Changepoint Variable

In this case our objective was to determine if the estimated changepoint of the
model given in equations (3) and (4) differs from its true value for differents values
of n. As in the previous case we generated nine dataset with the structure of the
Section 3.1. Each of the dataset had samples sizes of n = 20, 30, 40, 50, 60, 70, 80, 90
and 100. The true value for k in each of the nine set was k = n/2. Table 8
presents the posterior mean, standard deviation and 10% and 90% percentiles
for the estimated changepoint and the true values of k. Again we see that the
posterior mean of k is very close to the true values of k; it is also noted that the
standard deviation tends to increase as the size sample n decreases; this means
that if we have fewer observations the posterior distribution for k tends to have
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greater variability. As in the previous case the distance between the percentiles
10% and 90% is at most 1%, which means that the posterior distribution for the
parameter k is highly concentrated in one or two possible values and they match
the true value of k.

Table 7: Posterior mean, standard deviation (SD) and 10% and 90% percentiles of k
estimated when n = 60.

k Mean SD 10% 90%
3 3.16 0.67 3.00 4.00
5 5.03 0.43 5.00 5.00
10 9.95 0.30 10.00 10.00
20 19.89 0.31 19.00 20.00
30 29.97 0.19 30.00 30.00
40 39.99 0.12 40.00 40.00
50 49.98 0.13 50.00 50.00
55 54.98 0.14 55.00 55.00
58 57.97 0.18 58.00 58.00

Table 8: Posterior mean, standard deviation (SD) and 10% and 90% percentiles of k.
n k Mean SD 10% 90%
20 10 9.94 0.29 10.00 11.00
30 15 14.96 0.27 15.00 16.00
40 20 19.98 0.21 19.00 20.00
50 25 24.98 0.16 24.00 24.00
60 30 30.17 0.12 30.00 30.00
70 35 34.99 0.10 35.00 35.00
80 40 39.99 0.10 39.00 39.00
90 45 44.99 0.11 44.00 45.00
100 50 50.00 0.06 49.00 49.00

4. Application

This section illustrates the proposed procedure for the structural ME model
with changepoint using a dataset of imports in the French economy.

Malinvaud (1968) provided the data of imports, gross domestic product (GDP),
and other variables in France from 1949-1966. The main interest is to forecast the
imports given the gross domestic product of the country. Chatterjee & Brockwell
(1991) analyzed these data by the principal component method and found two
patterns in the data; they argued that the models before and after 1960 must
be different due to the fact the European Common Market began operations in
1960. Maddala (1992) considered a functional ME model; however, he ignored
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the possibility that some changes in the data may arise. Chang & Huang (1997)
considered a structural ME model with changepoint using the likelihood ratio
test based on the maximum Hotelling T 2 for the test of no change against the
alternative of exactly one change and concluded that the changepoint ocurred in
1962. Table 9 presents the import data (Y ) and gross domestic product (X).

Table 9: Imports and gross domestic product data from January 1949 to November
1966.
Year 1949 1950 1951 1952 1953 1954
GDP 149.30 161.20 171.50 175.50 180.80 190.70
Imports 15.90 16.40 19.00 19.10 18.80 20.40
Year 1955 1956 1957 1958 1959 1960
GDP 202.10 212.40 226.10 231.90 239.00 258.00
Imports 22.70 26.50 28.10 27.60 26.30 31.10
Year 1961 1962 1963 1964 1965 1966
GDP 269.80 288.40 304.50 323.40 336.80 353.90
Imports 33.30 37.00 43.30 49.00 50.30 56.60

The data were reanalized under a Bayesian perspective by adopting the struc-
tural ME model with changepoint. We considered non informative prior distri-
butions for all parameters. Again as in the previous cases, we built five chains
with different initial values of size 11000 with a burn in of 1000 samples to avoid
correlations problems. We found the value R = 1.03, indicating the convergence
of the chains.

Figure 10 shows the high concentration in the value 14 for the posterior dis-
tribution for the parameter k. The mean for this distribution is 13.92, which is
the same obtained by Chang & Huang (1997), indicating that the data present a
changepoint for the year 1962. Table 10 presents estimates for the remaining pa-
rameters of the model. The values are also close to the results obtained by Chang
& Huang (1997). It is also noted that the means for β1 and β2 were 0.14 and 0.16,
which indicates no significant changes in the slope for the trend lines before and
after k = 14. The means obtained for the parameters α1 and α2 were −5.53 and
−2.23, not being to close these values, which indicate that the trend lines before
and after the change have different changepoints; this can be seen clearly in the
Figure 11.

5. Conclusions

This paper proposes the Bayesian approach to study the structural ME model
with changepoint. Through the simulation study was shown that the proposed
procedure identifies correctly the point where the change comes to structure; note
also that the variability in the posterior distribution of k decreases as the number
of observations in the dataset increases. Another important aspect is that the
variability of the posterior distribution for k increases as the true value of k is
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Figure 10: Posterior density for k.

Table 10: Posterior summary results.
Parameter Mean SD HDRlower HDRupper

α1 −5.53 1.95 8.77 −2.50
β1 0.14 0.01 0.13 0.16
µ1 16.33 3.88 9.99 22.67
σ2
x1

34601.81 13191.57 13641.42 51588.36
σ2
e1 1.93 0.89 0.72 3.07

σ2
u1

4.37 5.18 0.37 8.66
α2 −2.23 3.78 −8.35 3.96
β2 0.16 0.01 0.14 0.18
µ2 5.39 3.89 −1.02 11.82
σ2
x2

70266.22 48727.80 1141.85 120582.77
σ2
e2 5.43 4.61 0.72 10.16

σ2
u2

5.14 13.70 - -

close to 1. For the other parameters the proposed procedure generated posterior
distributions with means very close to the real parameters in all cases considered.
The proposed procedure generates chains that converge to the true parameters,
regardless of whether or not identifiability assumptions.

Possible future works could consider other prior distributions such as non in-
formative and skew normal and also introduce multiple changepoints in Y and
X.
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Figure 11: Scatter plot for the application.
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Appendix. Conditional Posterior Distributions

1. Conditional posterior distribution of k

P (K = k | θ−k,x,X,Y ) =
L∗(θ |X,Y )
n∑
k=1

L∗(θ |X,Y )

where L∗(θ |X,Y ) is given in equation (6).

2. Conditional posterior distribution of α1

π
(
α1 | θ{−α1},X,Y ,x

)
∼ N


σ2
α1

k∑
i=1

(Yi − β1xi) + α01σ
2
e1

kσ2
α1

+ σ2
e1

,
σ2
e1σ

2
α1

kσ2
α1

+ σ2
e1


where θ{−θi} is the vector θ without considering the parameter θi.

3. Conditional posterior distribution of α2

π
(
α2 | θ{−α2},X,Y ,x

)
∼ N


σ2
α2

n∑
i=k+1

(Yi − β2xi) + α02σ2
e2

(n− k)σ2
α2

+ σ2
e2

,
σ2
e2
σ2
α2

(n− k)σ2
α2

+ σ2
e2



4. Conditional posterior distribution of β1

π
(
β1 | θ{−β1},X,Y ,x

)
∼ N

σ
2
β1

k∑
i=1

(Yi − α1)xi + β01σ
2
e1

σ2
β1

k∑
i=1

x2i + σ2
e1

,
σ2
e1σ

2
β1

σ2
β1

k∑
i=1

x2i + σ2
e1



5. Conditional posterior distribution of β2

π
(
β2 | θ{−β2},X,Y ,x

)
∼ N


σ2
β2

n∑
i=k+1

(Yi − α2)xi + β02σ2
e2

σ2
β2

n∑
i=k+1

x2i + σ2
e2

,
σ2
e2
σ2
β2

σ2
β2

n∑
i=k+1

x2i + σ2
e2


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6. Conditional posterior distribution of µ1

π
(
µ1 | θ{−µ1},X,Y ,x

)
∼ N


σ2
µ1

k∑
i=1

xi + µ01σ
2
x1

kσ2
µ1

+ σ2
x1

,
σ2
x1
σ2
µ1

kσ2
µ1

+ σ2
x1


7. Conditional posterior distribution of µ2

π
(
µ2 | θ{−µ2},X,Y ,x

)
∼ N


σ2
µ2

n∑
i=k+1

xi + µ02σ
2
x2

(n− k)σ2
µ2

+ σ2
x2

,
σ2
x2
σ2
µ2

(n− k)σ2
µ2

+ σ2
x2


8. Conditional posterior distribution of σ2

u1

π
(
σ2
u1
| θ{−σ2

u1
},X,Y ,x

)
∼ GI

(
k

2
+ au1

,
1

2

k∑
i=1

(Xi − xi)2 + bu1

)

9. Conditional posterior distribution of σ2
u2

π
(
σ2
u2
| θ{−σ2

u2
},X,Y ,x

)
∼ GI

(
(n− k)

2
+ au2 ,

1

2

n∑
i=k+1

(Xi − xi)2 + bu2

)

10. Conditional posterior distribution of σ2
e1

π
(
σ2
e1 | θ{−σ2

e1
},X,Y ,x

)
∼ GI

(
k

2
+ ae1 ,

1

2

k∑
i=1

(Yi − α1 − β1xi)2 + be1

)

11. Conditional posterior distribution of σ2
e2

π
(
σ2
e2
| θ{−σ2

e2
},X,Y ,x

)
∼ GI

 (n− k)
2

+ ae2 ,
1

2

n∑
i=k+1

(Yi − α2 − β2xi)2 + be2



12. Conditional posterior distribution of σ2
x1

π
(
σ2
x1
| θ{−σ2

x1
},X,Y ,x

)
∼ GI

(
k

2
+ ax1 ,

1

2

k∑
i=1

(xi − µ1)
2 + bx1

)
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13. Conditional posterior distribution of σ2
x2

π
(
σ2
x2
| θ{−σ2

x2
},X,Y ,x

)
∼ GI

(
(n− k)

2
+ ax2

,
1

2

n∑
i=k+1

(xi − µ2)
2 + bx2

)

14. Conditional posterior distribution of xi, with
x−i = (x1, x2, . . . , xi−1, xi+1, . . . , xk)

π (xi | θ,X,Y ,x−i) ∼ N (µxi
, V ar(µxi

))

where,

µxi =
(Yi − α1)β1σ

2
u1
σ2
x1

+Xiσ
2
e1σ

2
x1

+ µ1σ
2
e1σ

2
u1

β2
1σ

2
u1
σ2
x1

+ σ2
e1σ

2
x1

+ σ2
e1σ

2
u1

and

V ar(µxi
) =

σ2
e1σ

2
u1
σ2
x1

β2
1σ

2
u1
σ2
x1

+ σ2
e1σ

2
x1

+ σ2
e1σ

2
u1

15. Conditional posterior distribution of xi, with
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Abstract

The present study is basically meant to propose an improved item count
technique which will mainly have an impact on sensitive fields such as health
care. It is attempted to highlight the scope of the proposal relative to the
usual and existing methods serving the same purpose. The proposed im-
proved Item Count Technique (ICT) has the major advantage that it does
not require two subsamples (as is the case in usual ICT) and there is no
need of finding optimum subsample sizes. The proposed ICT has been ob-
served performing well, as compared to the usual ICT, in terms of relative
efficiency. The innovative method of Randomized Response (RR) technique
has also been compared with the proposed ICT and it is found that the pro-
posed technique uniformly performs better when the number of innocuous
items is greater than 3.

Key words: Health surveys, Privacy, Proportion estimation, Randomized
response, Sensitive question.

Resumen

El presente articulo propone una técnica de conteo de items con aplica-
ciones principalmente en el campo de la salud. Se muestran las ventajas de
nuestra propuesta y de otros métodos que sirven con el mismo fin. La técnica
de conteo de ítems propuesta (ICT, por su sigla en inglés) tiene la ventaja
de que no requiere dos submuestras (como es el caso en el ICT clásico) y no
es necesario de encontrar los tamaños de las submuestras óptimos. El ICT
propuesto tiene un mejor comportamiento en términos de eficiencia relativa.
El método de la técnica de respuesta aleatorizada (RR, por su sigla en inglés)
es también comparado con el ICT propuesto y se encuentra que la técnica
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propuesta se desempeña mejor cuando el número de ítems inocuos es mayor
de 3.

Palabras clave: encuestas de salud, estimación de la proporción, preguntas
sensibles, privacidad, respuesta al azar.

1. Introduction

In estimating the population proportion of a sensitive characteristic (induced
abortion, shoplifting, tax evasion) through direct questioning, truthfulness of the
answers may be suspected due to various reasons, namely, social stigma, embar-
rassment, monetary penalty, and many others. These and similar other factors are
directly related to the health issues and some improved/alternative techniques to
hit these areas are indispensable to address the complications involved in them.
There are a number of papers showing such concerns. Some literature in this
regard may be seen in Bjorner, Kosinski & Ware (2003) and Martin, Kosinski,
Bjorner, Ware & MacLean (2007), and the references therein.

An ingenious alternative to direct questioning introduced by Warner (1965),
known as Randomized Response Technique (RRT), has been developed rapidly.
For a good review of developments on RRTs we would refer the reader to Tracy &
Mangat (1996) and Chaudhuri & Mukherjee (1988). The RRT has been used in
many studies including Liu & Chow (1976), Reinmuth & Geurts (1975), Geurts
(1980), Larkins, Hume & Garcha (1997), etc. Geurts (1980) reported that RRT
had financial limitations since it requires larger sample sizes to obtain the con-
fidence intervals comparable to the direct questioning technique. More time is
needed to administer and explain the procedure to the survey respondents. In
addition, tabulation and calculation of the results are comparatively laborious.
Larkins et al. (1997) found that RRT was not a good alternative for estimating
the proportion of tax payers/non-payers. Dalton & Metzger (1992) were of the
view that RRT might not be effective through a mailed or telephonic survey. Hub-
bard, Casper & Lessler (1989) stated that the main technical problem for RRTs
is making the decision about what kind of the randomization device would be the
best in a given situation, and that the most crucial aspect of the RRT is about the
respondent’s acceptance of the technique. Chaudhuri & Christofides (2007) also
gave a criticism on the RRT in the sense that it demands the respondent’s skill
of handling the device and also asks respondents to report the information which
may be useless or tricky. A clever respondent may also think that his/her reported
response can be traced back to his/her actual status if he/she does not understand
the mathematical logic behind the randomization device. Some of the alternatives
to the RR technique include the Item Count Technique (Droitcour, Caspar, Hub-
bard, Parsley, Visscher & Ezzati 1991), the Three card method (Droitcour, Larson
& Scheuren 2001), and the Nominative technique (Miller 1985). These alternatives
are designed because, in general, respondent evade sensitive questions especially
regarding personal issues, socially deviant behaviors or illegal acts. Chaudhuri &
Christofides (2007) also added that in these three alternatives to RRT respondents
know that what they are revealing about themselves and they do not need to know
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about any special estimation technique. Also respondents provide answers which
make sense to them.

2. Item Count Techniques

In order to estimate the proportion of people with a stigmatizing attribute a
promising indirect questioning technique called Item Count Technique (ICT), was
introduced by Droitcour et al. (1991). It consists of taking two subsamples of sizes
n1 and n2. The ith respondent in the first subsample is given a list of g innocuous
items and asked to report the number, say Xi of items that are applicable to
them (Xi ≤ g). Similarly, the jth respondent in the second subsample is provided
another list of (g + 1) items including the sensitive item and asked to report a
number, say Yj of the items that are applicable to them (Yj ≤ g + 1). The g
innocuous items may or may not be the same in both subsamples. An unbiased
estimator of the proportion of sensitive item in the population say π is given by:

π̂I = Y −X (1)

where Y and X represent the sample mean from the second and first subsamples,
respectively.

To our knowledge, no author has given the variance expression of the estimator
given in (1). We have derived the variance of the estimator in (1), and it is given
by:

V (π̂I) =
π (1− π)

n2
+

n
g∑
j=1

θj

(
1−

g∑
j=1

θj

)
n1n2

+

n
g∑

j,k=1
j 6=k

θjθk

n1n2
(2)

where θj is the known proportion of the item j in the population. More details
about ICT can be found in Droitcour et al. (1991) and Droitcour & Larson (2002).
Dalton, Wimbush & Daily (1994) named ICT as the unmatched count technique
and applied it to study the illicit behaviors of the auctioneers, and as compared
to the direct questioning they obtained higher estimates of six stigmatized items.
Wimbush & Dalton (1997) applied this technique in estimating the employee theft
rate in high-theft-exposure business and found higher theft rates. Tsuchiya (2005)
extended the ICT to domain estimators by the stratified method, the cross-based
method, and the double cross-based method. More recently, Tsuchiya, Hirai &
Ono (2007) studied the properties of the ICT through an experimental web survey
and found that ICT yielded higher estimates of the proportions of the shoplifters
by nearly 10% as that of yielded by direct questioning. They also found that the
cross-based method was the most appropriate one.

Besides its fruitful applications ICT has not been found fruitful in many stud-
ies; for example, Droitcour et al. (1991), Biemer & Wright (2004) and Ahart &
Sackett (2004) failed to get higher estimates in their studies of different stigma-
tized traits. We have focused on the issue of the need of two subsamples in the
usual application of ICT and have proposed an alternative ICT which does not

Revista Colombiana de Estadística 35 (2012) 39–54



42 Zawar Hussain, Ejaz Ali Shah & Javid Shabbir

need two subsamples. Avoiding the need of two subsamples for our proposed ICT
makes it more attractive in terms of cost and statistical efficiency. The following
section provides a description of the proposed methodology.

2.1. Proposed Item Count Technique

Each respondent in a sample of size n is provided a questionnaire (list of
questions) consisting of g (≥ 2) questions. The jth question consists of queries
about an unrelated item (Fj), and a sensitive characteristic (S). The respondent
is requested to count 1 if he/she possesses at least one of the characteristics Fj
and S, otherwise, count 0, as a response to the jth question, and to report the
total count based on entire questionnaire.

The list of items is given to the respondents and they are sent to another room
so that they are unseen to the interviewer. To illustrate, suppose the sensitive
study item (S) be the cheating in exams and the unrelated items (Fj , j = 1, 2.)
are: (i) “Do you live in the hostel?” and (ii) “Is the last digit of your registration
number odd?” It is obvious that there are almost (if not exactly) 50% (known)
of the students having an odd registration number and proportion of the students
living in hostel is easily available from the warden office. Let Zi denote the total
count of ith respondent, and then mathematically we can write it as:

Zi =

g∑
j=1

αj (3)

where αj can assume values “1” and “0” with probabilities (π + θj − πθj) and
(1− π − θj + πθj), respectively.

Taking expectation on (3) we have:

E (Zi) =

g∑
j=1

E (αj) = gπ +

g∑
j=1

θj − π
g∑
j=1

θj

=

g − g∑
j=1

θj

π +

g∑
j=1

θj

This suggests defining an unbiased estimator of π as:

π̂P =
Z −

∑g
j=1 θj

g −
∑g
j=1 θj

(4)

The estimator given in (4) serves the purpose of estimating π as is done by π̂I
in (1). The estimator π̂P obtained through our proposed ICT does not demand
two subsamples which are needed by π̂I based on the usual ICT. This property
(avoiding the need of two subsamples) makes our proposal more attractive and
practicable.
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The variance of the estimator π̂P is given by (see Appendix)

V (π̂P ) =
π (1− π)

n

+
(1− π)

n
(
g −

∑g
j=1 θj

)2

 g∑
j=1

θj

1−
g∑
j=1

θj

+

g∑
j,k=1
j 6=k

θjθk

 (5)

Some comments are in order. It is to be noted that in some surveys it may
be possible to have unrelated traits (Fj , j = 1, 2, . . . , g) with equal proportions
(θj , j = 1, 2, . . . , g). In these situations we have θj = 1

g for all j and consequently
the variance of the proposed estimator π̂P reduces to

V (π̂P ) =
π (1− π)

n
+

(1− π)
ng (g − 1)

(6)

As pointed by the two referees, it is just possible that the actual status of the
respondents about one (or all) the unrelated item(s) may be known to the inter-
viewer by any means, then the response of 0 or g would disclose his/her status
about the sensitive item. In this case privacy protection provided to the respon-
dents will be limited. Thus, the unrelated items should be chosen in such a way
that the actual status of the respondents about at least one of the unrelated items
must be impossible to know by any means. To fix the idea, suppose the unrelated
items are (i) and (ii) as we discussed above, then knowing the residential status of
a particular student is difficult while actually conducting the survey but the pro-
portion of students living in hostel may be readily available from the warden office.
Similar is the case with the unrelated item of registration number. If it is possible
to exactly guess or know about the particular item(s) for a given individual then
such item(s) must not be included in the group of items. In this way, respondents
would feel more protected and be motivated to answer truthfully. And, of course,
the interviewer’s ethical responsibility of being honest is more apparent, in the
sense that he would be asking about those items about which he knows nothing of
a particular respondent. The item count technique surveys are conducted in the
hope that the respondents will be motivated more to reveal truthful answers rather
than trapping them in mathematical tricks to trace their actual responses on the
sensitive items. It will essentially be a direct questioning situation if surveyor is
able to know the status of each respondent on each unrelated item. So, respondents
must be assured that it is impossible to know the status of individual about an
item but, of course, its population proportion is known somehow. It is easy to un-
derstand now that knowing the population proportion of an unrelated item is not
harmful but knowing the individuals’ status is. Moreover, another characteristic
of such indirect survey methods is the anonymity. The identity (in terms of name
or registration number, etc.) of the respondent is not required. The respondents
may just write their answers on a sheet of paper and drop them in a box making it
impossible to know the response of a particular respondent even the interviewer is
able to know the status of a particular respondent on a given item. For example,
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in our situation, if the surveyor is able enough to guess or know the residential
status (hostelite or non-hostelite) of a student, due to anonymity, he/she is not
able to know reported response of a given respondent. Thus, any unrelated item
whose population proportion is known may be used in this technique.

The acceptance of the unrelated question by the respondents, as pointed by
the two learned referees, is another key issue of concern. In some cases, it would
be needed to explain the working of whole the technique to the respondents. But
it depends on the nature and composition of the population. In such cases survey
must be conducted under the supervision of a trained statistician. More specifi-
cally, if the studied population is composed of illiterate individuals the technique
must be explained to them prior to actually conducting the survey. The explana-
tion of the technique would possibly decrease the suspicion among the respondents
of being tricked. Further, the suspicion depends upon the anonymity provided by
the survey method. If the respondents are explained about the working of the sur-
vey in such a way that their anonymity is assured and they are giving meaningful
answers in the sense that only population proportion of study item is estimated
and individual’s status can not be known through their reported response. With
this explanation and provision of anonymity it is anticipated that any unrelated
item with known population proportion of prevalence may be fairly used. One
more thing about the acceptance of unrelated items by the respondents is the
simplicity of the question. The unrelated question must not be an open ended or
having multiple answers, that is, it must be a binary item.

3. Performance Evaluations and Comparison

In this section, we provide efficiency comparisons of the estimator π̂P of the
proposed ICT with the π̂I of the usual ICT and another obtained through RRT
of Warner (1965). As we have discussed, that ICT has been developed as an
alternative to RRT, so we have also compared our technique with RR technique
proposed by Warner (1965).

3.1. Proposed versus Usual ICT

We compare the proposed estimator π̂P with the usual ICT estimator π̂I in
both the situations of having and not having unequal θj = 1

g . In case of having
unequal θ′js the proposed estimator π̂P would be more efficient than the estimator
π̂I if

V (π̂I)− V (π̂P ) ≥ 0,

π (1− π)
n2

+

n
g∑
j=1

θj

(
1−

g∑
j=1

θj

)
n1n2

+

n
g∑

j,k=1
j 6=k

θjθk

n1n2
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−π (1− π)
n

− (1− π)

n

(
g −

g∑
j=1

θj

)2


 g∑
j=1

θj

1−
g∑
j=1

θj

+

g∑
j,k=1
j 6=k

θjθk

 ≥ 0

π (1− π)n1
nn2

+


g∑
j=1

θj

1−
g∑
j=1

θj

+

g∑
j,k=1
j 6=k

θjθk

×
n2

(
g −

g∑
j=1

θj

)2

− (1− π)n1n2

nn1n2

(
g −

g∑
j=1

θj

)2

 ≥ 0

Moreover, in case of having θj = 1
g∀ j, such that

∑g
j=1 θj = 1, the proposed

estimator π̂Pwould be more efficient than the estimator π̂I if[
π (1− π)n1

nn2
+
n2 (g − 1)

2 − (1− π)n1n2
nn1n2g (g − 1)

]
≥ 0 (7)

which is always true for every value of g (≥ 2) (i.e., the number of innocuous
items).

3.2. Proposed versus Warner’s RRT

To have an efficiency comparison, we first give a short description of Warner
(1965) RRT. Warner (1965) introduced this method to decrease the biasedness in
the estimators and to increase the response rate. Warner’s technique consists of
two complimentary questions A (Do you belong to the sensitive group?) and Ac
(Do you not belong to the sensitive group?) to be answered on a probability basis.
Assuming a simple random sampling with replacement (SRSWR), the ith selected
respondent is asked to select a question (A or Ac) and report “yes” if his/her actual
status matches with selected question, and “no” otherwise. Assuming that p is the
probability of selecting question A, and π is the population proportion of indi-
viduals with sensitive group, the probability of “yes” for a particular respondent,
denoted by θ, is given by:

P (yes) = θ = pπ + (1− p) (1− π) (8)

From (8), we have

π =
θ − (1− p)
2p− 1

(9)
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An unbiased estimator of π, by the methods of moment and maximum likeli-
hood estimation, is given as:

π̂W =
θ̂ − (1− p)
2p− 1

(10)

where θ̂ = n′

n and n′ is the number of “yes” responses in the sample of size n.
The variance of the estimator π̂W is given by:

V ar (π̂W ) =
π (1− π)

n
+

p (1− p)
n (2p− 1)

2 (11)

Comparing (5) and (11) we can see that the proposed estimator π̂P will be
more precise than π̂W if

V ar (π̂W )− V ar (π̂P ) ≥ 0

p (1− p)
n (2p− 1)

2 −
(1− π)

n
(
g −

∑g
j=1 θj

)2

 g∑
j=1

θj

1−
g∑
j=1

θj

+

g∑
j, k = 1

j 6= k

θjθk


≥ 0

Further comparing (6) and (11) we can see that the proposed estimator π̂P will
be more precise than π̂W if

p (1− p)
n (2p− 1)

2 −
(1− π)
ng (g − 1)

≥ 0

We have calculated the Relative Efficiency (RE ) of the proposed estimator
π̂P relative to π̂I when it is difficult/impossible to have θj = 1

g , and results are
provided in Tables 1–9. The RE of the proposed estimator π̂P relative to π̂W for
θj 6= 1

g is presented in Tables 10–12. For θj = 1
g the RE of π̂P relative to π̂W is

arranged in Table 13.

Table 1: RE of proposed estimator π̂P relative to π̂I for n = 20, n1 = 10, n2 = 10.
g = 2 g = 3 g = 4 g = 5

π
∑g

j=1 θj
= 0.3

∑g
j=1 θj

= 1.7

∑g
j=1 θj

= 0.6

∑g
j=1 θj

= 2.4

∑g
j=1 θj

= 1

∑g
j=1 θj

= 3

∑g
j=1 θj

= 1.5

∑g
j=1 θj

= 3.5
0.1 7.0298 0.4556 12.4787 1.6290 18.6250 4.1389 24.9068 8.4680
0.2 5.7590 0.5541 9.6476 1.8271 14.0400 4.3333 18.5551 8.2768
0.3 5.2484 0.6591 8.4993 2.0463 12.1764 4.6000 15.9676 8.3472
0.4 5.0701 0.7762 8.0579 2.3046 11.4419 4.9697 14.9373 8.6756
0.5 5.1150 0.9152 8.0701 2.6325 11.4231 5.500 14.8905 9.3253
0.6 5.3896 1.0953 8.5311 3.0887 12.0984 6.3076 15.7921 10.4674
0.7 6.0181 1.3610 9.6598 3.8089 13.8000 7.6667 18.0910 12.5347
0.8 7.4450 1.8447 12.2746 5.1979 17.7721 10.400 23.4744 16.8545
0.9 11.9614 3.2084 20.6151 9.2755 30.4773 18.6250 40.7140 30.100
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From the above tables 1–13 it is advocated that

1. For larger values of
∑g
j=1 θj the proposed estimator π̂P is less efficient than

π̂I when g and πare smaller, but when g increases it becomes more efficient
even for smaller values of π.

2. For smaller values of
∑g
j=1 θj the proposed estimator π̂P is more efficient

than π̂I even when g and πare smaller.

3. n, n1 and n2 do not have a significant effect on the RE of the proposed
estimator relative to π̂I except the case when n and

∑g
j=1 θj are larger and

g = 2.

4. When
∑g
j=1 θj = 1 the proposed estimator is always more efficient.

5. For smaller p the proposed estimator is less efficient than π̂W but as g and
π are increased the RE of the proposed estimator is increased.

6. When
∑g
j=1 θj is smaller the proposed estimator is more efficient than π̂W

when π > 0.1 and g > 2.

7. Compared to π̂W proposed estimator π̂P is more efficient than π̂W for g > 3
under the given condition of θj = 1

g .

8. The RE of the proposed estimator π̂P relative to π̂W increases with an
increase in p for a given value of g and πand it increases, for a given value
of p, if g increases.

In the application scenario all the disciplines which are of sensitive nature and
need extreme care in taking responses may take benefit out of the proposal, e.g.,
having more concern on time sensitivity (cf. Bonetti, Waeckerlin, Schuepfer &
Frutiger 2000).

Table 2: RE of proposed estimator π̂P relative to π̂I for n = 20, n1 = 12, n2 = 8.
g = 2 g = 3 g = 4 g = 5

π
∑g

j=1 θj
= 0.3

∑g
j=1 θj

= 1.7

∑g
j=1 θj

= 0.6

∑g
j=1 θj

= 2.4

∑g
j=1 θj

= 1

∑g
j=1 θj

= 3

∑g
j=1 θj

= 1.5

∑g
j=1 θj

= 3.5
0.1 7.5462 0.4891 13.2303 1.7271 19.6354 4.3634 26.1792 8.9007
0.2 6.2910 0.6051 10.3474 1.9596 14.9250 4.6064 19.6285 8.7555
0.3 5.7906 0.7271 9.1825 2.2107 13.0147 4.9167 16.9640 8.8681
0.4 5.6240 0.8610 8.7410 2.5000 12.2674 5.3282 15.9087 9.2398
0.5 5.6834 1.0169 8.7665 2.8594 12.2596 5.9028 15.8716 9.9397
0.6 5.9783 1.2150 9.2843 3.3505 12.9713 6.7628 16.8191 11.1481
0.7 6.6398 1.5015 10.4363 4.1152 14.7500 8.1944 19.2198 13.3168
0.8 8.1312 2.0147 13.1650 5.5748 18.8924 11.0556 24.8323 17.8295
0.9 12.8399 3.4441 21.8568 9.8341 32.1307 19.6354 42.7940 31.6386
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Table 3: RE of proposed estimator π̂P relative to π̂I for n = 20, n1 = 8, n2 = 12.
g = 2 g = 3 g = 4 g = 5

π
∑g

j=1 θj
= 0.3

∑g
j=1 θj

= 1.7

∑g
j=1 θj

= 0.6

∑g
j=1 θj

= 2.4

∑g
j=1 θj

= 1

∑g
j=1 θj

= 3

∑g
j=1 θj

= 1.5

∑g
j=1 θj

= 3.5
0.1 7.0994 0.4601 12.7671 1.6667 19.1667 4.2592 25.7098 8.7411
0.2 5.7082 0.5492 9.7519 1.8468 14.3250 4.4213 19.0280 8.4877
0.3 5.1438 0.6459 8.5244 2.0523 12.3530 4.6667 16.3018 8.5219
0.4 4.9388 0.7561 8.0463 2.3013 11.5698 5.0252 15.2107 8.8344
0.5 4.9730 0.8898 8.0479 2.6250 11.5348 5.5556 15.1502 9.4879
0.6 5.2500 1.0670 8.5189 3.0843 12.2336 6.3782 16.0812 10.6589
0.7 5.8981 1.3340 9.6888 3.8202 14.0000 7.7778 18.4696 12.7970
0.8 7.3791 1.8284 12.4072 5.2540 18.1329 10.6111 24.0726 17.2841
0.9 12.0796 3.2401 21.0914 9.4897 31.3636 19.1667 42.0268 31.0714

Table 4: RE of proposed estimator π̂P relative to π̂I for n = 50, n1 = 25, n2 = 25.
g = 2 g = 3 g = 4 g = 5

π
∑g

j=1 θj
= 0.3

∑g
j=1 θj

= 1.7

g∑
j=1

θj =

0.6

∑g
j=1 θj

= 2.4

∑g
j=1 θj

= 1

∑g
j=1 θj

= 3

∑g
j=1 θj

= 1.5

∑g
j=1 θj

= 3.5

0.1 7.0299 0.4556 12.4788 1.6290 18.6250 4.1389 24.9067 8.4680
0.2 5.7590 0.5541 9.6477 1.8271 14.0400 4.3333 18.5551 8.2768
0.3 5.2484 0.6591 8.4993 2.0463 12.1765 4.6000 15.9675 8.3472
0.4 5.0701 0.7762 8.0579 2.3046 11.4419 4.9697 14.9373 8.6756
0.5 5.1150 0.9152 8.0709 2.6325 11.4231 5.5000 14.8904 9.3253
0.6 5.3896 1.0953 8.5311 3.0887 12.0984 6.3076 15.7912 10.4674
0.7 6.0182 1.3610 9.6598 3.8089 13.8000 7.6667 18.0910 12.5347
0.8 7.4450 1.8447 12.2747 5.1979 17.7722 10.40 23.4744 16.8545
0.9 11.9614 3.2084 20.6152 9.2755 30.4773 18.6250 40.7140 30.1008

Table 5: RE of proposed estimator π̂P relative to π̂I for n = 50, n1 = 30, n2 = 20.
g = 2 g = 3 g = 4 g = 5

π
∑g

j=1 θj
= 0.3

∑g
j=1 θj

= 1.7

∑g
j=1 θj

= 0.6

∑g
j=1 θj

= 2.4

∑g
j=1 θj

= 1

∑g
j=1 θj

= 3

∑g
j=1 θj

= 1.5

∑g
j=1 θj

= 3.5
0.1 7.5462 0.4891 13.2303 1.7271 19.6354 4.3634 26.1792 8.9007
0.2 6.2910 0.6051 10.3474 1.9596 14.9250 4.6064 19.6285 8.7555
0.3 5.7906 0.7271 9.1825 2.2107 13.0147 4.9167 16.9640 8.8681
0.4 5.6240 0.8610 8.7410 2.5000 12.2674 5.3282 15.9087 9.2398
0.5 5.6834 1.0169 8.7665 2.8594 12.2596 5.9028 15.8716 9.9397
0.6 5.9783 1.2150 9.2843 3.3505 12.9713 6.7628 16.8191 11.1481
0.7 6.6398 1.5015 10.4363 4.1152 14.7500 8.1944 19.2198 13.3168
0.8 8.1312 2.0147 13.1650 5.5748 18.8924 11.0556 24.8323 17.8295
0.9 12.8399 3.4441 21.8568 9.8341 32.1307 19.6354 42.7940 31.6386

Table 6: RE of proposed estimator π̂P relative to π̂I for n = 50, n1 = 20, n2 = 30.
g = 2 g = 3 g = 4 g = 5

π
∑g

j=1 θj
= 0.3

∑g
j=1 θj

= 1.7

∑g
j=1 θj

= 0.6

∑g
j=1 θj

= 2.4

∑g
j=1 θj

= 1

∑g
j=1 θj

= 3

∑g
j=1 θj

= 1.5

∑g
j=1 θj

= 3.5
0.1 7.0994 0.4601 12.7671 1.6667 19.1667 4.2592 25.7098 8.7411
0.2 5.7082 0.5492 9.7519 1.8468 14.3250 4.4213 19.0280 8.4877
0.3 5.1438 0.6459 8.5244 2.0523 12.3530 4.6667 16.3018 8.5219
0.4 4.9388 0.7561 8.0463 2.3013 11.5698 5.0252 15.2107 8.8344
0.5 4.9730 0.8898 8.0479 2.6250 11.5348 5.5556 15.1502 9.4879
0.6 5.2500 1.0670 8.5189 3.0843 12.2336 6.3782 16.0812 10.6589
0.7 5.8981 1.3340 9.6888 3.8202 14.0000 7.7778 18.4696 12.7970
0.8 7.3791 1.8284 12.4072 5.2540 18.1329 10.6111 24.0726 17.2841
0.9 12.0796 3.2401 21.0914 9.4897 31.3636 19.1667 42.0268 31.0714
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Table 7: RE of proposed estimator π̂P relative to π̂I for n = 100, n1 = 50, n2 = 50.
g = 2 g = 3 g = 4 g = 5

π
∑g

j=1 θj
= 0.3

∑g
j=1 θj

= 1.7

∑g
j=1 θj

= 0.6

∑g
j=1 θj

= 2.4

∑g
j=1 θj

= 1

∑g
j=1 θj

= 3

∑g
j=1 θj

= 1.5

∑g
j=1 θj

= 3.5
0.1 7.0298 0.4556 12.4787 1.6290 18.6250 4.1389 24.9068 8.4680
0.2 5.7590 0.5441 9.6476 1.8271 14.0400 4.3333 18.5555 8.2768
0.3 5.2484 0.6591 8.4993 2.0463 12.1764 4.6000 15.9675 8.3472
0.4 5.0701 0.7762 8.0579 2.3046 11.4419 4.9697 14.9373 8.6756
0.5 5.1150 0.9152 8.0701 2.6325 11.4231 5.5000 14.8904 9.3253
0.6 5.3896 1.0954 8.5311 3.0887 12.0936 6.3076 15.7922 10.4674
0.7 6.0181 1.3610 9.6598 3.8089 13.8000 7.6667 18.0910 12.5347
0.8 7.4450 1.8447 12.2746 5.1979 17.7721 10.40 23.4744 16.8545
0.9 11.9614 3.2084 20.6151 9.2755 30.4773 18.6250 40.7140 30.1008

Table 8: RE of proposed estimator π̂P relative to π̂I for n = 100, n1 = 80, n2 = 20.
g = 2 g = 3 g = 4 g = 5

π
∑g

j=1 θj
= 0.3

∑g
j=1 θj

= 1.7

∑g
j=1 θj

= 0.6

∑g
j=1 θj

= 2.4

∑g
j=1 θj

= 1

∑g
j=1 θj

= 3

∑g
j=1 θj

= 1.5

∑g
j=1 θj

= 3.5
0.1 11.9895 0.7770 20.5405 2.6814 30.1562 6.7013 39.9729 13.5904
0.2 10.3074 0.9912 16.4144 3.1085 23.2875 7.1875 30.3435 13.5351
0.3 9.6561 1.2126 14.7610 3.5538 20.5147 7.7500 26.4391 13.8214
0.4 9.4637 1.4488 14.1534 4.0480 19.4477 8.4470 24.9101 14.4679
0.5 9.5908 1.7161 14.2275 4.6406 19.4711 9.3750 24.8896 15.5873
0.6 10.0600 2.0446 14.9845 5.4253 20.5635 10.7211 26.3356 17.4558
0.7 11.0721 2.5039 16.7765 6.6152 23.2500 12.9167 29.9551 20.7549
0.8 13.3247 3.3016 20.8840 8.8436 29.4778 17.2500 38.3881 27.5625
0.9 20.4003 5.4722 33.9334 15.2679 49.3466 30.1562 65.3419 48.3088

Table 9: RE of proposed estimator π̂P relative to π̂I for n = 100, n1 = 20, n2 = 80.
g = 2 g = 3 g = 4 g = 5

π
∑g

j=1 θj
= 0.3

∑g
j=1 θj

= 1.7

∑g
j=1 θj

= 0.6

∑g
j=1 θj

= 2.4

∑g
j=1 θj

= 1

∑g
j=1 θj

= 3

∑g
j=1 θj

= 1.5

∑g
j=1 θj

= 3.5
0.1 9.9789 0.6467 18.4556 2.4092 28.04688 6.2326 37.8608 12.8723
0.2 7.6896 0.7398 13.7345 2.6010 20.5875 6.3542 27.6413 12.3289
0.3 6.7454 0.8471 11.7994 2.8407 17.5368 6.6250 23.4595 12.2637
0.4 6.3805 0.9768 11.0275 3.1539 16.3081 7.0833 21.7691 12.6435
0.5 6.3938 1.1441 10.9940 3.5859 16.2260 7.8125 21.6431 13.5542
0.6 6.7825 1.3784 11.6752 4.2271 17.2438 8.9904 23.0149 15.2548
0.7 7.7353 1.7492 13.4105 5.2880 19.8750 11.0417 26.5792 18.4158
0.8 9.9407 2.4631 17.4743 7.3997 26.0601 15.2500 34.9695 25.1079
0.9 16.9791 4.5544 30.4890 13.7181 45.8949 28.0469 61.8893 45.7563
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Table 10: RE of proposed estimator π̂P relative to π̂W for n = 20 and larger
∑g

j=1 θj .
π

p g,
∑g

j=1 θj 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 2, 1.7 0.09 0.13 0.16 0.20 0.24 0.28 0.34 0.42 0.63

3, 2.4 0.19 0.25 0.32 0.38 0.44 0.51 0.59 0.72 1.06
4, 3 0.32 0.42 0.50 0.58 0.65 0.73 0.83 1.00 1.44
5, 3.5 0.49 0.60 0.69 0.77 0.85 0.93 1.04 1.23 1.74

0.2 2, 1.7 0.21 0.25 0.31 0.36 0.42 0.51 0.63 0.84 1.45
3, 2.4 0.43 0.51 0.59 0.68 0.78 0.91 1.10 1.45 2.45
4, 3 0.74 0.84 0.93 1.04 1.16 1.32 1.56 2.01 3.34
5, 3.5 1.14 1.21 1.29 1.39 1.51 1.67 1.94 2.47 4.04

0.3 2, 1.7 0.54 0.62 0.71 0.81 0.95 1.15 1.46 2.06 3.81
3, 2.4 1.13 1.25 1.38 1.54 1.76 2.07 2.57 3.54 6.44
4, 3 1.95 2.05 2.18 2.35 2.60 2.99 3.62 4.91 8.77
5, 3.5 2.98 2.96 3.01 3.15 3.39 3.80 4.52 6.02 10.61

0.4 2, 1.7 2.35 2.59 2.88 3.27 3.81 4.62 5.95 8.61 16.56
3, 2.4 4.91 5.21 5.62 6.20 7.03 8.31 10.47 14.82 27.96
4, 3 8.45 8.56 8.87 9.45 10.42 12.00 14.79 20.53 38.06
5, 3.5 12.96 12.38 12.28 12.65 13.55 15.26 18.46 25.20 46.06

Table 11: RE of proposed estimator π̂P relative to π̂W n = 50 and larger
∑g

j=1 θj .
π

p g,
∑g

j=1 θj 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 2, 1.7 0.09 0.13 0.16 0.20 0.24 0.28 0.34 0.42 0.63

3, 2.4 0.19 0.25 0.32 0.38 0.44 0.51 0.59 0.72 1.06
4, 3 0.32 0.42 0.50 0.58 0.65 0.73 0.83 1.00 1.44
5, 3.5 0.49 0.60 0.69 0.77 0.85 0.93 1.04 1.23 1.74

0.2 2, 1.7 0.21 0.25 0.31 0.36 0.42 0.51 0.63 0.84 1.45
3, 2.4 0.43 0.51 0.59 0.68 0.78 0.91 1.10 1.45 2.45
4, 3 0.74 0.84 0.93 1.04 1.16 1.32 1.56 2.01 3.34
5, 3.5 1.14 1.21 1.29 1.39 1.51 1.67 1.94 2.47 4.04

0.3 2, 1.7 0.54 0.62 0.71 0.81 0.95 1.15 1.46 2.06 3.81
3, 2.4 1.13 1.25 1.38 1.54 1.76 2.07 2.57 3.54 6.44
4, 3 1.95 2.05 2.18 2.35 2.60 2.99 3.62 4.91 8.77
5, 3.5 2.98 2.96 3.01 3.15 3.39 3.80 4.52 6.02 10.61

0.4 2, 1.7 2.35 2.59 2.88 3.27 3.81 4.62 5.95 8.61 16.56
3, 2.4 4.91 5.21 5.62 6.20 7.03 8.31 10.47 14.82 27.96
4, 3 8.45 8.56 8.87 9.45 10.42 12.00 14.79 20.53 38.06
5, 3.5 12.96 12.38 12.28 12.65 13.55 15.26 18.46 25.20 46.06

4. Concluding Remarks

An alternative item count technique has been presented in this article. One
of the main features of this technique is that it does not require the selection of
two subsamples of sizes n1 and n2. Therefore, we do not need to worry about
the optimum values of n1 and n2 (as is the case with usual ICT estimator π̂I).
Furthermore, the response from a respondent is bounded to lie between 0 and g,
which helps to provide the privacy to the respondent because the response can
not be traced back to respondent’s actual status about the possession of sensitive
item (provided that the actual status of a particular respondent about at least one
unrelated characteristic is unknown to the interviewer or anonymity is provided
to respondents). To avoid this situation, we recommend conducting the survey in
the absence of the interviewer or the whole process must be administered unseen
to the interviewer.
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Table 12: RE of proposed estimator π̂P relative to π̂W for n = 20 and smaller
∑g

j=1 θj .
π

p g,
∑g

j=1 θj 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 2, 0.5 0.97 1.03 1.08 1.12 1.18 1.24 1.35 1.56 2.17

3, 0.6 1.42 1.34 1.32 1.32 1.34 1.39 1.49 1.71 2.35
4, 1 1.44 1.35 1.33 1.33 1.35 1.40 1.50 1.71 2.36
5, 1.5 1.44 1.35 1.33 1.33 1.35 1.40 1.50 1.71 2.36

0.2 2, 0.5 2.25 2.07 2.01 2.02 2.09 2.24 2.52 3.13 5.02
3, 0.6 3.30 2.70 2.46 2.37 2.39 2.51 2.79 3.43 5.45
4, 1 3.34 2.72 2.47 2.38 2.40 2.52 2.80 3.44 5.47
5, 1.5 3.35 2.72 2.48 2.39 2.40 2.52 2.81 3.44 5.47

0.3 2, 0.5 5.90 5.05 4.68 4.58 4.70 5.08 5.87 7.63 13.17
3, 0.6 8.67 6.58 5.72 5.39 5.38 5.71 6.51 8.37 14.33
4, 1 8.77 6.63 5.76 5.41 5.406 5.73 6.52 8.40 14.34
5, 1.5 8.78 6.32 5.76 5.42 5.41 5.73 6.53 8.39 14.35

0.4 2, 0.5 25.59 21.13 19.10 18.42 18.81 20.40 23.95 31.93 57.21
3, 0.6 37.62 27.51 23.35 21.67 21.56 22.94 26.54 35.01 62.15
4, 1 38.06 27.72 23.48 21.78 21.63 23.01 26.61 35.09 62.28
5, 1.5 38.11 27.74 23.50 21.78 21.64 23.02 26.62 35.10 62.30

Table 13: Relative efficiency of the proposed estimator π̂P relative to π̂W for
0.1 ≤ π ≤ 0.9 and 0.1 ≤ p ≤ 0.4.

H
HHHπ

p 0.1 0.2 0.3 0.4
H

HHHπ
p 0.1 0.2 0.3 0.4

g = 4 g = 5

0.1 1.397 3.239 8.500 36.909 0.1 1.708 3.958 10.388 45.111
0.3 1.306 2.438 5.673 23.142 0.3 1.4311 2.671 6.214 25.346
0.5 1.339 2.380 5.357 21.428 0.5 1.420 2.525 5.681 22.727
0.7 1.492 2.784 6.478 26.425 0.7 1.558 2.908 6.766 27.600
0.9 2.345 5.435 14.262 61.932 0.9 2.427 5.625 14.763 64.105

g = 6 g = 7

0.1 1.921 4.453 11.687 50.750 0.1 2.069 4.796 12.586 54.653
0.3 1.502 2.804 6.525 26.614 0.3 1.546 2.887 6.716 27.397
0.5 1.464 2.604 5.859 23.437 0.5 1.491 2.651 5.965 23.863
0.7 1.593 2.974 6.920 28.227 0.7 1.614 3.013 7.011 28.598
0.9 2.470 5.726 15.026 65.250 0.9 2.496 5.785 15.181 65.922

It has been observed that the proposed item count technique estimator per-
forms better than the usual item count technique under the conditions that θj = 1

g

and
∑g
j=1 θj = 1. It may be difficult to select the items in such a way that their

proportions in the population are the same and sum to one, but this would be
the case if the number of items is large. Thus, in practice, one or two innocuous
items with same proportions can be found and included in the item list (e.g., item
1: Were you born in the months from January to June?, and Item 2: Is your
gender male?) If the condition to satisfy the inequality (7) is hard to meet we
would suggest to look for a large number of innocuous items (4, 5, 6, etc.) such
that their prevalence in the population is rare and consequently we have smaller∑g
j=1 θj , so that inequality (7) is easily satisfied.

In brief, based on the findings of the Section 4 and the concluding discussion
above we recommend the use of the proposed ICT in surveys about sensitive items
instead of the usual ICT and the Warner’s RRT. Preferably, the data collecting
phase must be administered unseen to the surveyor.
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Appendix

To find the variance of the estimator π̂P , consider

Z2
i =

g∑
j=1

α2
j +

g∑
j,k=1
j 6=k

αjαk (12)

After applying expectation operator on (12), we get:

E
(
Z2
i

)
=

g∑
j=1

E
(
α2
j

)
+

g∑
j,k=1
j 6=k

E (αjαk)

=

g∑
j=1

(π + θj − πθj) +
g∑

j,k=1
j 6=k

{π + θjθk (1− π)}

= (1− π)
g∑
j=1

θj + gπ + g (g − 1)π + (1− π)
g∑

j,k=1
j 6=k

θjθk

(13)

Now by definition of the variance of Zi we have:

V (Zi) = E
(
Z2
i

)
− (E (Zi))

2 (14)

Substituting (13) and E (Zi) =
(
g −

∑g
j=1 θj

)
π +

∑g
j=1 θj in (14), we get

V (Zit) = (1− π)
g∑
j=1

θj + gπ + g(g − 1)π + (1− π)
g∑

j,k=1
j 6=k

θjθk

−


g − g∑

j=1

θj

π +

g∑
j=1

θj


2

= (1− π)


g − g∑

j=1

θj

2

π +

g∑
j=1

θj

1−
g∑
j=1

θj

+

g∑
j,k=1
j 6=k

θjθk


(15)

Now from (4) we have

V (π̂P ) =
n−1V (Zi)(
g −

∑g
j=1 θj

)2 (16)

Finally, using (15) in (16), we get the result in (5).
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Abstract

For square contingency tables with ordered categories, the present paper
proposes a measure to represent the degree of departure from the extended
quasi-symmetry (EQS) model. It is expressed by using the Cressie-Read
power-divergence or Patil-Taillie diversity index. The present paper also
defines the maximum departure from EQS which indicates the maximum
departure from the uniformity of ratios of symmetric odds-ratios. The mea-
sure lies between 0 and 1, and it is useful for not only seeing the degree of
departure from EQS in a table but also comparing it in several tables.

Key words: Contingency table, Kullback-Leibler information, Quasi-symm-
etry, Shannon entropy.

Resumen

El presente artículo propone una medida para representar el grado de
alejamiento del modelo extendido cuasisimétrico (EQS, por su sigla en in-
glés) para tablas de contingencia con categorías ordenadas. Esta medida se
expresa mediante el uso de la divergencia de potencia de Cressie-Read o el
índice de diversidad Patil-Taillie. Nuestro trabajo también define el máximo
alejamiento de EQS, el cual indica el alejamiento máximo de la uniformidad
de razones de odds-ratios simétricos. La medida cae entre 0 y 1 y es útil
no solo para determinar el grado de alejamiento de EQS en una tabla, sino
también para comparar este grado de alejamiento en varias tablas.
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1. Introduction

Consider an R × R square contingency table with same row and column clas-
sifications. Let pij denote the probability that an observation will fall in the ith
row and the jth column of the table (i = 1, . . . , R; j = 1, . . . , R). Bowker (1948)
considered the symmetry (S) model defined by

pij = φij for i = 1, . . . , R; j = 1, . . . , R

where φij = φji (Bishop, Fienberg & Holland 1975, p. 282). Caussinus (1965)
considered the quasi-symmetry (QS) model defined by

pij = αiβjψij for i = 1, . . . , R; j = 1, . . . , R

where ψij = ψji. A special case of this model obtained by putting {αi = βi} is the
S model. For square tables with ordered categories, Tomizawa (1984) proposed
the extended quasi-symmetry (EQS) model defined by

pij = αiβjψij for i = 1, . . . , R; j = 1, . . . , R

where ψij = γψji (i < j). A special case of this model obtained by putting γ = 1
is the QS model. This is also expressed as, using the odds-ratios including the cell
probabilities on the main diagonal,

θ(i<j;j<k) = γθ(j<k;i<j) for i < j < k

where
θ(i<j;j<k) =

pijpjk
pjjpik

, θ(j<k;i<j) =
pjipkj
pkipjj

This indicates that the ratios of odds-ratios with respect to the main diagonal
of the table are uniform for all i < j < k. The EQS model may be expressed as

Dijk = γDkji for i < j < k,

where
Dijk = pijpjkpki, Dkji = pkjpjipik

For the analysis of square contingency tables, when a model does not hold, one
may be interested in measuring how far the degree of departure from the model
is. Thus some measures of various symmetry have been proposed. For example,
Tomizawa (1994) and Tomizawa, Seo & Yamamoto (1998) proposed the measures
to represent the degree of departure from the S model for square tables with nom-
inal categories. Tomizawa, Miyamoto & Hatanaka (2001) proposed the measure
for the S model for square tables with ordered categories. Tahata, Miyamoto &
Tomizawa (2004) proposed the measure to represent the degree of departure from
the QS model for square tables with nominal categories.
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Generally, when the EQS model does not hold, we may apply a model which
is extension of EQS model. Such models have been discussed by, e.g., Yamaguchi
(1990), Tomizawa (1990) and Lawal (2004). On the other hand, we are also in-
terested in measuring the degree of departure from the EQS model as described
above. However a measure, which represents the degree of departure from the
EQS model, does not exist. Therefore, we are interested in proposing a measure
to represent the degree of departure from the EQS model, for square tables with
ordered categories.

Table 1: Cross-classification of father and son social classes; taken from Hashimoto
(2003, p. 142).

(a) Examined in 1955
Son’s class

Father’s class (1) (2) (3) (4) (5) Total
(1) 39 39 39 57 23 197
(2) 12 78 23 23 37 173
(3) 6 16 78 23 20 143
(4) 18 80 79 126 31 334
(5) 28 106 136 122 628 1020

Total 103 319 355 351 739 1867

(b) Examined in 1975
Son’s class

Father’s class (1) (2) (3) (4) (5) Total
(1) 29 43 25 31 4 132
(2) 23 159 89 38 14 323
(3) 11 69 184 34 10 308
(4) 42 147 148 184 17 538
(5) 42 176 377 114 298 1007

Total 147 594 823 401 343 2308

(c) Examined in 1995
Son’s class

Father’s class (1) (2) (3) (4) (5) Total
(1) 68 48 36 23 1 176
(2) 33 191 102 33 3 362
(3) 25 147 229 34 2 437
(4) 48 119 146 129 5 447
(5) 40 126 192 82 88 528

Total 214 631 705 301 99 1950

Consider the data in Table 1, taken from Hashimoto (2003, p. 142). These data
describe the cross-classification of father and son social classes in Japan, which
were examined in 1955, 1975, and 1995. Note that status (1) is Capitalist; (2)
New-middle; (3) Working; (4) Self-employed; and (5) Farming. For social mobility
data, one may be interested in considering the structure of symmetry instead of
independence between row and column variables. Thus, for example the S, QS
and EQS models would be useful for analyzing the data. For these data in Table
1, “i → j” denotes the move to the son’s class j from his father’s class i. Thus
{pij} could be interpreted as transition probabilities. The EQS model indicates
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that for a given order i < j < k, the product of transition probabilities that
connects a cyclic sequence of paths i → j → k → i (we shall call the probability
for right cyclic sequence of paths i → j → k → i for convenience), which includes
two upward moves i → j and j → k and one downward move k → i, is γ times
higher than the product of transition probabilities that represents a reverse cyclic
sequence of paths i → k → j → i (we shall call the probability for left cyclic
sequence of paths i → k → j → i), which includes one upward move i → k and
two downward moves k → j and j → i.

The EQS model can also be expressed as

D
(1)
ijk = D

(2)
ijk for i < j < k, (1)

where

D
(1)
ijk =

Dijk∑
s<t<uDstu

, D
(2)
ijk =

Dkji∑
s<t<uDuts

For the data in Tables 1a, 1b and 1c, D(1)
ijk is conditional probability that for

any three father-son pairs father’s class and his son’s class are (i, j), (j, k) and
(k, i), on condition that there is right cyclic sequence of paths. Similarly, D(2)

ijk is
conditional probability that for any three father-son pairs father’s class and his
son’s class are (j, i), (k, j) and (i, k), on condition that there is left cyclic sequence
of paths. In a similar manner to Tomizawa et al. (1998), we shall consider a
measure which represents the degree of departure from EQS because the equation
(1) states that there is a structure of symmetry between {D(1)

ijk} and {D(2)
ijk} for

i < j < k.
Section 2 proposes the measure to represent the degree of departure from the

EQS model. Section 3 gives the approximate confidence interval for the measure.
Section 4 shows an example.

2. Measure of Extended Quasi-Symmetry

Assume that
∑
s<t<uDstu 6= 0,

∑
s<t<uDuts 6= 0 and Dijk + Dkji > 0 for

i < j < k. Let

E
(1)
ijk =

D
(1)
ijk

D
(1)
ijk +D

(2)
ijk

, E
(2)
ijk =

D
(2)
ijk

D
(1)
ijk +D

(2)
ijk

for i < j < k

For the data in Tables 1a, 1b and 1c, E(1)
ijk is the proportion of the conditional

probability D(1)
ijk to the sum of the conditional probabilities D(1)

ijk+D
(2)
ijk. Similarly,

E
(2)
ijk is the proportion of D(2)

ijk to D(1)
ijk + D

(2)
ijk. The EQS model can be expressed

as

E
(1)
ijk = E

(2)
ijk =

1

2
for i < j < k
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Consider the measure defined by

Φ(λ) =
λ(λ+ 1)

2(2λ − 1)

∑
i<j<k

(
D

(1)
ijk +D

(2)
ijk

)
I
(λ)
ijk for λ > −1

where

I
(λ)
ijk =

1

λ(λ+ 1)

E(1)
ijk


(
E

(1)
ijk

1/2

)λ
− 1

+ E
(2)
ijk


(
E

(2)
ijk

1/2

)λ
− 1




and the value at λ = 0 is taken to be the limit as λ→ 0. Thus,

Φ(0) =
1

2(log 2)

∑
i<j<k

(
D

(1)
ijk +D

(2)
ijk

)
I
(0)
ijk

where

I
(0)
ijk = E

(1)
ijk log

(
E

(1)
ijk

1/2

)
+ E

(2)
ijk log

(
E

(2)
ijk

1/2

)

Note that a real value λ is chosen by the user. The I(λ)ijk is the modified power-

divergence and especially I(0)ijk is the Kullback-Leibler information. For more details
of the power-divergence, see Cressie & Read (1984). The measure Φ(λ) would
represent, essentially, the weighted sum of the power-divergence I(λ)ijk .

The measure may be expressed as

Φ(λ) = 1− λ2λ−1

2λ − 1

∑
i<j<k

(
D

(1)
ijk +D

(2)
ijk

)
H

(λ)
ijk for λ > −1

where
H

(λ)
ijk =

1

λ

[
1−

(
E

(1)
ijk

)λ+1

−
(
E

(2)
ijk

)λ+1
]

with
Φ(0) = 1− 1

2(log 2)

∑
i<j<k

(
D

(1)
ijk +D

(2)
ijk

)
H

(0)
ijk

where
H

(0)
ijk = −E(1)

ijk logE
(1)
ijk − E

(2)
ijk logE

(2)
ijk

Note that H(λ)
ijk is the Patil & Taillie (1982) diversity index, which includes

the Shannon entropy when λ = 0. Therefore, Φ(λ) would represent one minus the
weighted sum of the diversity index H(λ)

ijk .

For each λ, the minimum value of H(λ)
ijk is 0 when E(1)

ijk = 0 (then E(2)
ijk = 1) or

E
(2)
ijk = 0 (then E(1)

ijk = 1), and the maximum value is (2λ− 1)/λ2λ (if λ 6= 0), log 2

(if λ = 0), when E(1)
ijk = E

(2)
ijk. Thus we see that Φ(λ) lies between 0 and 1. Also
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for each λ, (i) there is a structure of EQS in the table (i.e., E(1)
ijk = E

(2)
ijk = 1/2,

(thus D(1)
ijk = D

(2)
ijk) for any i < j < k) if and only if Φ(λ) = 0; and (ii) the degree

of departure from EQS is the largest, in the sense that E(1)
ijk = 0 (then E(2)

ijk = 1)

or E(2)
ijk = 0 (then E

(1)
ijk = 1) (i.e., D(1)

ijk = 0 (then D
(2)
ijk > 0) or D(2)

ijk = 0 (then

D
(1)
ijk > 0)) for any i < j < k, if and only if Φ(λ) = 1. Note that Φ(λ) = 1 indicates

thatD(1)
ijk/D

(2)
ijk =∞ for some i < j < k andD(1)

ijk/D
(2)
ijk = 0 for the other i < j < k,

and therefore it seems appropriate to consider that then the degree of departure
from EQS (i.e., from D

(1)
ijk/D

(2)
ijk = 1 for i < j < k) is largest.

According to the weighted sum of power-divergence or the weighted sum of
Patil-Taillie diversity index, Φ(λ) represents the degree of departure from EQS,
and the degree increases as the value of Φ(λ) increases.

3. Approximate Confidence Interval for Measure

Let nij denote the observed frequency in the ith row and jth column of the
table (i = 1, . . . , R; j = 1, . . . , R) with n =

∑∑
nij . Assume that {nij} have a

multinomial distribution. We shall consider an approximate standard error and
large-sample confidence interval for the measure Φ(λ) using the delta method as
described by Bishop et al. (1975, Section 14.6). The sample version of Φ(λ), i.e.,
Φ̂(λ), is given by Φ(λ) with {pij} replaced by {p̂ij}, where p̂ij = nij/n. Using
the delta method,

√
n(Φ̂(λ) − Φ(λ)) has asymptotically (as n → ∞) a normal

distribution with mean zero and variance

σ2 =

R−1∑
a=1

R∑
b=a+1

{
1

pab

(
A

(λ)
ab

)2
+

1

pba

(
B

(λ)
ab

)2}
−

{
R−1∑
a=1

R∑
b=a+1

(
A

(λ)
ab +B

(λ)
ab

)}2

where for λ > −1 and λ 6= 0,

A
(λ)
ab =

2λ−1

2λ − 1

∑
i<j<k

[
(E

(1)
ijk)λD

(1)
ijk

{
I(a=i,b=j) + I(a=j,b=k)

−
∑
s<t<u

D
(1)
stu(I(a=s,b=t) + I(a=t,b=u))

}
+ (E

(2)
ijk)λD

(2)
ijk

{
I(a=i,b=k) −

∑
s<t<u

D
(2)
stuI(a=s,b=u)

}
+ λ
(
D

(2)
ijk(E

(1)
ijk)λ+1 −D(1)

ijk(E
(2)
ijk)λ+1

){(
I(a=i,b=j) + I(a=j,b=k) − I(a=i,b=k)

−
∑
s<t<u

(D
(1)
stuI(a=s,b=t) +D

(1)
stuI(a=t,b=u) −D

(2)
stuI(a=s,b=u))

)}]
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and

A
(0)
ab =

1

2 log 2

∑
i<j<k

[
D

(1)
ijk(logE

(1)
ijk)
{
I(a=i,b=j) + I(a=j,b=k)

−
∑
s<t<u

D
(1)
stu(I(a=s,b=t) + I(a=t,b=u))

}
+D

(2)
ijk(logE

(2)
ijk)
{
I(a=i,b=k) −

∑
s<t<u

D
(2)
stuI(a=s,b=u)

}]
with

I(a=i,b=j) =

{
1 (a = i and b = j)

0 (otherwise)

and where B(λ)
ab for λ > −1 is defined as A(λ)

ab obtained by interchanging D(1)
ijk and

D
(2)
ijk and by interchanging E(1)

ijk and E(2)
ijk.

Although the detail is omitted, (i) when Φ(λ) = 0, we can get σ2 = 0 by noting
D

(1)
ijk = D

(2)
ijk and E(1)

ijk = E
(2)
ijk = 1/2 for i < j < k, and (ii) when Φ(λ) = 1, we can

get σ2 = 0 by noting D(1)
ijk = 0 (then E(1)

ijk = 0 and E(2)
ijk = 1) for some i < j < k

and D
(2)
ijk = 0 (then E

(1)
ijk = 1 and E

(2)
ijk = 0) for the other i < j < k. Thus we

note that the asymptotic distribution of Φ̂(λ) is not applicable when Φ(λ) = 0
and Φ(λ) = 1. Let σ̂2 denote σ2 with {pij} replaced by {p̂ij}. Then σ̂/

√
n is an

estimated approximate standard error for Φ̂(λ).

4. An Example
Consider the data in Table 1 again. Then, the maximum departure from the

EQS model indicates that for some i < j < k, the product of transition proba-
bilities that connects i → j → k → i is zero, (and then the product of transition
probabilities that represents i → k → j → i is not zero) and for the others the
product of transition probabilities that connects i → j → k → i is not zero (and
then the product of transition probabilities that represents i→ k → j → i is zero);
namely, the stochastic circular social mobility arises among any three father-son
pairs.

Now we consider comparing the degree of departure from the EQS model for
the data in Tables 1a, 1b and 1c. We choose λ = 0 because Φ(0) is expressed
as well known Kullback-Leibler information. Thus we apply the measure Φ(0) for
these data. Table 2 shows the estimated measure Φ̂(0), estimated approximate
standard error for Φ̂(0), and approximate 95% confidence interval for Φ(0). When
the degrees of departure from the EQS model in Tables 1a, 1b and 1c are compared
using the estimated measure Φ̂(0), (i) the value of Φ̂(0) is greater for Table 1a than
for Tables 1b and 1c, and (ii) the value of Φ̂(0) is greater for Table 1b than for
Table 1c. Namely, the degree of departure from the EQS model for Table 1a is
the largest, that for Table 1b is the second largest, and that for Table 1c is the
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smallest. Thus, the data in Table 1a rather than in Tables 1b and 1c are estimated
to be close to the maximum departure from the EQS model.

Table 2: Estimated measure Φ̂(0), estimated approximate standard error for Φ̂(0), and
approximate 95% confidence interval for Φ(0), applied to Tables 1a, 1b, and
1c.

Table Estimated measure Standard error Confidence interval
1a 0.076 0.039 (−0.001, 0.153)
1b 0.036 0.034 (−0.031, 0.102)
1c 0.011 0.018 (−0.024, 0.046)

5. Discussions and Conclusion

The measure Φ(λ) always ranges between 0 and 1 independently of the dimen-
sion R and sample size n. But the likelihood-ratio statistic for testing goodness-
of-fit of the EQS model depends on sample size n. For example, consider two
R × R contingency tables, say, A and B, where the observed frequency in each
cell for Table A has ten times that in the corresponding cell for table B. Then
the value of likelihood-ratio statistic for testing goodness-of-fit of the EQS model
for table A is ten times that for table B. However, when the ratios of odds-ratios,
θ̂(i<j;j<k)/θ̂(j<k;i<j), i < j < k, for table A is equal to that for table B, the value
of measure Φ̂(λ) for table A is equal to that for table B. Therefore, Φ̂(λ) would be
useful for comparing the degree of departure from EQS in several tables, even if
several tables have different sample sizes.

As described in Section 2, the proposed measure would be useful when we want
to see with single summary measure how degree the departure from EQS is to-
ward the maximum degree of departure from EQS. We have defined the maximum
degree of departure from EQS, namely, D(1)

ijk/D
(2)
ijk = ∞ for some i < j < k and

D
(1)
ijk/D

(2)
ijk = 0 for the other i < j < k. This seems natural as the definition of the

maximum departure from EQS that indicates D(1)
ijk/D

(2)
ijk = 1 for i < j < k.

Table 3: Values of power-divergence test statistic W (λ) (with 5 degrees of freedom),
applied to Tables 1a, 1b, and 1c.

λ For Table 1a For Table 1b For Table 1c
−0.4 13.70 4.63 1.62
0.0 13.59 4.66 1.60
0.6 13.48 4.73 1.56
1.0 13.43 4.79 1.55
1.4 13.40 4.86 1.53
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Table 4: Artificial data (n is sample size).
(a) n = 700

30 81 79 120
10 39 83 16
13 20 38 31
7 35 77 21

(b) n = 668

30 29 60 10
110 39 33 36
21 42 38 61
15 61 62 21

Table 5: Values of Φ̂(λ), the test statistic W (λ) and W (λ)/n applied to Tables 4a and
4b.

(a) Values of Φ̂(λ)

λ For Table 4a For Table 4b
−0.4 0.268 0.225
0.0 0.363 0.304
0.6 0.436 0.364
1.0 0.456 0.381
1.4 0.463 0.387

(b) Values of W (λ)

λ For Table 4a For Table 4b
−0.4 27.76 52.90
0.0 28.33 51.95
0.6 30.13 51.03
1.0 32.12 50.72
1.4 34.92 50.64

(c) Values of W (λ)/n

λ For Table 4a For Table 4b
−0.4 0.040 0.079
0.0 0.040 0.078
0.6 0.043 0.076
1.0 0.046 0.076
1.4 0.050 0.076

Consider the data in Table 1, again. Cressie & Read (1984) proposed the power-
divergence test statistic for testing goodness-of-fit of a model. Denote the power-
divergence statistic for testing goodness-of-fit of the EQS model with R(R− 3)/2
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degrees of freedom by W (λ). Table 3 gives the values of W (λ) applied to the data
in Tables 1a, 1b and 1c. The EQS model fits the data in Table 1a poorly; however,
fits the data in Tables 1b and 1c well. This is similar to the results described in
Section 4. Then, it may seem to many readers thatW (λ)/n (for a given λ) is also a
reasonable measure for representing the degree of departure from EQS. However,
we point out thatW (λ) can not measure the degree of departure from EQS toward
the maximum degree of departure from EQS that is defined in Section 2, although
W (λ) can test the goodness-of-fit of the EQS model. For example, consider the
artificial data in Tables 4a and 4b. From Table 5, the value of W (λ)/n (W (λ)) is
less for Table 4a than for Table 4b; however, the value of Φ̂(λ) is greater for Table
4a than for Table 4b. When we want to measure the degree of departure from
EQS toward the maximum departure from the uniformity of ratios of symmetric
odds-ratios (i.e., the maximum departure from EQS), the measure Φ(λ) rather
thanW (λ) may be appropriate. Also, W (λ) rather than Φ(λ) would be appropriate
to test the goodness-of-fit of the EQS model.

As described in Section 1, Lawal (2004), Tomizawa (1990) and Yamaguchi
(1990) considered the extension of EQS model. For testing goodness-of-fit of the
EQS model under the assumption that the extension of EQS model holds true,
the difference between the likelihood ratio statistic for the EQS and extension of
EQS models has an asymptotic chi-squared distribution with degrees of freedom
equal to the difference between degrees of freedom for two models. This statistic,
which is useful for comparing pairs of models, is well known. So, the readers may
consider that this statistic is also a reasonable measure for representing the degree
of departure from EQS. However, since this statistic can not measure the degree of
departure from EQS toward the maximum departure from EQS, Φ(λ) rather than
it would be preferable when we want to measure the degree of departure from EQS
toward the maximum degree of departure from EQS.

We observe that the EQS model and the measure Φ(λ) should be applied to
square tables with ordered categories because it is not invariant under the arbitrary
similar permutations of row and column categories.
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Abstract

A multicomponent system of k components having strengths following k-
independently and identically distributed random variables X1, X2, . . . , Xk

and each component experiencing a random stress Y is considered. The
system is regarded as alive only if at least s out of k (s < k) strengths ex-
ceed the stress. The reliability of such a system is obtained when strength
and stress variates are given by generalized exponential distribution with
different shape parameters. The reliability is estimated using ML method
of estimation in samples drawn from strength and stress distributions. The
reliability estimators are compared asymptotically. The small sample com-
parison of the reliability estimates is made through Monte Carlo simulation.
Using real data sets we illustrate the procedure.

Key words: Asymptotic confidence interval, Maximum likelihood estima-
tion, Reliability, Stress-strength model.

Resumen

Se considera un sistema de k multicomponentes que tiene resistencias
que se distribuyen como k variables aleatorias independientes e idéntica-
mente distribuidas X1, X2, . . . , Xk y cada componente experimenta un estrés
aleatorio Y . El sistema se considera como vivo si y solo si por lo menos s
de k(s < k) resistencias exceden el estrés. La confiabilidad de este sistema
se obtiene cuando las resistencias y el estrés se distribuyen como una dis-
tribución exponencial generalizada con diferentes parámetros de forma. La
confiabilidad es estimada usando el método ML de estimación en muestras
extraídas tanto para distribuciones de resistencia como de estrés. Los esti-
madores de confiabilidad son comparados asintóticamente. La comparación
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para muestras pequeñas de los estimadores de confiabilidad se hace a través
de simulaciones Monte Carlo. El procedimiento también se ilustra mediante
una aplicación con datos reales.

Palabras clave: confiabilidad, estimación máximo verosímil, intervalos de
confianza asintóticos, modelo de resistencia-estrés.

1. Introduction

The two-parameter generalized exponential distribution (GE) has been intro-
duced and studied quite extensively by Gupta & Kundu (1999, 2001, 2002). The
two-parameter GE distribution is an alternative to the well known two-parameter
gamma, two-parameter Weibull or two parameter log-normal distributions. The
two-parameter GE distribution has the following density function and the distri-
bution function, respectively

f(x;α, λ) = αλe−xλ(1− e−xλ)α−1; forx > 0 (1)

F (x;α, λ) = (1− e−xλ)α−1; forx > 0 (2)

Here α and λ are the shape and scale parameters, respectively. Now onwards
GE distribution with the shape parameter α and scale parameter λ will be denoted
by GE(α, λ).

The purpose of this paper is to study the reliability in a multicomponent
stress-strength based on X, Y being two independent random variables, where
X ∼ GE(α, λ) and Y ∼ GE(β, λ).

Let the random samples Y,X1, X2, . . . , Xk being independent, G(y) be the con-
tinuous distribution function of Y and F (x) be the common continuous distribution
function of X1, X2, . . . , Xk. The reliability in a multicomponent stress-strength
model developed by Bhattacharyya & Johnson (1974) is given by

Rs,k = P [at least s of theX1, X2, . . . , Xk exceed Y ]

=

k∑
i=s

(
k

i

)∫ ∞
−∞

[1− F (y)]i [F (y)](k−i) dG(y)
(3)

WhereX1, X2, . . . , Xk are independently identically distributed (iid) with com-
mon distribution function F (x), this system is subjected to common random stress
Y . The probability in (3) is called reliability in a multicomponent stress-strength
model (Bhattacharyya & Johnson 1974). The survival probability of a single com-
ponent stress-strength version has been considered by several authors assuming
various lifetime distributions for the stress-strength random variates, e.g. Enis
& Geisser (1971), Downtown (1973), Awad & Gharraf (1986), McCool (1991),
Nandi & Aich (1994), Surles & Padgett (1998), Raqab & Kundu (2005), Kundu &
Gupta (2005), Kundu & Gupta (2006), Raqab, Modi & Kundu (2008), Kundu &
Raqab (2009). The reliability in a multicomponent stress-strength was developed
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by Bhattacharyya & Johnson (1974), Pandey & Uddin (1985), and the references
therein cover the study of estimating in many standard distributions assigned to
one or both stress, strength variates. Recently, Rao & Kantam (2010) studied
estimation of reliability in multicomponent stress-strength for the log-logistic dis-
tribution.

Suppose that a system, with k identical components, functions if s(1 ≤ s ≤ k)
or more of the components simultaneously operate. In this operating environment,
the system is subjected to a stress Y which is a random variable with distribution
function G(.). The strengths of the components, that is the minimum stress to
cause failure, are independent and identically distributed random variables with
distribution function F (.). Then, the system reliability, which is the probability
that the system does not fail, is the function Rs,k given in (3). The estimation
of the survival probability in a multicomponent stress-strength system when the
stress follows a two-parameter GE distribution has not received much attention
in the literature. Therefore, an attempt is made here to study the estimation
of reliability in multicomponent stress-strength model with reference to the two-
parameter GE probability distribution. In Section 2, we derive the expression
for Rs,k and develop a procedure for estimating it. More specifically, we obtain
the maximum likelihood estimates of the parameters. The Maximum Likelihood
Estimators (MLEs) are employed to obtain the asymptotic distribution and confi-
dence intervals for Rs,k. The small sample comparisons are made through Monte
Carlo simulations in Section 3. Also, using real data, we illustrate the estimation
process. Finally, some conclusion and comments are provided in Section 4.

2. Maximum Likelihood Estimator of Rs,k

Let X ∼ GE(α, λ) and Y ∼ GE(β, λ) with unknown shape parameters α
and β and common scale parameter λ, where X and Y are independently dis-
tributed. The reliability in multicomponent stress-strength for two-parameter GE
distribution using (3) is

Rs,k =

k∑
i=s

(
k

i

)∫ ∞
0

[1− (1− e−yλ)α]i[(1− e−yλ)α](k−i) βλe−yλ(1− e−yλ)β−1 dy

=

k∑
i=s

(
k

i

)∫ 1

0

[1− tν ]i [tν ](k−i) dt, where t = (1− e−yλ)β and ν =
α

β

=
1

ν

k∑
i=s

(
k

i

)∫ 1

0

[1− z]i [z](k−i+ 1
ν−1) dz if z = tν

=
1

ν

k∑
i=s

β(k − i+ 1

ν
, i+ 1)
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After the simplification we get

Rs,k =
1

ν

k∑
i=s

k!

(k − i)!

 i∏
j=0

(k +
1

ν
− j)

−1 , since k and i are integers (4)

The probability in (4) is called reliability in a multicomponent stress-strength
model. If α and β are not known, it is necessary to estimate α and β to estimate
Rs,k. In this paper we estimate α and β by the ML method. Once MLEs are
obtained then Rs,k can be computed using equation (4).

Let X1, X2, . . . , Xn; Y1, Y2, . . . , Ym be two ordered random samples of size n,
m, respectively, on strength, stress variates following a GE distribution with shape
parameters α and β and a common scale parameter λ. The log-likelihood function
of the observed sample is

L(α, β, λ) = (m+ n) lnλ+ n lnα+m lnβ − λ

 n∑
i=1

xi −
m∑
j=1

yj

+

(α− 1)

n∑
i=1

ln(1− e−xiλ) + (β − 1)

m∑
j=1

ln(1− e−yjλ)

(5)

The MLEs of α, β and λ, say α̂, β̂ and λ̂, respectively, can be obtained as the
solution of

α̂ =
−n

n∑
i=1

ln(1− e−xiλ)
(6)

β̂ =
−m

m∑
j=1

ln(1− e−yjλ)
(7)

g(λ) = 0⇒ m+ n

λ
−

n
n∑
i=1

xi e
−xiλ

1−e−xiλ

n∑
k=1

ln(1− e−xkλ)
−

m
m∑
j=1

yj e
−yjλ

1−e−yjλ

m∑
k=1

ln(1− e−ykλ)

−
n∑
i=1

xi
1− e−xiλ

−
m∑
j=1

yj
1− e−yjλ

(8)

Therefore, λ̂ is a simple iterative solution of the non-linear equation g(λ) =

0. Once we obtain λ̂; α̂ and β̂ can be obtained from (6) and (7), respectively.
Therefore, the MLE of Rs,k becomes

R̂s,k =
1

ν̂

k∑
i=s

k!

(k − i)!

 i∏
j=0

(k +
1

ν̂
− j)

−1 , where ν̂ =
α̂

β̂
(9)
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To obtain the asymptotic confidence interval for Rs,k, we proceed as below:
The asymptotic variance of the MLE is given by

V (α̂) =

[
E(−∂

2L

∂α2
)

]
=
α2

n
and V (β̂) =

[
E(−∂

2L

∂β2
)

]
=
β2

n
(10)

The asymptotic variance (AV) of an estimate of Rs,k which is a function of two
independent statistics α̂ and β̂ is given by Rao (1973).

AV (R̂s,k) = V (α̂)

[
∂Rs,k
∂α

]2
+ V (β̂)

[
∂Rs,k
∂β

]2
(11)

From the asymptotic optimum properties of MLEs (Kendall & Stuart 1979) and
of linear unbiased estimators (David 1981), we know that MLEs are asymptotically
equally efficient having the Cramer-Rao lower bound as their asymptotic variance,
as given in (10). Thus, from equation (11), the asymptotic variance of R̂s,k can
be obtained. To avoid the difficulty of the derivation of the Rs,k, we obtain the
derivatives of Rs,k for (s, k)=(1,3) and (2,4) separately and they are given by

∂R1,3

∂α
=

3

β (3ν̂ + 1)
2 and

∂R1,3

∂β
=

−3ν̂
β (3ν̂ + 1)

2

∂R2,4

∂α
=

12ν̂(7ν̂ + 2)

β [(3ν̂ + 1)(4ν̂ + 1)]
2 and

∂R2,4

∂β
=

−12ν̂2(7ν̂ + 2)

β [(3ν̂ + 1)(4ν̂ + 1)]
2

Thus AV (R̂1,3) =
9ν̂2

(3ν̂+1)4

(
1
n + 1

m

)
AV (R̂2,4) =

144ν̂4(7ν̂ + 2)2

[(3ν̂ + 1)(4ν̂ + 1)]
4

(
1

n
+

1

m

)

as n → ∞,m → ∞, R̂s,k−Rs,k
AV (R̂s,k)

d−→ N(0, 1) and the asymptotic confidence 95%
confidence interval for Rs,k is given by

R̂s,k ± 1.96

√
AV (R̂s,k)

The asymptotic confidence 95% confidence interval for R1,3 is given by

R̂1,3 ± 1.96
3ν̂

(3ν̂ + 1)
2

√(
1

n
+

1

m

)
, where ν̂ =

α̂

β̂

The asymptotic confidence 95% confidence interval for R2,4 is given by

R̂2,4 ± 1.96
12ν̂2(7ν̂ + 2)

[(3ν̂ + 1)(4ν̂ + 1)]
2

√(
1

n
+

1

m

)
, where ν̂ =

α̂

β̂
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3. Simulation Study and Data Analysis

3.1. Simulation Study

In this subsection we present some results based on Monte Carlo simulations
to compare the performance of the Rs,k using different sample sizes. 3,000 ran-
dom samples of size 10(5)35 each from stress population, strength population are
generated for (α, β) = (3.0, 1.5), (2.5,1.5), (2.0,1.5), (1.5,1.5), (1.5,2.0),(1.5,2.5)
and (1.5,3.0) in line with Bhattacharyya & Johnson (1974). The MLE of scale
parameter λ is estimated by the iterative method, and the using λ the shape pa-
rameters α and β are estimated from (6) and (7). These ML estimators of α and
β are then substituted in ν to get the reliability in a multicomponent reliability
for (s, k) = (1, 3), (2, 4). The average bias and average mean square error (MSE)
of the reliability estimates over the 3000 replications are given in Tables 1 and 2.
Average confidence length and coverage probability of the simulated 95% confi-
dence intervals of Rs,k are given in Tables 3 and 4. The true values of reliability
in multicomponent stress-strength with the given combinations for (s, k) = (1, 3)
are 0.857, 0.833, 0.800, 0.750, 0.692, 0.643, 0.600, and for (s, k) = (2, 4) are 0.762,
0.725, 0.674, 0.600, 0.519, 0.454, and 0.400. Thus, the true value of reliability
in multicomponent stress-strength model decreases as β increases for a fixed α
whereas reliability in multicomponent stress-strength increases as increases for a
fixed β in both the cases (s, k). Therefore, the true value of reliability decreases
as ν decreases, and vice versa. The average bias and average MSE decrease as
sample size increases for both methods of estimation in reliability. Also the bias
is negative in both situations of (s, k). It verifies the consistency property of the
MLE of Rs,k. Whereas, among the parameters the absolute bias and MSE de-
crease as α increases for a fixed β in both cases of (s, k) and the absolute bias
and MSE increase as β increases for a fixed α in both the cases of (s, k). The
length of the confidence interval also decreases as the sample size increases. The
coverage probability is close to the nominal value in all cases but slightly less than
0.95. Overall, the performance of the confidence interval is quite good for all com-
binations of parameters. Whereas, among the parameters we observed the same
phenomenon for average length and average coverage probability that we observed
in the case of average bias and MSE.

3.2. Data Analysis

In this subsection we analyze two real data sets and demonstrate how the pro-
posed methods can be used in practice. The first data set is reported by Lawless
(1982) and the second one is given by Linhardt & Zucchini (1986). Both are ana-
lyzed and fitted for various lifetime distributions. We fit the generalized exponen-
tial distribution to the two data sets separately. The first data set (Lawless 1982,
p. 228) presented here arose in tests on endurance of deep groove ball bearings.
The data presented are the number of million revolutions before failure for each of
the 23 ball bearings in the life test, and they are: 17.88, 28.92, 33.00, 41.52, 42.12,
45.60, 48.80, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 93.12,
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98.64, 105.12, 105.84, 127.92, 128.04, and 173.40. Gupta & Kundu (2001) studied
the validity of the model and they compute the Kolmogorov-Smirnov (KS) distance
between the empirical distribution function and the fitted distribution functions of
generalized exponential distribution which is 0.1058 with a corresponding p-value
of 0.9592.

Table 1: Average bias of the simulated estimates of Rs,k.
(α,β)

(s, k) (n,m) (3.0,1.5) (2.5,1.5) (2.0,1.5) (1.5,1.5) (1.5,2.0) (1.5,2.5) (1.5,3.0)
(10,10) −0.0029 −0.0047 −0.0072 −0.0109 −0.0150 −0.0183 −0.0207

(15,15) −0.0021 −0.0042 −0.0058 −0.0081 −0.0105 −0.0123 −0.0137

(1,3) (20,20) −0.0018 −0.0027 −0.0039 −0.0058 −0.0079 −0.0096 −0.0109

(25,25) −0.0012 −0.0020 −0.0030 −0.0046 −0.0064 −0.0078 −0.0089

(30,30) −0.0011 −0.0019 −0.0028 −0.0041 −0.0055 −0.0066 −0.0075

(35,35) −0.0002 −0.0006 −0.0012 −0.0021 −0.0031 −0.0040 −0.0047

(10,10) −0.0029 −0.0039 −0.0063 −0.0092 −0.0116 −0.0128 −0.0131

(15,15) −0.0022 −0.0034 −0.0059 −0.0075 −0.0087 −0.0092 −0.0091

(2,4) (20,20) −0.0017 −0.0027 −0.0040 −0.0056 −0.0070 −0.0077 −0.0080

(25,25) −0.0010 −0.0019 −0.0030 −0.0044 −0.0056 −0.0063 −0.0065

(30,30) −0.0009 −0.0011 −0.0030 −0.0041 −0.0051 −0.0057 −0.0059

(35,35) −0.0003 −0.0002 −0.0008 −0.0016 −0.0023 −0.0027 −0.0029

Table 2: Average MSE of the simulated estimates of Rs,k.
(α,β)

(s, k) (n,m) (3.0,1.5) (2.5,1.5) (2.0,1.5) (1.5,1.5) (1.5,2.0) (1.5,2.5) (1.5,3.0)
(10,10) 0.0041 0.0052 0.0068 0.0092 0.0119 0.0139 0.0153
(15,15) 0.0026 0.0033 0.0043 0.0058 0.0075 0.0087 0.0096

(1,3) (20,20) 0.0017 0.0022 0.0029 0.0040 0.0052 0.0061 0.0068
(25,25) 0.0014 0.0018 0.0024 0.0032 0.0042 0.0050 0.0055
(30,30) 0.0011 0.0014 0.0018 0.0025 0.0032 0.0038 0.0043
(35,35) 0.0009 0.0011 0.0015 0.0021 0.0027 0.0032 0.0036
(10,10) 0.0096 0.0115 0.0141 0.0171 0.0193 0.0199 0.0196
(15,15) 0.0062 0.0075 0.0091 0.0111 0.0125 0.0130 0.0128

(2,4) (20,20) 0.0042 0.0051 0.0063 0.0078 0.0090 0.0094 0.0094
(25,25) 0.0035 0.0043 0.0052 0.0065 0.0074 0.0078 0.0078
(30,30) 0.0028 0.0033 0.0041 0.0050 0.0058 0.0060 0.0060
(35,35) 0.0022 0.0027 0.0034 0.0042 0.0049 0.0052 0.0052

The second data set (from Linhardt & Zucchini 1986, p. 69) represents the
failure times of the air conditioning system of an airplane (in hours): 23, 261, 87,
7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14, 71, 11, 14, 11, 16,
90, 1, 16, 52, 95. Gupta & Kundu (2003) studied the validity of the generalized
exponential distribution and they compute the Kolmogorov-Smirnov (KS) distance
between the empirical distribution function and the fitted distribution functions
which is 0.1744 with a corresponding p-value 0.2926. Therefore, it is clear that the
generalized exponential model fits quite well to both the data sets.

We use the iterative procedure to obtain the MLE of λ using (8), and MLEs of
α and β are obtained by substituting MLE of λ in (6) and (7). The final estimates
are λ̂ = 2.80609, α̂ = 1.00667 and β̂ = 0.02098. Based on the estimates of α and
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β, the MLE of Rs,k becomes R̂1,3 = 0.893191 and R̂2,4 = 0.819677. The 95%
confidence intervals for R1,3 become (0.841368, 0.945014) and for R2,4 become
(0.735472, 0.903882).

Table 3: Average confidence length of the simulated 95% confidence intervals of Rs,k.
(α,β)

(s, k) (n,m) (3.0,1.5) (2.5,1.5) (2.0,1.5) (1.5,1.5) (1.5,2.0) (1.5,2.5) (1.5,3.0)
(10,10) 0.2112 0.2399 0.2762 0.3221 0.3627 0.3873 0.4012
(15,15) 0.1747 0.1981 0.2279 0.2659 0.3000 0.3212 0.3337

(1,3) (20,20) 0.1512 0.1716 0.1977 0.2311 0.2614 0.2804 0.2918
(25,25) 0.1351 0.1534 0.1768 0.2069 0.2342 0.2515 0.2619
(30,30) 0.1238 0.1404 0.1618 0.1893 0.2145 0.2304 0.2401
(35,35) 0.1140 0.1295 0.1492 0.1748 0.1982 0.2132 0.2224
(10,10) 0.3267 0.3628 0.4045 0.4485 0.4744 0.4782 0.4697
(15,15) 0.2721 0.3020 0.3368 0.3742 0.3973 0.4020 0.3962

(2,4) (20,20) 0.2366 0.2630 0.2939 0.3274 0.3486 0.3533 0.3486
(25,25) 0.2119 0.2356 0.2635 0.2939 0.3134 0.3180 0.3141
(30,30) 0.1943 0.2161 0.2416 0.2697 0.2878 0.2923 0.2890
(35,35) 0.1794 0.1996 0.2234 0.2497 0.2669 0.2716 0.2688

Table 4: Average coverage probability of the simulated 95% confidence intervals of Rs,k.
(α,β)

(s, k) (n,m) (3.0,1.5) (2.5,1.5) (2.0,1.5) (1.5,1.5) (1.5,2.0) (1.5,2.5) (1.5,3.0)
(10,10) 0.9230 0.9247 0.9277 0.9220 0.9140 0.9070 0.9053
(15,15) 0.9327 0.9330 0.9357 0.9323 0.9303 0.9280 0.9243

(1,3) (20,20) 0.9373 0.9387 0.9397 0.9400 0.9360 0.9293 0.9243
(25,25) 0.9287 0.9323 0.9347 0.9360 0.9340 0.9293 0.9247
(30,30) 0.9347 0.9360 0.9393 0.9403 0.9420 0.9427 0.9363
(35,35) 0.9453 0.9480 0.9497 0.9477 0.9450 0.9417 0.9347
(10,10) 0.9197 0.9213 0.9230 0.9177 0.9133 0.9133 0.9097
(15,15) 0.9320 0.9323 0.9340 0.9333 0.9307 0.9277 0.9237

(2,4) (20,20) 0.9353 0.9373 0.9390 0.9387 0.9327 0.9310 0.9260
(25,25) 0.9287 0.9320 0.9333 0.9383 0.9333 0.9300 0.9263
(30,30) 0.9353 0.9380 0.9410 0.9397 0.9390 0.9393 0.9363
(35,35) 0.9453 0.9490 0.9490 0.9453 0.9433 0.9380 0.9360

4. Conclusions

In this paper, we have studied the multicomponent stress-strength reliability
for generalized exponential distribution when both stress, strength variates follow
the same population. Also, we have estimated asymptotic confidence interval for
the multicomponent stress-strength reliability. The simulation results indicate that
the average bias and average the MSE decrease as sample size increases for both
situations of (s, k). Among the parameters the absolute bias and MSE decrease
(increase) as α increases (β increases) in both the cases of (s, k). The length of
the confidence interval also decreases as the sample size increases and the coverage
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probability is close to the nominal value in all sets of parameters considered here.
Using real data, we illustrate the estimation process.[

Recibido: abril de 2011 — Aceptado: diciembre de 2011
]
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Abstract

Expectations and perceptions obtained in surveys play an important role
in designing the monetary policy. In this paper we construct continuous
variables from the qualitative responses of the Colombian Economic Expec-
tation Survey (EES). This survey examines the perceptions and expectations
on different economic variables. We use the methods of quantification known
as balance statistics, the Carlson-Parkin method, and a proposal developed
by the Analysis Quantitative Regional (AQR) group of the University of
Barcelona. Then, we later prove the predictive ability of these methods and
reveal that the best method to use is the AQR. Once the quantification is
made, we confirm the rationality of the expectations by testing four key hy-
potheses: unbiasedness, no autocorrelation, efficiency and orthogonality.

Key words: Rational Expectations, Survey, Quantification.

Resumen

En este artículo se cuantifican las respuestas cualitativas de la “Encuesta
Mensual de Expectativas Económicas (EMEE)” a través de métodos de con-
versión tradicionales como la estadística del balance de Batchelor, el método
probabilístico propuesto por Carlson-Parkin (CP) y la propuesta del grupo
de Análisis Cuantitativo Regional (ACR) de la Universidad de Barcelona.
Para las respuestas analizadas de esta encuesta se encontró que el método
ACR registra el mejor desempeño teniendo en cuenta su mejor capacidad pre-
dictiva. Estas cuantificaciones son posteriormente utilizadas en pruebas de
racionalidad de expectativas que requieren la verificación de cuatro hipótesis
fundamentales: insesgamiento, correlación serial, eficiencia y ortogonalidad.
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1. Introduction

Economic decisions are usually made under a scenario of uncertainty about
economic conditions. Thus, expectations on key variables and how private agents
form their expectations play a crucial role in macroeconomic analysis. The direct
way in the measurement of expectations comes from the application of qualitative
surveys1 of firms, which try to gauge respondent’s perceptions regarding current
economic conditions and expected future activity. According to Pesaran (1997),
the “Business Surveys” provide the only opportunity to explore one of the big
black boxes in the economy that inquire about the expectations and which allows
to obtain leading indicators of current changes in economic variables over the
business cycle.

The main characteristic of this kind of surveys is that questions provide ordinal
answers that reveal the direction of change for the variable under consideration2. In
other words it increases, remains constant or declines. The information extracted
with ordinal data is used to anticipate the behavior of economic variables of con-
tinuous type and to build indicators of economic activity3. However, the analysis
requires a cardinal unit of measurement and therefore a conversion method from
nominal to quantitative figures is a topic in business analysis.

In this paper we study the properties of several methodologies to quantify
the qualitative answers and present an application from the monthly Economic
Expectation Survey (EES) realized by the central bank of Colombia during the
period October 2005 to January 2010. The article is organized into six sections
including this introduction. In Section 2, briefly we describe traditional methods
to convert variables from qualitative to continuous type. Later, in Section 3 we
present the application of these methods with some of the questions contained in
the EES. The models for expectations and the econometric strategy for testing are
summarized in the Section 4. Section 5 shows the empirical results. Finally, in
Section 6 we summarize the conclusions.

2. Quantification Methods of Expectations

In order to measure the attitudes of the respondents for variables such as prices,
the central bank distributes monthly a questionnaire that can be classified into
four broad categories: past business conditions, outlook of the business activity,
pressures on firm’s production capacity, outlook of wages and prices.

The EES survey answers contains three options classified as follows: “increases”,
“decreases” or “remains the same”. In Table 1 is described the notation of the
answers of the public-opinion poll in terms of judgments (perception in the period t

1The impact of the expectations of the agents on the economic variables is difficult to observe
due to the fact that these are evaluated by quantitative measurements that present problems of
sensitivity: Sampling errors, sampling plan and measurement errors.

2Berk (1999), Visco (1984) among others, analyzed opinion surveys with more than three
categories of response.

3The evolution of cyclical movements is called the Business Climate indicator.
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of the evolution of variable respect of the period t−1) and expectations (perception
in t of the evolution expected from the variable for t + 1)4. In this case, JUPt +
JDOt + JEQt = 1 if they are judgments, or EUPt + EDOt + EEQt = 1 if they
are expectations.

Table 1: Clasification of answers.
Notation Description

JUPt Proportion of enterprises that at time t perceive that the observed variable is going
‘Up’ between period t− 1 and period t.

JDOt Proportion of enterprises that at time t perceive that the observed variable is going
‘Down’ between period t− 1 and period t.

JEQt Proportion of enterprises that at time t perceive that the observed variable has ‘A
normal level’ between period t − 1 and period t.

EUPt Proportion of enterprises that at time t expect an ‘Increase’ of the variable from
period t to period t + 1.

EDOt Proportion of enterprises that at time t expect a ‘Decrease’ of the variable from
period t to period t + 1.

EEQt Proportion of enterprises that at time t ‘Don’t expect any change’ in the variable
from period t to period t+ 1.

In this article, the expectations for growth in sales volume, the variation of
the total raw material prices (national and imported) and the variation in price
of products that will be sold; are quantified. The quantification techniques are
based on two concepts. The first concerns with the distribution of expectations in
which it is assumed that in the period t every individual i forms a distribution of
subjective probability distribution fit(µit, τ

2
it) with mean µit and variance τ2it. The

mean of this can be distributed through individuals as: µitgt(µt, σ
2
t ) (where the

expected value µt measures the average expectations in the survey population at
time t and σt measures the dispersion of average expectations in that population);
the second assumes that an individual with probability distribution fit answers
“increases” or “decreases” to the questions of the survey, according to whether the
average subjective µit exceeds some rate limit δit or it is less to another rate limit
−ǫit respectively, so that δit > 0 and ǫit > 0.

2.1. The Balance Statistics

Originally, this kind of statistics was introduced by Anderson (1952) in his
work for the IFO survey. This statistic is obtained by:

St+1
t = EUPt − EDOt (1)

The advantage of this statistic is that it can be used both for questions that
investigate on judgments (St−1

t ), and for making reference on expectations (St+1
t ).

Batchelor (1986) takes into account the key concepts of the general theory of
quantification based on the following assumptions:

4See www.banrep.gov.co/economia/encuesta_expeco/Cuestionario_CNC.pdf
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•The distribution of expectations follows a sign function (Pfanzagl 1952, Theil
1958), with a time-invariant parameter θ. It is to say gt(µt, σ

2
t ) = g(µt, σ

2
t ), where:

EDOt si µit = −θ; EEQt si µit = 0; EUPt si µit = θ (2)

•The distribution of the expectation is characterized by long terms unbiased,
which means that in a period of time with T surveys, the average expectation µt

is equal to the current average rate variable:

T∑

t=1

µt =
T∑

t=1

xt (3)

•The function of the response limits δit and ǫit; may be asymmetric and vary
over the individuals and time, but must be strictly less than θ; it is to say:

δit < θ, ǫit < θ (4)

Therefore, the expected value and the variance of the distribution are:

µit = θ(EUPt − EDOt), σ2
t = θ2[(EUPt + EDOt)− (EUPt − EDOt)

2] (5)

By assuming the response function, the proportions of the sample:EUPt, EDOt

and EEQt behave like maximum likelihood estimators, making it possible to es-
timate the parameter θ. With this estimate, it is obtained that

T∑

t=1

θ(EUPt − EDOt) =
T∑

t=1

xt,

θ

T∑

t=1

(EUPt − EDOt) =

T∑

t=1

xt,

θ̂ =

∑T

t=1
xt∑T

t=1
(EUPt − EDOt

(6)

Fluri & Spoerndli (1987) estimate the expectation of the variable as:

(E(X))t = θ̂(EUPt − EDOt) (7)

Where E(X) denotes the expectation of the random studied variable, xt is the

realization of the variable under study and (θ̂) is the scaling factor determined by
the unbiasedness of the equation . Thus, the Modified Balance Statistical (MBS)
provides a measure of the expected average in the variable, taking into account
the trend and the points of inflection.

2.1.1. Recent Proposals

Loffler (1999) estimates the measurement error introduced by the probabilis-
tic and proposes a linear correction method5. On his part, Mitchell (2002) finds

5Claveria & Suriñach (2006).
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evidence that the normal distribution, as well as any other stable distribution,
provides accurate expectations6. Claveria & Suriñach (2006) posed different sta-
tistical expectations for the quantifications, including a method that proposes the
use of random walks and another one that use Markov processes of first order.

Claveria (2010) proposes a statistical balance with nonlinear variation, called
Weighted Balance, such that WBt = Rt−Ft

Rt+Ft
= Bt

1−Ct
. This statistic takes into

account the percentage of respondents expecting no change in the evolution of an
economic variable.

2.2. Probabilistic Method

This method was proposed originally for Theil (1952), initially applied by
Knobl (1974), and identified by Carlson & Parkin (1975) as CP “Probabilistic
Method”. For these authors, xit represents the percentage of change of a random
variable Xi of period t − 1 for the period t (with t = 2, 3, . . . , T ); the respondent
is indexed by i and xe

it symbolizes the expectation having i on the change in Xi

from the period t to the period t+1 (with t = 1, 2, . . . , T − 1). Also, they assume
intuitively that respondents have a range of indifference (ait, bit), with ait < 0
and bit > 0, so that each one of the respondent answers “Decrease” if xe

it < ait or
“Increase” if xe

it > bit. If there is not change, xe
it ∈ (ait, bit).

Thus, in the period t each respondent based his answers on a subjective prob-
ability distribution fi(xit/It−1) defined as from future change in Xi conditioned
by information available at the time t− 1 (represented by It−1). These subjective
probability distributions fi(·) are such that they can be used to obtain a proba-

bility distribution of added g(xi/Ωt−1), where Ωt−1 =
⋃N−1

i=1
It−1 is the union of

individual information groups (where Nt is the total number of respondents in the
period t)7. For the estimation of xe

t , (“Average expectation of respondents”), the

equation xe
t =

∑N

i=1
wix

e
it, is used where wi represents the weight of the respondent

i and xe
it represents the individual expectations.

Carlson and Parkin make two additional assumptions: First, that the indiffer-
ence interval is equal for all respondents (ait = at y bit = bt). Second fi(xit/It−1)
has the same form for all players and the first and second moment are finite.
Thus, xe

it may be considered as independent samples of an aggregate distribution
g(·) with mean E(xt/Ωt−1) = xe

t and variance σ2
t , that can be written as8:

EDOt = prob{xt ≤ at/Ωt−1}, EUPt = prob{xt ≥ bt/Ωt−1} (8)

where each agent has the same subjective distribution of expectations based on
the information available. In most applications the use of the normal distribution
that is statistically appropriate, is completely specified by two parameters. Thus,
if G is defined as the cumulative distribution of the aggregate distribution g(·);

6Ibíd.
7Which is constant for each period.
8Note that if individual distributions are independent through respondents, they have a com-

mon and finite first and second time, then by the Central Limit Theorem g(·), they have normal
distribution.

Revista Colombiana de Estadística 35 (2012) 77–108



82 Héctor Manuel Zárate, Katherine Sánchez & Margarita Marín

it is obtained by standardizing ft and rt as the abscissa of the inverse of the G
corresponding to EDOt and (1− EUPt). That is:

ft = G−1(EDOt) = (at − xe
t )/σt, rt = G−1(1 − EUPt) = (bt − xe

t )/σt (9)

Solving the system of Equation 9 to find the average expectations xe
t and the

dispersion σt, we obtain:

xe
t =

btft − atrt
ft − rt

, σt = −bt − at
ft − rt

(10)

Carlson and Parkin assume that the indifference interval does not vary over
time, remaining fixed between business, and is symmetric around zero; that is,
−at = bt = c. Given this, we obtain an expression for calculating operational xe

t

by the method of Carlson and Parkin (CP), defined as:

xe
t,cp = c

ft + rt
ft − rt

(11)

with c =
∑

t xt
∑

t dt
and dt = ft+rt

ft−rt
, where xt includes the annual variation of the

observed variable. In this case, the role of c is scaled xe
t , so that the average

value of xt equals xe
t , which means that expectations are assumed to be average

unbiased. Assuming that the random variable observed X has normal distribution,
then ft and rt are found using the inverse of the cumulative distribution standard
normal distribution, in the Equation 9. It is important to note that the imposition
of expectations makes them unsuitable to apply rationality contrasts a posteriori.
Moreover, it is assumed that fi(·) has normal distribution. However, the uniform
distribution also can be used. Assuming that X is distributed uniformly over the
interval [0, 1], then ft and rt are calculated as:

ft =
√
12(EDOt −

1

2
), rt =

√
12(

1

2
− EUPt) (12)

2.2.1. Disadvantages and Extensions of the Carlson-Parkin Method

There are several shortcomings related to the Carlson-Parkin method. The
same answers for all the respondents cause that the statistic goes to infinity, which,
in turn, impedes the computation of expectations. Moreover, the assumption of
constant and symmetric limits through time means that respondents are equally
sensitive to an expected rise or an expected fall, of the variable under study. Seitz
(1988) relaxes the assumptions of the Carlson-Parkin method allowing time variant
boundaries of the indifference interval9.

2.3. Regional Quantitative Analysis (RQA) Method

This method was implemented by Pons and Claveria at the Regional Quanti-
tative Analysis Group (RQA); Department of Econometrics; Statistics and Eco-
nomics at the University of Barcelona (Claveria, Pons & Suriñach 2003). The

9See Nardo (2003).
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estimation is performed in two stages. The first stage gives a first set of expec-
tations of the variation of the variable referred to as input, which can be defined
as:

xe
input,t = ĉ ∗ dt (13)

where ĉ = |xt−1|, dt = ft+rt
ft−rt

and xt−1 shows the growth rate of the reference quan-
titative indicator of the previous period. The parameter estimation of indifference
has a dual function: Firstly, it avoids the imposition of unbiasedness that occurs
when estimating the range of indifference by the CP method, thus, the estimation
allows movement in the indifference interval boundaries to incorporate changes
in response time, and secondly, it relaxes the assumption of constancy over time
of the scaling parameter because the parameter c will correspond to the rate of
variation of quantitative indicator in the reference period t− 1.

The re-scaling of the series Input obtained from Equation 13 is necessary, be-
cause the function of c is the scalar statistic dt and, therefore, would be distorting
the interpretation given by the over-dimension of the class EEQt, that requires
less commitment from the respondent, and just distorting the interpretation that
is the parameter c as the limit of visibility. This justifies the need for scaling in
two stages.

In the second stage the model is re-scaled with parameters changing over time.
This regression equation estimated by ordinary least squares (OLS) and the pa-
rameters obtained are used to estimate the new set of expectations, where the
series Input acts as an exogenous variable:

xt = α+ βxe
input,t + ut (14)

where α y β are the parameters of the estimation and ut is the error. On the
OLS, estimation of the regression parameters is constructed following conversion
equation:

xe
t = α̂+ β̂xe

input,t donde xe
input,t = ĉ ∗ dt y ĉ = |xt−1| (15)

where α̂ and β̂ parameters are estimated and xe
t represents the number of estimated

expectations of the rate of variation of the observed variable. Obtaining these set
of directly observed expectations allows us to contrast some of the hypotheses
usually assumed in economic models, such as the rationality of the agents.

3. Application to the EES

In this section we apply the methods of quantification submitted to the ob-
served variables (EES); therefore expectations obtained are evaluated in terms of
their predictive ability. This is evaluated under four statistics known as Mean
Absolute Error (MAE), Median Absolute of the Percentage Error (MAPE), Root
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Error Square Mean (RESM) and the coefficient U of Theil (TU1):

MAE =

T∑

t=1

|xt − xe
t |

T

MAPE =

∑T

t=1

|xt−xe
t |

xt

T
∗ 100

RESM =

√√√√
T∑

t=1

(xt − xe
t )

2

T

TU1 = [

∑T

t=1
(xt − xe

t )
2

∑T

t=1
(xt)2

]
1
2

(16)

3.1. Quantification of Question 2 for EES

The growth of sales volume (quantity) in the next 12 months, compared with
growth in sales volume (quantity) in the past 12 months, is expected to be: a)
Increased, b) Decreased, c) The same (See Figure 1).

Time

P
e
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e
n
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e

2006 2007 2008 2009 2010

2
4

6
8

1
0

RQA Normal
RQA Uniforme

CP Normal
CP Uniforme

MBS

Figure 1: Expectations question 2.

For the quantification of this question the indicator of annual variation Total
Index Sales10, obtained from DANE is used as a reference. The methods applied
were: RQA with normal and uniform distribution, method of CP with normal and
uniform distribution and MBS.

It is noted that the expectations generated by normal RQA and the uniform
method have very similar behaviors, and the patterns tend to have more movement
when compared with other methods. Similarly, one can see that the series of
expectations with the CP method with standard normal and uniform distribution,
have similar behavior.

The results of the evaluation of the predictive power are presented in Table 2,
and they suggest that the most appropriate method to carry out this quantification
is the RQA with normal distribution, followed by the uniform distribution. In third

10In this case, the variable is nominal.
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place is the CP method with uniform distribution, statistically below the MBS and
finally by the normal CP method.

Table 2: Predictability Evaluation Question 2.

MBS Normal CP Uniform CP Normal RQA Uniform RQA

MAE 0.046 0.047 0.042 0.029 0.032

MAPE 1.826 1.947 1.579 0.731 0.866

RESM 0.055 0.057 0.051 0.036 0.039

TU1 0.454 0.463 0.416 0.295 0.319

3.2. Quantification of Question 9 for EES

The increase in total prices of raw materials (domestic or imported) to buy in
the next 12 months, compared with the total prices of raw materials purchased
in the past 12 months is expected to be: a) Higher, b) Lower, c) The same (See
Figure 2).
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RQA Uniforme
CP Normal
CP Uniforme

MBS

Figure 2: Expectations question 9.

The indicator used as reference is the annual variation Producer Price In-
dex, obtained from the natinal statistical office in Colombia DANE. The series
of expectations are estimated with the method of RQA with normal and uniform
distributions and they exhibit similar behaviors on oscillations recorded over time.
Moreover, the estimated normal uniform and CP and MBS fluctuate less than the
other series.

The evaluation of the predictive ability (Table 3) indicates that the most ap-
propriate method is RQA with normal distribution, followed by the uniform distri-
bution. The third and fourth place corresponds to the CP method with uniform
and normal distribution, respectively. The least predictive method presented is
the MBS.
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Table 3: Predictability Evaluation Question 9.

MBS Normal CP Uniform CP Normal RQA Uniform RQA

MAE 2.648 2.623 2.616 1.648 1.704

MAPE 1.324 1.295 1.247 0.689 0.678

RESM 3.359 3.317 3.289 2.123 2.158

TU1 0.667 0.657 0.652 0.421 0.428

3.3. Quantification of Question 11 for EES

The increase in prices of products that will sell in the next 12 months, compared
with the increase of prices of products sold in the past 12 months,are expected to
be: a) Higher, b) Lower, c) The same (See Figure 3).
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Figure 3: Expectations question 11.

The quantification is used as a reference indicator of annual variation rate of
the Producer Price Index Produced and Consumed (PPIP&C).

It is noted that the expectations generated by the application of the method
of MBS have a pattern that turns smoothly around the mean. The expectations
series obtained with the CP method with normal and uniform distribution are
similar but with a greater degree of variability. The expectations series obtained
with the CP method with normal and uniform distribution are similar but with a
greater degree of variability.

According to the statistics for the evaluation of the predictive ability (Table
4), the method with the best performance is the RQA with normal distribution,
followed by the uniform distribution. The third and fourth place corresponds to
the CP method uniform and the normal distributions respectively. Finally, the
MBS method is the least predictive.

In general, there is evidence that the RQA methodology with standard normal
distribution, followed by the uniform distribution; they present the best results
in terms of evaluation of the predictive and their methods are attractive because
the indifference parameter is asymmetric, changing over time and staying unbi-
ased (which makes it optimal for the contrast of hypothesis about formation of
expectations).
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Nevertheless, due to the restriction of information on this method (both judg-
ments and expectations), it is suggested to consider the CP method and the
method of MBS in the quantification of the variables if you do not have all the
information available.

Table 4: Predictability evaluation question 11.
MBS Normal CP Uniform CP Normal RQA Uniform RQA

MAE 2.034 2.026 2.035 1.484 1.549

MAPE 0.697 0.691 0.660 0.446 0.461

RESM 2.792 2.772 2.753 1.980 2.058

TU1 0.477 0.474 0.470 0.339 0.351

4. Modeling the Expectations

4.1. Extrapolative and Adaptative Expectations

The pure model of extrapolative expectations is based on the assumption that
the expectations depend only on the observed values of the variable that wil be
predicted11, of the variable to predict (Ece 2001), so this model can be represented
as (Pesaran 1985):

tx
e
t+1 = α+

∞∑

i=1

wjxt−j + ut+1 (17)

where tx
e
t+1 is the expectation of the variable formed in the period t, for the

period t + 1; xt−j(with j = 0, 1, 2, . . .) are the known data of the variable in
the period t; wj are the weights (fixed) given to each of the known values of
the variable, and ut+1 is the random error term that attempts to capture the
unobserved effects on the expectation.

Expectations of the adaptive model imply that if the variable value and ex-
pectations differ from the period of studies, then a correction to the expectation
for the next period is made. However, if there is not difference, the expectation
for the next period will stay unchanged (Ece 2001). On the imposition of certain
restrictions to wj in equation 17 it is possible to find the models used to testing
adaptative expectations (this would support the hypothesis that such expectations
are a special case of extrapolative expectations; (Pesaran 1985)). Thus, the four
models used to represent the adaptive expectations are (Pesaran 1985, Ece 2001):

xe
t+1 − xe

t = w(xt − xe
t ) + ut+1 (18)

xe
t+1 − xe

t = α0(xt − xe
t ) + α0(xt−1 − xe

t−1) + ut+1 (19)

xe
t+1 − xe

t = β0(xt − xe
t ) + β1(xt−1 − xt−1) + β2(xt−1 − xe

t−1) + ut+1 (20)

xe
t+1 = λ0 + λ1x

e
t + λ2x

e
t−1 + λ3xt + λ4xt−1 + ut+1 (21)

11See sections 2 and 3 of this paper.
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Finally, to see if expectations are adaptive or extrapolative, it is necessary to
perform an analysis on the coefficient of determination and the individual and joint
significance level of the parameters. If all these indicators are significant, then it
confirms the presence of these expectations. These models may have problems of
serial correlation of errors and endogeneity, so it is necessary to apply appropriate
econometric corrections to obtain estimators on which statistical inference can be
made.

4.2. Rational Expectations

The rational expectations model was originally proposed by Muth (1961) and
is based on the assumption that individuals (at least on average) use all available
and relevant information when they make their predictions on the future behavior
of the variable studied (Ece 2001). This can be expressed by:

xe
t = E(xt/It−1) (22)

where xt represents the value of the variable in the period t; xe
t stands for the

expected value of the variable for the period t reported in (t−1) and It−1 symbolizes
the available and relevant information in (t − 1). The rational expectations must
satisfy four tests (Ece 2001) and (Da Silva 1998):

1. Unbiasedness : For the regression xt = α+ βxe
t + ut the hypothesis H0 : α =

0;β = 1 cannot be rejected.

2. Lack of serial correlations: E(utut−i) = 0, ∀i 6= 0

3. Efficiency: In the equation ut = β1xt−1+ β2xt−2 + · · · + βixt−i, i > 0; the
coefficients should not be significant.

4. Orthogonality: For the regression xt = α+βxe
t+γIt−1+ut where, γ represent

the effect of the information on the variable, the hypothesis H0 : α = 0;β =
1, γ = 0 cannot be rejected.

Some authors argue that orthogonality hypothesis contains the rest. There-
fore, is sufficient to prove the existence of this to demonstrate the rationality of
expectations (Da Silva 1998).

4.3. Endogeneity Problem and a Correction

Quantitative data for the expectations were calculated from the variable ob-
served, which was also used for the tests of rationality. This may generate en-
dogeneity problems that lead to inconsistent estimators. Then, to the covariance
matrix, Hansen & Hodrick (1980) propose, that, given an equation:

yt+k = βxt + ut,k (23)
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where yt+k is a variable k steps-ahead; xt is a row vector of T×p dimension (where
p is the number of parameters that may or may not include the intercept12 and
T is the number of observations) containing all the relevant information in the
period t and at least one of the variables is endogenous; β is a column vector of
p × 1 dimension and ut,k is the vector of residues, calculated by Ordinary Least
Squares (OLS). It is possible to make a correction to the covariance matrix Θ such
that:

Θ̂T = T (X′
TXT )

−1
X

′
T Ω̂TXT (X

′
TXT )

−1 (24)

with

XT =




x1

...

xT




And the symmetric Ω̂T matrix of T × T dimension, whose lower triangular
representation is:




R
T

u (0)

R
T

u (1) R
T

u (0)
...

. . .

R
T

u (k − 1)
. . .

0
. . .

...
. . .

0 · · · 0 R
T

u (k − 1) · · · R
T

u (1) R
T

u (0)




where

R
T

u (j) =
1

T

T∑

t=j+1

ût,kût−j,k

for
j ≥ 0, Ru(j) = Ru(−j)13

5. Empirical Results

We checked the four fundamental hypotheses of the rational expectations model
using estimates by OLS and the correction of the covariance matrix. The results
of these tests are found in the tables at the end.

The variable in the question 2, corresponde to the year-on-year variation rate
of the total sales index (denoted by St). In questions 9 and 11, we employ the year-
on-year variation of the Producer Price Index (PPI) and the year-on-year variation

12As was shown in the previous section, the unbiasedness and orthogonality tests include the
intercept. However, the efficiency test does not.

13See Hansen (1979)
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of the Producer Price Index – Producer and Consumer (PPI_P&C), nominated
in both cases as Pt. We denoted the lags of this variable as St−i (question 2) and
Pt−i (questions 9 and 11). The variable xe

t represents in the question 2 the sales
expectations, Se

t , and in the questions 9 and 11 ask for the inflation expectations
in raw materials and in products to be sold (in both cases P e

t ). For the efficiency
test we use as dependent variable the error term ut, which is equal to St − Se

t

(question 2) and Pt − P e
t (questions 9 and 11). We generated these errors from

the regression used in the unbiasedness test.

In the orthogonality test we use the one period lagged dependent variable14 in
all the questions. For the question 2, we use as information variables the monthly
variation of two periods lagged Market Exchange Rate (MERt−2), the year-on-
year variation of one period lagged PPI (PPIt−1)

15, and year-on-year variation of
the two periods lagged Manufacturing Industry Real Production Index (IPIt−2).
In the questions 9 and 11 we employ as information variables the MERt−2 and
the one period lagged Aggregated Monetary (M3t−1)

16.

In the Hansen and Hodrick correction, we use as the yt+k variables Pt, St and
ut. As xt we use: for the unbiasedness test, Se

t (question 2) and P e
t (questions

9 y 11); for the efficiency test, St−i (question 2) and Pt−i (questions 9 and 11)
and for the orthogonality tests St−1, PPIt−1, IPIt−2, MERt−2 (question 2) and
Pt−1, MERt−2 and M3t−1 (question 9 y 11). As ut,k variable we use the errors
generated for each of the OLS regressions of the rational test. Finally, k is equal
to 12, because in all the questions of the survey we ask about the behavior of the
variables in 12 months17.

5.1. Results of the Rational Test for the question 2

5.1.1. Results by OLS

Table 5 presents the results of the unbiasedness and serial correlation tests.
Only by methods MBS and uniform and normal CP we can reject the null hypoth-
esis of unbiasedness. In the hypothesis of serial correlation, the LM18 statistic
reveals that only in MBS there is evidence of serial correlation. Table 6 shows the

14For example see Ece (2001), Gramlich (1983), Keane & Runkle (1990), Mankiw & Wolfers
(2003), Pesaran (1985).

15This variables were used because they are indicators of domestic and foreign prices of the
products, which can affect sales expectations

16As reported by the Central Bank in its Inflation Report of September 2010 (Banco de la
República de Colombia 2010), these variables have shown a greater influence on the country’s
inflation level.

17To view the full survey format see
http://www.banrep.gov.co/economia/encuesta_expeco/Cuestionario_CNC.pdf

18Which tests the null hypothesis of existence of correlation between the errors of the regression
using a regression between the errors, as the dependent variable, and the variables of the equation
and the p times lagged errors, as independent variables. From this, the statistic LM = nR2 is
calculated, where n is the number of data in the regression of errors and R2 is the coefficient
of determination. This statistic approximates the Chi-square distribution with p degrees of
freedom. If this statistic is greater than the critical Chi-square, then it is possible to reject the
null hypothesis of no autocorrelation among the errors.
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results of the efficiency test. In all cases there is a relationship between the error
term and St−3. Additionally the errors in the uniform RQA show relations with
St−1 and the errors in normal RQA present relation with St−1 and St−2.

The results of the orthogonality tests using St−1 (Table 7), MERt−2 (Table 8),
PPIt−1 (Table 9), IPIt−2 (Table 10), and all the variables (Table 11), indicates
that in the case of St−1, for all of the data set is possible reject the null hypothesis.
For MERt−2 is possible reject the null hypothesis by MBS and uniform and normal
CP. In the case of PPIt−1 we cannot reject the orthogonality for uniform and
normal RQA. For IPIt−2 is possible reject the null hypothesis by MBS and uniform
and normal CP. Finally, with all the variables we can reject the orthogonality for
all the data sets.

5.1.2. Results by OLS with the Hansen and Hodrick Correction

Table 12 presents the results of the unbiasedness test with the correction of
Hansen and Hodrick. It is not possible to reject the existence of unbiasedness for
any of the data sets. The results of the efficiency tests (Table 13) show that there
is no evidence to reject this hypothesis in either case. The orthogonality test using
St−1 (Table 14), MERt−2 (Table 15), PPIt−1 (Table 16), IPIt−2 (Table 17) and
all the variables (Table 18) shows that we cannot reject the null hypothesis, for
any of the variables and data sets.

We did not test for serial correlation, since this cannot be corrected by the
Hansen and Hodrick method. However, we can say that this test is also satisfied,
because it is a corollary of the orthogonality, which is fulfilled for all methods.
Therefore, by extension, the serial correlation must be satisfied19.

5.2. Results of the Rational Test for the question 9

5.2.1. Results by OLS

Table 19 presents the results of the unbiasedness test and serial correlation.
For none of the cases it is possible to reject the null hypothesis of unbiasedness.
The LM statistic shows that there is serial correlation for all data sets. Table 20
reports the results of the efficiency test. In all the cases there is a relation between
the errors and Pt−1. For uniform and normal RQA there are also relation with
Pt−2Finally, MB and uniform and normal CP present relation with Pt−8.

The results of the orthogonality test using Pt−1 (Table 21), MERt−2 (Table
22), M3t−1 (Table 23), and all the variables (Table 24) show that for Pt−1 we can-
not accept the hypothesis of orthogonality, for any of the data sets. For MERt−2,
it is possible to reject the null hypothesis for MBS and normal and uniform CP.
In the case of M3t−1 we can not reject the null hypothesis, for all the data sets.
Finally, with all the variables, it is possible to reject the orthogonality for all the
methods.

19This reason is used to justify the non-existence of serial correlation for the other two ques-
tions.
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5.2.2. Results by OLS with the Hansen and Hodrick Correction

In Table 25, we present the results of the unbiasedness test with the Hansen
and Hodrick correction. There is not evidence to reject this null hypothesis for any
model. The efficiency test (Table 26) shows that we can not reject this hypothesis.
The results of the orthogonality test with Pt−1 (Table 27), MERt−2 (Table 28),
M3t−1 (Table 29), and all the variables (Table 30) show that we cannot reject the
null hypothesis, for any of the data sets and variables.

5.3. Results of the Rational Test for the question 11

5.3.1. Results by OLS

The Table 31 shows the results of the unbiasedness and serial correlation test.
Only for the case of MBS, we can reject the null hypothesis of unbiasedness. The
LM statistic shows that there is serial correlation for all data sets. Table 32
presents the results of the efficiency test. For all methods there is a relationship
between errors and Pt−1. For normal and uniform RQA there is also a relationship
with Pt−2.

The results of the orthogonality test using Pt−1 (Table 33), MERt−2 (Table
34), M3t−1 (Table 35), and all the variables (Table 36) show that for the case of
Pt−1 we can reject the null hypothesis for all the data sets. In the case of MERt−2

is possible to reject the null hypothesis for MBS and normal and uniform CP. In
the case of M3t−1 we can not reject the null hypothesis for all the data sets.
Finally, with all the variables, it is possible to reject the orthogonality for all the
methods.

5.3.2. Results by OLS with the Hansen and Hodrick Correction

In Table 37 we present the results of the unbiasedness test with the Hansen
and Hodrick correction. There is not evidence to reject this null hypothesis for any
model. The efficiency test (Table 38) shows that we cannot reject this hypothesis.
The results of the orthogonality test with Pt−1 (Table 39), MERt−2 (Table 40),
M3t−1 (Table 41), and all the variables (Table 42) show that we cannot reject the
null hypothesis, for any of the variables and data sets.

6. Conclusions and Recommendations

In order to identify the employers expectation formation process, we quantified
the qualitative responses to questions on economic activity and prices in the Eco-
nomic Expectation Survey (EES), applied by the division of Economic Studies of
the central bank of Colombia, from October 2005 to January 2010. We used the
conversion methods of Modified Balance Statistical, Carlson-Parkin with standard
normal distribution and uniform distribution [0, 1] and the method proposed by
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the Regional Quantitative Analysis Group (RQA) at the University of Barcelona
with standard normal distribution and uniform distribution [0, 1].

The evaluation of the quantification methods was performed using four statis-
tics to analyze their predictability: mean absolute error (MAE), absolute percent-
age error of the median (MAPE), Root Mean Square Error (RESM) and Theil U
coefficient (TU1). According to the criteria above, for the four analyzed variables,
it was found that the method with the best predictability was the one proposed
by the RQA group with standard normal distribution, followed by the uniform
distribution [0, 1]. However, due to the restriction of information on this method,
it is suggested to take into account the methods of the MBS and CP, in the quan-
tification of the variables that do not have all available information.

Subsequently, we confirmed the existence of rational expectations for three
questions of the EES. By applying the correction proposed by Hansen and Ho-
drick for the endogeneity problem, it was found that the unbiasedness, efficiency,
orthogonality and serial correlation tests were fulfilled for the three questions, con-
sidering the five methods of quantification. With these results we can conclude
that the business expectations of the variation in sales, prices of raw materials and
prices of domestic production in Colombia are compatible with the hypothesis of
rational expectations.

However, this document was an initial approach to the quantification and ver-
ification of the rational expectations. Further studies on the topic should explore
other methodologies Kalman filter or considering parameters that change over
time. Additionally, other papers can implement other econometric methods for
testing rationality hypotheses, such as maximum likelihood estimators or restricted
cointegration tests.

Table 5: Unbiasedness and Serial Correlation tests by OLS question 2.
St= α + βSe

t+ut

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

α -0.3752 -0.3016 -13.3096***‡ -6.7867*** -1.3211***

(0.9048)† (0.9985) (2.4780) (1.8139) (2.3076)

β 1.0168 1.0101*** 2.359*** 1.6852*** 2.3574***

(0.0766) (0.0851) (0.2464) (0.1747) (0.2299)

R2 0.7789 0.738 0.647 0.6506 0.6777

adjustedR2 0.7745 0.7328 0.6399 0.6436 0.6712

F -statistic 176.2*** 140.8*** 91.64*** 93.09*** 105.1***

Wald test‖

χ2 0.2238 0.1513 30.439*** 15.422*** 34.864***

F 0.1119 0.0756 15.219*** 7.711*** 17.432***

LM.OSC 12 †† 18.4087 17.2794 17.7599 16.1119 21.5569**

N 52 52 52 52 52
‖ Wald Test verifies the unbiasedness by H0:α= 0,β= 1 . If H0 it is rejected

(statistically significant) then the rational hypothesis is rejected.
† Standard errors in parentheses
‡ The * denotes if the the estimator is significant at 10% (*), 5% (**) or 1% (***)
†† OSC = Order ... Serial Correlation; testing the H0 : no correlation

among the errors. If H0 is rejected then the rational hypothesis is rejected.
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Table 6: Efficiency tests by OLS question 2.
ut= β1St−1+β2St−2+β3St−3+β4St−4+β5St−5+β6St−6+β7St−7+β8St−8+υt

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

β1 0.2939*‡ 0.3057* 0.0419 0.0705 -0.0521

(0.1720)† (0.1891) (0.2091) (0.2075) (0.2053)

β2 -0.3094* -0.2471 0.3332 0.3166 0.2743

(0.1730) (0.1903) (0.2104) (0.2088) (0.2065)

β3 0.3450* 0.3838* 0.3542* 0.4126* 0.4494*

(0.1874) (0.2061) (0.2279) (0.2261) (0.2237)

β4 -0.0397 -0.0413 0.1501 0.1015 0.1359

(0.1937) (0.2130) (0.2355) (0.2337) (0.2312)

β5 -0.0384 -0.1114 -0.1049 -0.2137 -0.1689

(0.2022) (0.2224) (0.2459) (0.2440) (0.2414)

β6 0.0103 -0.0398 -0.3004 -0.2462 -0.1979

(0.1686) (0.1854) (0.2050) (0.2034) (0.2012)

β7 -0.2527 -0.2531 -0.2627 -0.2658 -0.2633

(0.1588) (0.1746) (0.1931) (0.1916) (0.1895)

β8 0.0243 0.0526 -0.1140 -0.0833 -0.0990

(0.1554) (0.1709) (0.1889) (0.1875) (0.1855)

R2 0.2466 0.2311 0.3024 0.306 0.266

adjusted R2 0.1096 0.09124 0.1756 0.1799 0.1326

F -statistic 1.8 1.653 2.384** 2.425** 1.994

N 52 52 52 52 52
† Standard errors in parentheses
‡ The * denotes if the the estimator is significant at 10% (*), 5% (**) or 1% (***)

Table 7: Orthogonality test with St−1 as information variable, for question 2.
St= α + βSe

t + γSt−1+ut

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

α -0.1833 -0.09118 -4.4334*‡ -2.0916 -4.1608*

(0.8064)† (0.84366) (2.3257) (1.5738) (2.4478)

β 0.5371*** 0.44677** 0.7877** 0.5415** 0.7722**

(0.1444) (0.14174) (0.3092) (0.2283) (0.3385)

γ 0.4652*** 0.54731*** 0.6577*** 0.6621*** 0.6476***

(0.1235) (0.11872) (0.1038) (0.1076) (0.1166)

R2 0.8286 0.8173 0.8059 0.8028 0.8022

adjustedR2 0.8216 0.8098 0.798 0.7948 0.7941

F -statistic 118.4*** 109.6*** 101.7*** 99.76*** 99.34***

Wald test‖

χ2 14.479*** 21.466*** 94.375*** 64.633*** 86.501***

F 4.8265*** 7.1554** 31.458*** 21.544*** 28.834***

N 52 52 52 52 52
‖ Wald Test verifies the unbiasedness by H0:α= 0,β= 1, γ= 0 . If H0 it is rejected

(statistically significant) then the rational hypothesis is rejected.
† Standard errors in parentheses
‡ The * denotes if the the estimator is significant at 10% (*), 5% (**) or 1% (***)

Table 8: Orthogonality test with MERt−2 as information variable, for question 2.
St= α + βSe

t+γMERt−2+ut

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

α -0.3810 -0.3105 -13.3414***‡ -6.8124*** -13.3343***

(0.9138)† (1.0085) (2.5070) (1.8343) (2.3334)

β 1.0180*** 1.0119*** 2.3631*** 1.6888*** 2.3722***

(0.07754) (0.08618) (0.24963) (0.1769) (0.23296)

γ 0.02916 0.03622 0.03219 0.0379 0.08637

(0.12527) (0.13642) (0.15844) (0.1577) (0.15167)

R2 0.7792 0.7384 0.6473 0.651 0.6798

adjusted R2 0.7702 0.7277 0.6329 0.6367 0.6667

F -statistic 86.45*** 69.15*** 44.96*** 45.69*** 52.01***

Wald test‖

χ2 0.2738 0.2189 29.896*** 15.189*** 34.717***

F 0.0913 0.073 9.9654*** 5.0631*** 11.572***

N 52 52 52 52 52
‖ Wald Test verifies the unbiasedness by H0:α= 0,β= 1, γ= 0 . If H0 it is rejected

(statistically significant) then the rational hypothesis is rejected.
† Standard errors in parentheses
‡ The * denotes if the the estimator is significant at 10% (*), 5% (**) or 1% (***)
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Table 9: Orthogonality test with PPIt−1 as information variable, for question 2.
St= α + βSe

t+γPPIt−1+ut

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

α -0.4232 -0.3362 -14.6134***‡ -8.0029*** -15.7273***

(1.0643)† (1,1712) (2.6991) (2.0440) (2.5210)

β 1.0173*** 1.0105*** 2.4171*** 1.7301*** 2.4879***

(0.0775) (0.0862) (0.2502) (0.1772) (0.2304)

γ 0.0122 0.0088 0.2107 0.2221 0.3569**

(0.1395) (0.1519) (0.1767) (0.1758) (0.1669)

R2 0.779 0.738 0.6569 0.6616 0.7052

adjusted R2 0.7699 0.7273 0.6429 0.6478 0.6931

F -statistic 86.34 69.02*** 46.92*** 47.9*** 58.6***

Wald test‖

χ2 0.2271 0.1516 32.116*** 17.202*** 41.925***

F 0.0757 0.0505 10.705*** 5.7341*** 13.975***

N 52 52 52 52 52
‖ Wald Test verifies the unbiasedness by H0:α= 0,β= 1, γ= 0 . If H0 it is rejected

(statistically significant) then the rational hypothesis is rejected.
† Standard errors in parentheses
‡ The * denotes if the the estimator is significant at 10% (*), 5% (**) or 1% (***)

Table 10: Orthogonality test with IPIt−2 as information variable, for question 2.
St= α + βSe

t+γIPIt−2+ut

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

α 0.7586 1.4121 -5.1226 -1.2549 -5.9224*‡

(1.2175)† (1.3030) (3.0658) (2.2896) (3.3640)

β 0.8496*** 0.7583*** 1.3824*** 0.9870*** 1.4906***

(0.1432) (0.1522) (0.3358) (0.2560) (0.3746)

γ 0.1434 0.2138* 0.3671*** 0.3559*** 0.3103***

(0.1041) (0.1084) (0.0959) (0.1027) (0.1098)

R2 0.7872 0.7573 0.7282 0.7194 0.7229

adjusted R2 0.7785 0.7474 0.7171 0.7079 0.7116

F -statistic 90.61*** 76.44*** 65.65*** 62.81*** 63.91***

Wald test‖

χ2 2.1241 4.05 53.397*** 30.839*** 47.736***

F 0.708 1.35 17.799*** 10.280*** 15.912***

N 52 52 52 52 52
‖ Wald Test verifies the unbiasedness by H0:α= 0,β= 1, γ= 0 . If H0 it is rejected

(statistically significant) then the rational hypothesis is rejected.
† Standard errors in parentheses
‡ The * denotes if the the estimator is significant at 10% (*), 5% (**) or 1% (***)

Table 11: Orthogonality test with St−1, MERt−2, PPIt−1 and IPIt−2 as information
variables, for question 2.

St= α + βSe
t+γ1St−1+γ2MERt−2+γ3PPIt−1+γ4IPIt−2+ut

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

α 0.3742 0.6892 -2.8770 -0.7323 -2.7849

(1.1816)† (1.2228) (2.8390) (2.0988) (3.3901)

β 0.49085***‡ 0.38402** 0.66780* 0.43262* 0.65278

(0.1693) (0.1646) (0.3378) (0.2560) (0.4120)

γ1 0.4511*** 0.5179*** 0.5445*** 0.5638*** 0.5445***

(0.1353) (0.1327) (0.1337) (0.1350) (0.1465)

γ2 0.0326 0.0389 0.0241 0.0248 0.0259

(0.1235) (0.1269) (0.1292) (0.1306) (0.1312)

γ3 -0.0409 -0.0428 0.0488 0.0393 0.0776

(0.1454) (0.1497) (0.1563) (0.1581) (0.1674)

γ4 0.0517 0.0790 0.1529 0.1472 0.1447

(0.1079) (0.1105) (0.1023) (0.1051) (0.1061)

R2 0.8302 0.8205 0.8149 0.8109 0.8101

adjusted R2 0.8118 0.8009 0.7948 0.7904 0.7894

F -statistic 44.99*** 42.04** 40.51*** 39.46*** 39.24***

Wald test‖

χ2 14.168** 21.325*** 95.162*** 65.25*** 86.506***

F 2.3613** 3.5542*** 15.860*** 10.875*** 14.418***

N 52 52 52 52 52
‖ Wald Test verifies the unbiasedness by H0:α= 0,β= 1, γ= 0 . If H0 it is rejected

(statistically significant) then the rational hypothesis is rejected.
† Standard errors in parentheses
‡ The * denotes if the the estimator is significant at 10% (*), 5% (**) or 1% (***)
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Table 12: Unbiasedness tests with Hansen and Hodrick correction question 2.
St= α + βSe

t+ut

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

α -0.3752 -0.3016 -13.3096 -6.7867 -13.2109

(7.2319)† (8.5205) (31.1082) (20.4776) (29.2455)

β 1.0168*‡ 1.0101 2.3591 1.6852 2.3574

(0,5966) (0.6957) (2.9707) (1.8725) (2,7932)

R2 0.7789 0.738 0.647 0.6506 0.6777

adjusted R2 0.7745 0.7328 0.6399 0.6436 0.6712

Wald test‖

χ2 0.003486278 0.001466486 0.392368 0.2437437 0.4402235

N 52 52 52 52 52
‖ Wald Test verifies the unbiasedness by H0:α= 0,β= 1 . If H0 it is rejected

(statistically significant) then the rational hypothesis is rejected.
† Standard errors in parentheses
‡ The * denotes if the the estimator is significant at 10% (*), 5% (**) or 1% (***)

The correction of Hansen & Hodrick (1980) was applied to the covariance matrix

Table 13: Efficiency tests with Hansen and Hodrick correction question 2.
ut= β1St−1+β2St−2+β3St−3+β4St−4+β5St−5+β6St−6

+β7St−7+β8St−8+υt

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

β1 0.2939 0.3057 0.0419 0.0705 -0.0521

(1.1371)† (1.2570) (1.3959) (1.3692) (1.3897)

β2 -0.3094 -0.2471 0.3332 0.3166 0.2743

(1.1487) (1.2589) (1.3909) (1.3777) (1.3560)

β3 0.3450 0.3838 0.3542 0.4125 0.4494

(1.2488) (1.3636) (1.5038) (1.4907) (1.4568)

β4 -0.0397 -0.0413 0.1501 0.1015 0.1359

(1.2757) (1.3972) (1.5686) (1.5418) (1.5316)

β5 -0.0384 -0.1114 -0.1049 -0.2137 -0.1689

(1.3369) (1.4661) (1.6424) (1.6283) (1.5956)

β6 0.0102 -0.0398 -0.3004 -0.2462 -0.1979

(1.1377) (1.2423) (1.3559) (1.3502) (1.3021)

β7 -0.2527 -0.2531 -0.2627 -0.2658 -0.2633

(1.0567) (1.1501) (1.2481) (1.2397) (1.2079)

β8 0.0242 0.0526 -0.1140 -0.0833 -0.0990

(1.0405) (1.1430) (1,2523) (1.2431) (1.2147)

R2 0.2466 0.2311 0.3024 0.306 0.266

adjusted R2 0.1096 0.09124 0.1756 0.1799 0.1326

N 52 52 52 52 52
† Standard errors in parentheses

The correction of Hansen & Hodrick (1980) was applied to the covariance matrix

Table 14: Orthogonality test with St−1 as information variable and Hansen Hodrick
correction question 2.

St= α + βSe
t+γSt−1+ut

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

α -0.1832 -0.0911 -4.4331 -2.0916 -4.1608

(5.5455)† (5.8321) (16.2375) (10.9572) (17.0546)

β 0.5370 0.4467 0.7876 0.5414 0.7721

(1.0447) (1.0154) (2.0544) (1.5138) (2.2452)

γ 0.4651 0.5473 0.6577 0.6620 0.6475

(0.8946) (0.8517) (0.702) (0.7315) (0.7776)

R2 0.8286 0.8173 0.8059 0.8028 0.8022

adjusted R2 0.8216 0.8098 0.798 0.7948 0.7941

Wald test‖

χ2 0.4678 0.7101 0.9642 0.9474 0.7634

N 52 52 52 52 52
‖ Wald Test verifies the unbiasedness by H0:α= 0,β= 1, γ= 0 . If H0 it is rejected

(statistically significant) then the rational hypothesis is rejected.
† Standard errors in parentheses

The correction of Hansen & Hodrick (1980) was applied to the covariance matrix
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Table 15: Orthogonality test with MERt−2 as information variable and Hansen Ho-
drick correction question 2.

St= α + βSe
t+γMERt−2+ut

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

α -0.3810 -0.3105 -13.3414 -6.8123 -13.3343

(7.2155)† (8.5095) (31.4805) (20.6374) (29.6241)

β 1.0180**‡ 1.0119* 2.3631 1.6887 2.3722

(0.5987) (0.7001) (3.0209) (1.8999) (2.8478)

γ 0.0291 0.0362 0.0321 0.0379 0.0863

(0,8810) (0.9671) (1.1653) (1.1535) (1.1263)

R2 0.7792 0.7384 0.6473 0.651 0.6798

adjusted R2 0.7702 0.7277 0.6329 0.6367 0.6667

Wald test‖

χ2 0.0047 0.0030 0.3839 0.2414 0.4406

N 52 52 52 52 52
‖ Wald Test verifies the unbiasedness by H0:α= 0,β= 1, γ= 0 . If H0 it is rejected

(statistically significant) then the rational hypothesis is rejected.
† Standard errors in parentheses
‡ The * denotes if the the estimator is significant at 10% (*), 5% (**) or 1% (***)

The correction of Hansen & Hodrick (1980) was applied to the covariance matrix

Table 16: Orthogonality test with PPIt−1 as information variable and Hansen Hodrick
correction question 2.

St = α + βSe
t + γPPIt−1+ut

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

α -0.4232 -0.3362 -14.6134 -8.0028 -15.7273

(8.4651)† (10.0479) (35.1934) (23.6066) (33.1838)

β 1.0173**‡ 1.0105* 2.4171 1.7300 2.4878

(0.5996) (0.7006) (3.0898) (1.9161) (2.8738)

γ 0.0122 0.0088 0.2107 0.2220 0.3569

(1.0047) (1.1431) (1.5247) (1.4676) (1.4876)

R2 0.779 0.738 0.6569 0.6616 0.7052

adjusted R2 0.7699 0.7273 0.6429 0.6478 0.6931

Wald test‖

χ2 0.0034 0.0014 0.4018 0.2830 0.5502

N 52 52 52 52 52
‖ Wald Test verifies the unbiasedness by H0:α= 0,β= 1, γ= 0 . If H0 it is rejected

(statistically significant) then the rational hypothesis is rejected.
† Standard errors in parentheses
‡ The * denotes if the the estimator is significant at 10% (*), 5% (**) or 1% (***)

The correction of Hansen & Hodrick (1980) was applied to the covariance matrix

Table 17: Orthogonality test with IPIt−2 as information variable and Hansen Hodrick
correction question 2.

St= α + βSe
t+γIPIt−2+ut

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

α 0.7585 1.4121 -5.1226 -1.2548 -5.9224

(9.6215)† (10.4423) (31.4487) (21.7297) (35.5760)

β 0.8495 0.7582 1.3824 0.9870 1.4906

(1.1024) (1.1700) (3.2767) (2.2757) (3.8010)

γ 0.1433 0.2138 0.3671 0.3558 0.3103

(0.7542) (0.7857) (0.6786) (0.7180) (0.8198)

R2 0.7872 0.7573 0.7282 0.7194 0.7229

adjusted R2 0.7785 0.7474 0.7171 0.7079 0.7116

Wald test‖

χ2 0.0609 0.1350 0.3329 0.2490 0.1876

N 52 52 52 52 52
‖ Wald Test verifies the unbiasedness by H0:α= 0,β= 1, γ= 0 . If H0 it is rejected

(statistically significant) then the rational hypothesis is rejected.
† Standard errors in parentheses

The correction of Hansen & Hodrick (1980) was applied to the covariance matrix
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Table 18: Orthogonality test with St−1, MERt−2, PPIt−1, IPIt−2 as information vari-
able and Hansen Hodrick correction question 2.

St= α + βSe
t+γ1St−1+γ2MERt−2+γ3PPIt−1+γ4IPIt−2+ut

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

α 0.3742 0.6892 -2.8770 -0.7323 -2.7849

(8.1915)† (8.5302) (20.4118) (14.6932) (24.8905)

β 0.4908 0.3840 0.6677 0.4326 0.6527

(1.1798) (1.1340) (2.2492) (1.6495) (2.8157)

γ1 0.4511 0.5179 0.5445 0.5638 0.5445

(0.9669) (0.9530) (0.9798) (0.9846) (1.0352)

γ2 0.0326 0.0389 0.0241 0.0248 0.0259

(0.8280) (0.8467) (0.8421) (0.8521) (0.8569)

γ3 -0.0409 -0.0428 0.0488 0.0393 0.0776

(0.9562) (0.9895) (1.0622) (1.0583) (1.1453)

γ4 0.0517 0.0790 0.1529 0.1471 0.1447

(0.7599) (0.7846) (0.7518) (0.7635) (0.7811)

R2 0.8302 0.8205 0.8149 0.8109 0.8101

adjusted R2 0.8118 0.8009 0.7948 0.7904 0.7894

Wald test‖

χ2 0.4140 0.6111 0.3948 0.4882 0.3443

N 52 52 52 52 52
‖ Wald Test verifies the unbiasedness by H0:α= 0,β= 1, γ= 0 . If H0 it is rejected

(statistically significant) then the rational hypothesis is rejected.
† Standard errors in parentheses

The correction of Hansen & Hodrick (1980) was applied to the covariance matrix

Table 19: Unbiasedness and Serial Correlation tests by OLS question 9.
Pt= α + βPe

t+ut
Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

α 0.1300 0.1069 -2.7941 -1.4007 -2.8873

(0.4499)† (0.4619) (1.6719) (1.3892) (1.8107)

β 0.9566***‡ 0.9632*** 1.8114*** 1.4075*** 1.8393***

(0.09604) (0.09929) (0.4649) (0.3785) (0.5061)

R2 0.665 0.6531 0.2329 0.2166 0.2089

adjusted R2 0.6583 0.6461 0.2176 0.201 0.1931

F -statistic 99.24*** 94.12*** 15.18*** 13.83*** 13.21***

Wald test‖

χ2 0.2085 0.1421 3.0477 1.1596 2.7509

F 0.1043 0.071 1.5238 0.5798 1.3755

LM OSC 12†† 38.8449*** 37.7988*** 43.0731*** 43.241*** 44.9366***

N 52 52 52 52 52
‖ Wald Test verifies the unbiasedness by H0:α= 0,β= 1 . If H0 it is rejected

(statistically significant) then the rational hypothesis is rejected.
† Standard errors in parentheses
‡ The * denotes if the the estimator is significant at 10% (*), 5% (**) or 1% (***)
†† OSC = Order ... Serial Correlation; testing the H0 : no correlation

among the errors. If H0 is rejected then the rational hypothesis is rejected.
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Table 20: Efficiency tests by OLS question 9.
ut= β1Pt−1+β2Pt−2+β3Pt−3+β4Pt−4+β5Pt−5+β6Pt−6+β7Pt−7+β8Pt−8+υt

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

β1 1.0853***‡ 1.0675*** 0.6612* 0.7173* 0.6594*

(0.2527)† (0.2676) (0.3649) (0.3622) (0.3598)

β2 -1.1349** -1.13470** -0.4884 -0.5771 -0.4770

(0.4847) (0.5133) (0.6998) (0.6945) (0.6901)

β3 0.5139 0.5418 0.4260 0.4874 0.4125

(0.5198) (0.5505) (0.7504) (0.7448) (0.7400)

β4 -0.5755 -0.6271 -0.3916 -0.4130 -0.3199

(0.5345) (0.5659) (0.7715) (0.7657) (0.7608)

β5 0.6086 0.6961 0.8154 0.8519 0.7431

(0.5357) (0.5673) (0.7734) (0.7676) (0.7627)

β6 -0.5728 -0.6346 -0.8417 -0.8800 -0.8253

(0.5378) (0.5695) (0.7763) (0.7705) (0.7656)

β7 0.1490 0.2260 0.7968 0.7824 0.8490

(0.5166) (0.5470) (0.7457) (0.7401) (0.7353)

β8 -0.0091 -0.0600 -0.7338* -0.7278* -0.7923*

(0.2804) (0.2969) (0.4048) (0.4018) (0.3992)

R2 0.5088 0.4681 0.553 0.5689 0.5785

adjusted R2 0.4195 0.3714 0.4718 0.4905 0.5019

F -statistic 5.698*** 4.841*** 6.805*** 7.257*** 7.549***

N 52 52 52 52 52
† Standard errors in parentheses
‡ The * denotes if the the estimator is significant at 10% (*), 5% (**) or 1% (***)

Table 21: Orthogonality test with Pt−1 as information variable question 9.
Pt= α + βPe

t+γPt−1+ut

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

α 0.1104 0.0875 -1.679***† -1.1334** -1.9572***

(0.2730)‡ (0.2748) (0.613) (0.5122) (0.6422)

β 0.0638 0.0814 0.5937*** 0.4288*** 0.6706***

(0.1121) (0.1091) (0.1825) (0.1498) (0.1895)

γ 0.8954*** 0.8844*** 0.8835*** 0.8901*** 0.8870***

(0.0961) (0.0920) (0.0489) (0.0498) (0.0473)

R2 0.8791 0.8797 0.8999 0.8957 0.9031

adjusted R2 0.8742 0.8747 0.8958 0.8915 0.8991

F -statistic 178.1*** 179.1*** 220.3*** 210.4*** 228.2***

Wald test‖

χ2 87.34*** 92.66*** 349.38*** 327.59*** 372.84***

F 29.113*** 30.886*** 116.46*** 109.20*** 124.28***

N 52 52 52 52 52
‖ Wald Test verifies the unbiasedness by H0:α= 0,β= 1, γ= 0 . If H0 it is rejected

(statistically significant) then the rational hypothesis is rejected.
† Standard errors in parentheses
‡ The * denotes if the the estimator is significant at 10% (*), 5% (**) or 1% (***)

Table 22: Orthogonality test with MERt−2 as information variable question 9.
Pt= α + βPe

t+γMERt−2+ut

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

α 0.2502 0.2348 -1.7089 -0.5015 -1.7879

(0.4872)† (0.5006) (1.6635) (1.3797) (1.7769)

β 0.9260***‡ 0.9305*** 1.5157*** 1.1661*** 1.5404***

(0.1070) (0.1107) (0.4618) (0.3755) (0.4959)

γ 0.0547 0.05736 0.2638** 0.2687** 0.2790**

(0.0824) (0.0838) (0.1111) (0.1122) (0.1113)

R2 0.668 0.6563 0.312 0.2988 0.2989

adjusted R2 0.6544 0.6423 0.2839 0.2702 0.2702

F -statistic 49.29*** 46.79*** 11.11*** 10.44*** 10.44***

Wald test‖

χ2 0.6483 0.6082 8.9621** 7.0104* 9.3267**

F 0.2161 0.2027 2.9874** 2.3368* 3.1089**

N 52 52 52 52 52
‖ Wald Test verifies the unbiasedness by H0:α= 0,β= 1, γ= 0 . If H0 it is rejected

(statistically significant) then the rational hypothesis is rejected.
† Standard errors in parentheses
‡ The * denotes if the the estimator is significant at 10% (*), 5% (**) or 1% (***)
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Table 23: Orthogonality test with M3t−1 as information variable question 9.
Pt= α + βPe

t+γM3t−1+ut

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

α 0.2493 0.2256 -2.8228 -1.4501 -2.9258

(0.4828) † (0.4947) (1.6926) (1.4140) (1.8322)

β 0.9695*** ‡ 0.9765*** 1.7966*** 1.3939*** 1.8203***

(0.0982) (0.1016) (0.4738) (0.3852) (0.5149)

γ -0.1315 -0.1321 0.0638 0.0772 0.0832

(0.1865) (0.1899) (0.2812) (0.2838) (0.2851)

R2 0.6683 0.6565 0.2337 0.2178 0.2103

adjusted R2 0.6548 0.6424 0.2025 0.1859 0.1781

F -statistic 49.37*** 46.82*** 7.473*** 6.823*** 6.525***

Wald test‖

χ2 0.7038 0.6247 3.0414 1.2123 2.7859

F 0.2346 0.2082 1.0138 0.4041 0.9286

N 52 52 52 52 52
‖ Wald Test verifies the unbiasedness by H0:α= 0,β= 1, γ= 0 . If H0 it is rejected

(statistically significant) then the rational hypothesis is rejected.
† Standard errors in parentheses
‡ The * denotes if the the estimator is significant at 10% (*), 5% (**) or 1% (***)

Table 24: Orthogonality test with Pt−1, MERt−2, M3t−1 as information variable ques-
tion 9.

Pt= α + βPe
t+γ1Pt−1 + γ2MERt−2 + γ

3
M3t−1+ut

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

α 0.1691 0.1473 -1.6066***‡ -1.0665* -1.8822***

(0.3251)† (0.3270) (0.6523) (0.5528) (0.6785)

β 0.0422 0.0617 0.5815*** 0.4173*** 0.6586***

(0.1186) (0.1155) (0.1887) (0.154822) (0.1953)

γ1 0.8955*** 0.8835*** 0.8760*** 0.8819*** 0.8789***

(0.0990) (0.0948) (0.0526) (0.0536) (0.0512)

γ2 0.0350 0.0333 0.0200 0.0217 0.0212

(0.0514) (0.0514) (0.0467) (0.0476) (0.0458)

γ3 0.0199 0.0162 -0.0001 0.0053 0.0001

(0.1179) (0.1176) (0.1061) (0.1082) (0.1043)

R2 0.8805 0.8809 0.9003 0.8962 0.9035

adjusted R2 0.8703 0.8708 0.8918 0.8874 0.8953

F -statistic 86.58*** 86.91*** 106.1*** 101.5*** 110***

Wald test‖

χ2 85.322*** 90.3*** 336.69*** 316*** 359.56***

F 17.064*** 18.06*** 67.337*** 63.2*** 71.912***

N 52 52 52 52 52
‖ Wald Test verifies the unbiasedness by H0:α= 0,β= 1, γ= 0 . If H0 it is rejected

(statistically significant) then the rational hypothesis is rejected.
† Standard errors in parentheses
‡ The * denotes if the the estimator is significant at 10% (*), 5% (**) or 1% (***)

Table 25: Unbiasedness tests with Hansen and Hodrick correction question 9.
Pt= α + βPe

t+ut

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

α 0.1300 0.1069 -2.7941 -1.4006 -2.8872

(4.6061)† (4.7575) (23.8860) (19.3813) (26.4556)

β 0.9566 0.9632 1.8114 1.4074 1.8392

(0.8196) (0.8544) (6.4540) (5,1573) (7,1860)

R2 0.665 0.6531 0.2329 0.2166 0.2089

adjusted R2 0.6583 0.6461 0.2176 0.201 0.1931

Wald test‖

χ2 0.0035 0.0023 0.0294 0.0114 0.0255

N 52 52 52 52 52
‖ Wald Test verifies the unbiasedness by H0:α= 0,β= 1 . If H0 it is rejected

(statistically significant) then the rational hypothesis is rejected.
† Standard errors in parentheses

The correction of Hansen & Hodrick (1980) was applied to the covariance matrix
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Table 26: Efficiency tests with Hansen and Hodrick correction question 9.
ut= β1Pt−1+β2Pt−2+β3Pt−3+β4Pt−4+β5Pt−5+β6Pt−6+β7Pt−7+β8Pt−8+υt

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

β1 1.0853 1.0674 0.6611 0.7173 0.6593

(1.6476)† (1.7389) (2.2721) (2,2610) (2,2282)

β2 -1.1349 -1.1347 -0.4884 -0.5770 -0.4770

(2.8641) (3.0105) (3.8336) (3,8159) (3,7332)

β3 0.5139 0.5418 0.4260 0.4874 0.4125

(2.7332) (2.8858) (3.9358) (3,9090) (3,8289)

β4 -0.5755 -0.6271 -0.3916 -0.4129 -0.3199

(2.7601) (2.9172) (3.9647) (3,9462) (3,8422)

β5 0.6086 0.6961 0.8153 0.8518 0.7430

(2.8105) (2.9667) (3.9029) (3,8920) (3,7725)

β6 -0.5728 -0.6346 -0.8417 -0.8799 -0.8252

(3.0761) (3.2309) (4.0643) (4,0547) (3,9467)

β7 0.1490 0.2260 0.7967 0.7824 0.8490

(3.1474) (3.2958) (3.9544) (3,9540) (3,8434)

β8 -0.0091 -0.0600 -0.7338 -0.7278 -0.7923

(1.8502) (1.9480) (2.4722) (2,4648) (2,4242)

R2 0.5088 0.4681 0.553 0.5689 0.5785

adjusted R2 0.4195 0.3714 0.4718 0.4905 0.5019

N 52 52 52 52 52

† Standard errors in parentheses

The correction of Hansen & Hodrick (1980) was applied to the covariance matrix

Table 27: Orthogonality test with Pt−1 as information variable and Hansen Hodrick
correction question 9.

Pt= α + βPe
t+γPt−1+ut

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

α 0.1104 0.0875 -1.6796 -1.1334 -1.9572

(2.5251)† (2.5428) (5.8454) (4.8321) (6.2624)

β 0.0638 0.0814 0.5937 0.4288 0.6706

(0.9506) (0.9352) (1.7178) (1.4046) (1.8168)

γ 0.8954 0.8844 0.8834**‡ 0.8900** 0.8870**

(0.8640) (0.8284) (0.3876) (0.3987) (0,3726)

R2 0.8791 0.8797 0.8999 0.8957 0.9031

adjusted R2 0.8742 0.8747 0.8958 0.8915 0.8991

Wald test‖

χ2 2.0460 2.1057 5.3352 5.2044 5.7971

N 52 52 52 52 52

‖ Wald Test verifies the unbiasedness by H0:α= 0,β= 1, γ= 0 . If H0 it is rejected

(statistically significant) then the rational hypothesis is rejected.
† Standard errors in parentheses
‡ The * denotes if the the estimator is significant at 10% (*), 5% (**) or 1% (***)

The correction of Hansen & Hodrick (1980) was applied to the covariance matrix

Table 28: Orthogonality test with MERt−2 as information variable and Hansen Ho-
drick correction question 9.

Pt= α + βPe
t+γMERt−2+ut

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

α 0.2502 0.2348 -1.7088 -0.5014 -1.7879

(4.7485)† (4.8909) (21.6063) (17.4986) (23.5648)

β 0.9260 0.9305 1.5157 1.1661 1.5404

(0.8620) (0.8935) (5.8503) (4.6708) (6,4124)

γ 0.0547 0.0573 0.2637 0.2687 0.2790

(0.5724) (0.5757) (0.6934) (0.7026) (0.6979)

R2 0.668 0.6563 0.312 0.2988 0.2989

adjusted R2 0.6544 0.6423 0.2839 0.2702 0.2702

Wald test‖

χ2 0.0193 0.0182 0.1587 0.1483 0.1727

N 52 52 52 52 52
‖ Wald Test verifies the unbiasedness byH0:α= 0,β= 1γ = 0 . If H0 it is rejected

(statistically significant) then the rational hypothesis is rejected.
† Standard errors in parentheses

The correction of Hansen & Hodrick (1980) was applied to the covariance matrix
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Table 29: Orthogonality test with M3t−2 as information variable and Hansen Hodrick
correction question 9.

Pt= α + βPe
t+γM3t−1+ut

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

α 0.2493 0.2255 -2.8228 -1.4501 -2.9258

(4.7699)† (4.9244) (23.9604) (19.5093) (26.5471)

β 0.9695 0.9764 1.7966 1.3939 1.8203

(0.8256) (0.8582) (6.4563) (5.1604) (7.1712)

γ -0.1315 -0.1321 0.0638 0.0772 0.0832

(1.2956) (1.3116) (1.8766) (1.9078) (1,8920)

R2 0.6683 0.6565 0.2337 0.2178 0.2103

adjusted R2 0.6548 0.6424 0.2025 0.1859 0.1781

Wald test‖

χ2 0.0144 0.0129 0.0302 0.0129 0.0271

N 52 52 52 52 52
‖ Wald Test verifies the unbiasedness by H0:α= 0,β= 1, γ= 0 . If H0 it is rejected

(statistically significant) then the rational hypothesis is rejected.
† Standard errors in parentheses

The correction of Hansen & Hodrick (1980) was applied to the covariance matrix

Table 30: Orthogonality test with Pt−1, MERt−2 and M3t−2 as information variable
and Hansen Hodrick correction question 9.

Pt= α + βPe
t+γ1Pt−1 + γ2MERt−2 + γ

3
M3t−1+ut

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

α 0.1691 0.1473 -1.6066 -1.0665 -1.8822

(2.8078)† (2.8263) (5.9434) (4.9616) (6.3311)

β 0.0422 0.0617 0.5815 0.4173 0.6586

(0.9755) (0.9569) (1.7114) (1.3978) (1.8047)

γ1 0.8955 0.8835 0.8760**‡ 0.8819** 0.8789***

(0.8647) (0.8306) (0.4103) (0.4215) (0.3968)

γ2 0.03502 0.0333 0.0200 0.0217 0.0212

(0.3667) (0.3645) (0.3289) (0.3358) (0.3232)

γ3 0.0199 0.0162 -0.0001 0.0053 0.0001

(0.8168) (0.8152) (0.7400) (0.7560) (0.7276)

R2 0.8805 0.8809 0.9003 0.8962 0.9035

adjusted R2 0.8703 0.8708 0.8918 0.8874 0.8953

Wald test‖

χ2 2.0500 2.1045 4.6949 4.6013 5.0347

N 52 52 52 52 52
‖ Wald Test verifies the unbiasedness by H0:α= 0,β= 1, γ= 0 . If H0 it is rejected

(statistically significant) then the rational hypothesis is rejected.
† Standard errors in parentheses
‡ The * denotes if the the estimator is significant at 10% (*), 5% (**) or 1% (***)

The correction of Hansen & Hodrick (1980) was applied to the covariance matrix

Table 31: Unbiasedness and Serial Correlation tests by OLS question 11.
Pt= α + βPe

t+ut
Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

α 0.3335 0.3467 -3.4767**‡ -1.3048 -3.673**

(0.561)† (0.5935) (1.6759) (1.3689) (1.747)

β 0.921*** 0.9192*** 1.7199*** 1.2712*** 1.760***

(0.0992) (0.1056) ( 0.3372) (0.2711) (0.352)

R2 0.6329 0.6024 0.3422 0.3054 0.3333

adjusted R2 0.6255 0.5944 0.3291 0.2915 0.32

F -statistic 86.2*** 75.75*** 26.01*** 21.98*** 25***

Wald test‖

χ2 0.6721 0.6147 4.5589 1.0014 4.6611*

F 0.336 0.3074 2.2795 0.5007 2.3305

LM OSC 12†† 41,1284*** 40.5504*** 42.492*** 42.7165*** 44.1127***

N 52 52 52 52 52
‖ Wald Test verifies the unbiasedness by H0:α= 0,β= 1 . If H0 it is rejected

(statistically significant) then the rational hypothesis is rejected.
† Standard errors in parentheses
‡ The * denotes if the the estimator is significant at 10% (*), 5% (**) or 1% (***)
†† OSC = Order ... Serial Correlation; testing the H0 : no correlation

among the errors. If H0 is rejected then the rational hypothesis is rejected.
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Table 32: Efficiency tests by OLS question 11.
ut= β1Pt−1+β2Pt−2+β3Pt−3+β4Pt−4+β5Pt−5+β6Pt−6+β7Pt−7+β8Pt−8+υt

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

β1 1.3276***‡ 1.3014*** 0.7293** 0.7698** 0.6903**

(0.2202)† (0.2395) (0.3389) (0.3379) (0.3378)

β2 -1.4680*** -1.4017*** -0.5923 -0.6023 -0.5849

(0.3962) (0.4308) (0.6097) (0.6079) (0.6078)

β3 0.4327 0.4003 0.2593 0.2663 0.2716

(0.4230) (0.4599) (0.6509) (0.6489) (0.6488)

β4 -0.2804 -0.2568 -0.0817 -0.0723 -0.0543

(0.4381) (0.4763) (0.6741) (0.6721) (0.6720)

β5 0.2264 0.2022 0.2568 0.2457 0.2982

(0.4396) (0.4780) (0.6765) (0.6745) (0.6744)

β6 -0.3410 -0.3364 -0.3445 -0.3552 -0.3332

(0.4347) (0.4726) (0.6689) (0.6669) (0.6668)

β7 0.2913 0.3381 0.4574 0.4536 0.4148

(0.4127) (0.4487) (0.6351) (0.6332) (0.6331)

β8 -0.1389 -0.1898 -0.5509 -0.5687 -0.5644

(0.2320) (0.2522) (0.3569) (0.3559) (0.3558)

R2 0.5354 0.4929 0.3858 0.422 0.3978

adjustedR2 0.4509 0.4007 0.2742 0.3169 0.2883

F -statistic 6.337*** 5.345*** 3.455*** 4.016*** 3.633***

N 52 52 52 52 52
† Standard errors in parentheses
‡ The * denotes if the the estimator is significant at 10% (*), 5% (**) or 1% (***)

Table 33: Orthogonality test with Pt−1 as information variable question 11.
Pt= α + βPe

t+γPt−1+ut

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

α 0.3853 0.3823 -1.2100 -0.6584 -1,5631**‡

(0.3421)† (0.3482) (0.7500) (0.5919) (0.7577)

β -0.0918 -0.0781 0.3756** 0.2486* 0.4558**

(0.1251) (0.1190) (0.1741) (0.1357) (0.1732)

γ 1.0060*** 0.9928*** 0.8679*** 0.8808*** 0.8606***

(0.1088) (0.1011) (0.0596) (0.0594) (0.0572)

R2 0.8662 0.8659 0.8765 0.8734 0.8813

adjusted R2 0.8607 0.8604 0.8714 0.8682 0.8765

F -statistic 158.6*** 158.2*** 173.8*** 169*** 181.9***

Wald test‖

χ2 87.243*** 98.079*** 235.67*** 225.21*** 251.88***

F 29.081*** 32.693*** 78.556*** 75.07*** 83.96***

N 52 52 52 52 52
‖ Wald Test verifies the unbiasedness by H0:α= 0,β= 1, γ= 0 . If H0 it is rejected

(statistically significant) then the rational hypothesis is rejected.
† Standard errors in parentheses
‡ The * denotes if the the estimator is significant at 10% (*), 5% (**) or 1% (***)

Table 34: Orthogonality test with MERt−2 as information variable question 11.
Pt= α + βPe

t+γMERt−2+ut

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

α 0.4864 0.5076 -2.6471 -0.6182 -2.8272

(0.5995)† (0.6368) (1.7360) (1.4056) (1.7783)

β 0.8925***‡ 0.8890*** 1.5559*** 1.1374*** 1.5934***

(0.1067) (0.1140) (0.3487) (0.2780) (0.3577)

γ 0.0551 0.0556 0.1481 0.1624* 0.1648*

(0.0738) (0.0771) (0.0950) (0.0968) (0.0939)

R2 0.637 0.6066 0.3733 0.3431 0.3727

adjusted R2 0.6222 0.5905 0.3477 0.3163 0.3471

F -statistic 43*** 37.77*** 14.59*** 12.8*** 14.56***

Wald test‖

χ2 1.2237 1.1289 7.1196* 3.8525 7.9321**

F 0.4079 0.3763 2.3732* 0.2902 2.644*

N 52 52 52 52 52
‖ Wald Test verifies the unbiasedness by H0:α= 0,β= 1, γ= 0 . If H0 it is rejected

(statistically significant) then the rational hypothesis is rejected.
† Standard errors in parentheses
‡ The * denotes if the the estimator is significant at 10% (*), 5% (**) or 1% (***)
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Table 35: Orthogonality test with M3t−1 as information variable question 11.
Pt= α + βPe

t+γM3t−1+ut

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

α 0.3540 0.3542 -3.5557***‡ -1.4424 -3.7411**

(0.5830)† (0.6168) (1.6941) (1.3927) (1.7649)

β 0.9233*** 0.9200*** 1.7042*** 1.2600*** 1.7433***

(0.1014) (0.1079) (0.3408) (0.2732) (0.3561)

γ -0.0257 -0.0093 0.1243 0.1538 0.1194

(0.17312) (0.1800) (0.2290) (0.2347) (0.2307)

R2 0.633 0.6024 0.3462 0.3114 0.3369

adjusted R2 0.6181 0.5862 0.3195 0.2833 0.3099

F -statistic 42.27*** 37.12*** 12.97*** 11.08*** 12.45***

Wald test‖

χ2 0.681 0.6052 4.7894 1.4198 4.8607

F 0.227 0.2017 1.5965 0.4733 1.6202

N 52 52 52 52 52
‖ Wald Test verifies the unbiasedness by H0:α= 0,β= 1, γ= 0 . If H0 it is rejected

(statistically significant) then the rational hypothesis is rejected.
† Standard errors in parentheses
‡ The * denotes if the the estimator is significant at 10% (*), 5% (**) or 1% (***)

Table 36: Orthogonality test with Pt−1, MERt−2 and M3t−1 as information variable
question 11.

Pt= α + βPe
t+γ1Pt−1 + γ2MERt−2 + γ

3
M3t−1+ut

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

α 0.5093 0.5158 -1.0763 -0.5428 -1.4357**‡

(0.3833)† (0.3916) (0.8014) (0.6417) (0.7995)

β -0.1179 -0.1051 0.3561* 0.2335 0.4400**

(0.1286) (0.1225) (0.1794) (0.1395) (0.1775)

γ1 1.0055*** 0.9920*** 0.8598*** 0.8713*** 0.8514***

(0.1099) (0.1020) (0.0618) (0.0617) (0.0596)

γ2 0.0488 0.0494 0.0282 0.0308 0.0293

(0.0461) (0.0463) (0.0448) (0.0452) (0.0436)

γ3 0.0144 0.0117 0.0051 0.0089 0.0007

(0.1078) (0.1077) (0.1039) (0.1051) (0.1018)

R2 0.8697 0.8694 0.8776 0.8748 0.8825

adjusted R2 0.8586 0.8583 0.8672 0.8641 0.8725

F -statistic 78.39*** 78.2*** 84.23*** 82.09*** 88.24***

Wald test‖

χ2 87.152*** 97.82*** 228.57*** 218.95*** 244.52***

F 17.430*** 19.564*** 45.714*** 43.791*** 48.904***

N 52 52 52 52 52
‖ Wald Test verifies the unbiasedness by H0:α= 0,β= 1, γ= 0 . If H0 it is rejected

(statistically significant) then the rational hypothesis is rejected.
† Standard errors in parentheses
‡ The * denotes if the the estimator is significant at 10% (*), 5% (**) or 1% (***)

Table 37: Unbiasedness tests with Hansen and Hodrick correction question 11.
Pt= α + βPe

t+ut

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

α 0.3335 0.3466 -3.4766 -1.3047 -3.6727

(5.7962)† (6.2000) (21.3691) (17.0799) (23.3012)

β 0.9210 0.9192 1.7199 1.2712 1.7599

(0.8650) (0.926) (3.9649) (3.0456) (4.331)

R2 0.6329 0.6024 0.3422 0.3054 0.3333

adjusted R2 0.6255 0.5944 0.3291 0.2915 0.32

Wald test‖

χ2 0.0116 0.0107 0.0594 0.0137 0.0556

N 52 52 52 52 52
‖ Wald Test verifies the unbiasedness by H0:α= 0,β= 1 . If H0 it is rejected

(statistically significant) then the rational hypothesis is rejected.
† Standard errors in parentheses

The correction of Hansen & Hodrick (1980) was applied to the covariance matrix
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Table 38: Efficiency tests with Hansen and Hodrick correction question 11.
ut= β1Pt−1+β2Pt−2+β3Pt−3+β4Pt−4+β5Pt−5+β6Pt−6+β7Pt−7+β8Pt−8+υt

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

β1 1.3276 1.3013 0.7293 0.7697 0.6903

(1.4474)† (1.5688) (2.1654) (2.1639) (2.1503)

β2 -1.4679 -1.4017 -0.5923 -0.6022 -0.5849

(2.5093) (2.7035) (3.5178) (3.5227) (3.4562)

β3 0.4327 0.4002 0.2593 0.2662 0.2716

(2,5421) (2.7276) (3.6347) (3.6334) (3.5887)

β4 -0.2803 -0.2567 -0.0817 -0.0723 -0.0543

(2.6373) (2.8332) (3.7724) (3.7728) (3.7207)

β5 0.2264 0.2021 0.2568 0.2456 0.2982

(2.7005) (2.9065) (3.8625) (3.8619) (3.8077)

β6 -0.3409 -0.3364 -0.3445 -0.3551 -0.3332

(2.7524) (2.9764) (4.0017) (3.9987) (3.9545)

β7 0.2913 0.3381 0.4574 0.4536 0.4148

(2.7136) (2.9419) (3.9136) (3.9129) (3.8567)

β8 -0.1388 -0.1897 -0.5509 -0.5687 -0.5644

(1.6054) (1.7531) (2.4628) (2.4591) (2,4512)

R2 0.5354 0.4929 0.3858 0.422 0.3978

adjusted R2 0.4509 0.4007 0.2742 0.3169 0.2883

N 52 52 52 52 52
† Standard errors in parentheses

The correction of Hansen & Hodrick (1980) was applied to the covariance matrix

Table 39: Orthogonality test with Pt−1 as information variable and Hansen Hodrick
correction question 11.

Pt= α + βPe
t+γPt−1+ut

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

α 0.3853 0.3823 -1.2100 -0.6584 -1.5631

(2.9489)† (2.9989) (6.1028) (4.8656) (6.1776)

β -0.0918 -0.0781 0.3756 0.2486 0.4558

(0.9689) (0,9102) (1.3596) (1.0453) (1.3582)

γ 1.0060 0.9928 0.8679**‡ 0.8808** 0.8606**

(0.8816) (0.8142) (0.4627) (0.4627) (0.4425)

R2 0.8662 0.8659 0.8765 0.8734 0.8813

adjusted R2 0.8607 0.8604 0.8714 0.8682 0.8765

Wald test‖

χ2 2.5890 2.9060 3.7690 4.1586 4.0065

N 52 52 52 52 52
‖ Wald Test verifies the unbiasedness by H0:α= 0,β= 1, γ= 0 . If H0 it is rejected

(statistically significant) then the rational hypothesis is rejected.
† Standard errors in parentheses
‡ The * denotes if the the estimator is significant at 10% (*), 5% (**) or 1% (***)

The correction of Hansen & Hodrick (1980) was applied to the covariance matrix

Table 40: Orthogonality test with MERt−2 as information variable and Hansen Ho-
drick correction question 11.

Pt= α + βPe
t+γMERt−2+ut

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

α 0.4864 0.5076 -2.6471 -0.6181 -2.8272

(6.1306)† (6.5513) (20.7389) (16.4281) (22.1554)

β 0.8925 0.8890 1.5558 1.1374 1.5934

(0.9111) (0.9745) (3.8422) (2.9227) (4,1180)

γ 0.0551 0.0556 0.1481 0.1624 0.1648

(0.5348) (0.5554) (0.6179) (0.6320) (0.6143)

R2 0.637 0.6066 0.3733 0.3431 0.3727

adjusted R2 0.6222 0.5905 0.3477 0.3163 0.3471

Wald test‖

χ2 0.0308 0.0289 0.0946 0.0696 0.1090

N 52 52 52 52 52
‖ Wald Test verifies the unbiasedness by H0:α= 0,β= 1, γ= 0 . If H0 it is rejected

(statistically significant) then the rational hypothesis is rejected.
† Standard errors in parentheses

The correction of Hansen & Hodrick (1980) was applied to the covariance matrix
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Table 41: Orthogonality test with M3t−2 as information variable and Hansen Hodrick
correction question 11.

Pt= α + βPe
t+γM3t−1+ut

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

α 0.3540 0.3542 -3.5557 -1.4424 -3.7411

(5.9232)† (6.3404) (21.5437) (17.3899) (23.4422)

β 0.9233 0.9200 1.7042 1.2600 1.7432

(0.8674) (0.9277) (3.9278) (3.0139) (4.2931)

γ -0.0257 -0.0093 0.1243 0.1538 0.1194

(1.2101) (1.2516) (1.5350) (1.5888) (1.5401)

R2 0.633 0.6024 0.3462 0.3114 0.3369

adjusted R2 0.6181 0.5862 0.3195 0.2833 0.3099

Wald test‖

χ2 0.0118 0.0106 0.0659 0.0236 0.0614

N 52 52 52 52 52
‖ Wald Test verifies the unbiasedness by H0:α= 0,β= 1, γ= 0 . If H0 it is rejected

(statistically significant) then the rational hypothesis is rejected.
† Standard errors in parentheses

The correction of Hansen & Hodrick (1980) was applied to the covariance matrix

Table 42: Orthogonality test with Pt−1, MERt−2 and M3t−2 as information variable
and Hansen Hodrick correction question 11.

Pt= α + βPe
t+γ1Pt−1 + γ2MERt−2 + γ

3
M3t−1+ut

Method RQA Normal RQA Uniform CP Normal CP Uniform MBS

α 0.5093 0.5158 -1.0763 -0.5428 -1.4357

(3.2973)† (3.3678) (6.4512) (5.2262) (6.4411)

β -0.1179 -0.1051 0.3561 0.2335 0.4400

(0.9772) (0.9209) (1.3809) (1.0581) (1.3750)

γ1 1.0055 0.9920 0.8598** 0.8713**‡ 0.8514**

(0.8690) (0.8037) (0.4772) (0.4784) (0.4593)

γ2 0.0488 0.0494 0.0282 0.0308 0.0293

(0.3336) (0.3352) (0.3220) (0.3248) (0.3147)

γ3 0.0144 0.0117 0.0051 0.0089 0.0007

(0.7570) (0.7575) (0.7349) (0.7435) (0.7205)

R2 0.8697 0.8694 0.8776 0.8748 0.8825

adjusted R2 0.8586 0.8583 0.8672 0.8641 0.8725

Wald test‖

χ2 2.6931 3.0092 3.4991 3.8624 3.6605

N 52 52 52 52 52
‖ Wald Test verifies the unbiasedness by H0:α= 0,β= 1 . If H0 it is rejected

(statistically significant) then the rational hypothesis is rejected.
† Standard errors in parentheses
‡ The * denotes if the the estimator is significant at 10% (*), 5% (**) or 1% (***)

The correction of Hansen & Hodrick (1980) was applied to the covariance matrix

[Recibido: abril de 2011 — Aceptado: marzo de 2012]
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Abstract

This paper evaluates the performance of 16 different parametric, non-
parametric and one semi-parametric specifications to calculate the Value at
Risk (VaR) for the Colombian Exchange Market Index (IGBC). Using high
frequency data (10-minute returns), we model the variance of the returns
using GARCH and TGARCH models, that take in account the leverage ef-
fect, the day-of-the-week effect, and the hour-of-the-day effect. We estimate
those models under two assumptions regarding returns’ behavior: Normal
distribution and t distribution. This exercise is performed using two differ-
ent ten-minute intraday samples: 2006-2007 and 2008-2009. For the first
sample, we found that the best model is a TGARCH(1,1) without day-of the
week or hour-of-the-day effects. For the 2008-2009 sample, we found that the
model with the correct conditional VaR coverage would be the GARCH(1,1)
with the day-of-the-week effect, and the hour-of-the-day effect. Both meth-
ods perform better under the t distribution assumption.

Key words: Leverage, Finance, GARCH model, Risk estimation, Stock re-
turns.

Resumen

El documento evalúa el desempeño de 16 métodos paramétricos, uno no
paramétrico y uno semiparamétrico, para estimar el VaR (Valor en Riesgo)
de un portafolio conformado por el Índice General de la Bolsa de Valores de
Colombia (IGBC). El ejercicio se realiza analizando dos muestras de datos
intra-día con una periodicidad de 10 minutos para los períodos 2006-2007 y
2008-2009. Los modelos paramétricos evaluados consideran la presencia o no
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de patrones de comportamiento, tales como: el efecto “Leverage”, el efecto
día de la semana, el efecto hora y el efecto día-hora. Nuestros resultados
muestran que para la primera muestra el mejor modelo es un TGARCH(1,1)
sin el efecto día de la semana ni la hora del día y bajo el supuesto de una
distribución t. Para la segunda muestra, 2008-2009, el método que presenta
el mejor comportamiento corresponde al modelo GARCH(1,1), que tiene en
cuenta el efecto del día y la hora. Estos dos modelos presentan una correcta
cobertura condicional y menor función de pérdida.

Palabras clave: apalancamiento, estimación de riesgo, finanzas, GARCH,
rendimientos financieros,.

1. Introduction

On January 5, 2007 the Colombian Stock Market Index (IGBC, from the Span-
ish acronym) dropped 3.1% within the first ten minutes after the stock market
opened. Such a drop in the stock market had never occurred before, and it would
only happen again in the year 2009. At the time of closing that day, the IGBC had
bounced back to such an extent that the overall index loss was 2.1% for that day.
This means that the IGBC was down 334 points for the first ten minutes of trade,
but then it recouped during the course of the day with a cumulative overall loss
of 280.8 points at the end of the day. A financial analyst who only keeps track of
information about the index at closing will probably come to the conclusion that
it was a relatively ordinary day. That, however, was not just an ordinary day for
traders. The kind of risk that materialized during the first ten minutes of trade
that day would have gone unnoticed if an analyst had focused on a daily time
horizon.

In fact, the behavior of the IGBC during the course of a day seems to follow
a relatively stable pattern which can be taken into consideration to improve risk
measures. This paper is aimed to illustrate how the involvement of previously
documented behavior patterns can be used for improving the performance of risk
measures.

It is a hard fact that making decisions in financial markets is exposed to dif-
ferent sources of risk. Hence, there is a need to acknowledge the importance
of measuring risk and developing techniques that allow to make improved deci-
sions considering the market circumstances. After the unstability episodes and
financial crises in the 1980s1 and 1990s2, measuring financial risk has become a
routine everyday task in the “back office” of financial institutions (see Alonso &
Berggrun 2008). It appears, moreover, that the financial crisis in 2008 led risk
management to become the center of discussion again. The reliability of methods
such as the Value-at-Risk (VaR) approach is part of the discussion where na reun-

1For example, the external debt crisis in most Latin American countries in the 1980s or the
collapse of the New York Stock Exchange in 1987.

2For example, the burst of the financial and real state bubbles in Japan in the 1990s and of
the dot com companies in the late 1990s, the Mexican “Tequila” crisis in 1994, the financial crisis
in Southeast Asia in 1997, the Russian crisis in 1997, and the Argentinean crisis in 1998.
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derstanding of the limitations of this approach to detect risk in the latest financial
crisis has raised great interest among academics, regulators, and the mass media.

VaR is a measure (an estimate) of the largest potential loss for a given time
horizon and a given significance level under circumstances which are considered
“normal” in the market. VaR is, without question, the most popular measure
of financial risk among regulators, financial market stakeholders, and academics.
Yet, despite its popularity, the recent financial crisis in 2008 made evident the
limitations of this risk measurement tool. In fact, at the onset of the crisis, the
collective conscience in the financial community seemed to concur that one of the
major culprits of the financial crisis was, undoubtedly, excessive reliance on the
VaR (Nocera 2009)3. Such reliance actually meant that the appropriation of the
meaning and interpretation of the VaR disappeared at some point in time along
with the bubble. The market players believed that mathematical and statistical
models would be sufficient for managing risk and forgot that VaR was only one of
the components of the analysis. Although it was a good way to measure risk, it
still had limitations as to estimating it and incorporating other kinds of risks such
as liquidity and systemic risk.

During the mortgage bubble, the easy earnings derived at a risk that had been
transformed into mathematical certainty, which made people overlook the true
meaning of the VaR. Agents forgot that the VaR was only intended to describe
what occurred 99% of the times. A VaR of USD 25,000, for example, implied that
this amount was not only the most one could lose 99% of the times, but also the
least one could lose 1% of the times. It was precisely this 1% where analysts had to
link other analyses to incorporate the quantification of liquidity risk or scenarios
where the economy would go into a recession and portfolio diversification (systemic
risk) had little importance. It was maybe losing sight of this 1% of the times what
allowed the bubble to go on for such a long time. Financial entities focused on
minimum-risk low-yield investments (VaR), but when they lost that 1% of the
times, they did so in a disproportional matter.

After the storm associated with the financial crisis, it now seems clear to both
academics and financial analysts that risk measures were not responsible for the
crisis; what failed was judgment on the part of the individuals who interpreted
these numbers (for a documented discussion of this issue, see Nocera (2009)). It
is also evident that these measures, especially VaR, should not fall into oblivion,
but should, on the contrary, be polished. Although VaR has some major limita-
tions, incorporating these limitations to the analyses allows for more effective risk
management 99% of the times-disregarding them would be going to the extreme
of absolute risk aversion.

Consequently, the latest financial crisis is not the end of risk measurement. It
is, on the contrary, a wake-up call to encourage reaching a deeper understanding of
it, particularly of how it is calculated and interpreted. It is precisely at this point
where our work is geared tow and illustrating how the incorporation of previously

3Nocera (2009) examines the issue of excessive reliance on the VaR as a result of a lack of an
understanding of this measure as a supporting tool for analyzing risk.
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documented behavior patterns can be used for improving the performance of risk
measures.

It is important to acknowledge that the calculation of the VaR typically follows
a simple and intuitive concept, but estimating it poses some practical difficulties.
This kind of measure is difficult to estimate because it requires knowledge of the
future value distribution of the asset or portfolio being reviewed. In most ap-
proaches, the distribution function is not directly estimated. A distribution is as-
sumed for which parameters are calculated for the first moment (mean) and second
moment around the mean (variance). Therefore, in practice, various approaches
to its calculation take into account considerations that go from assuming normal
distribution with constant variance or yields to assume other kinds of distribution
and to allow the variance to be updated on a period-after-period basis.

Regardless of the kind of approach used for calculating VaR, a daily time
horizon is the most common way to estimate it. This customary calculation of
the VaR on a daily basis is partly due to the need to report this number to the
regulatory agencies. Nevertheless, in recent years the calculation of the VaR for
shorter periods of time has become increasingly popular because of two factors.
Firstly, there is a need to have information regarding the risk associated with
their business4 on the part of the stakeholders involved in the market on minute-
to-minute basis. On the other hand, there is an increasing availability of intraday
information and a widespread use of statistical methods and computer capabilities
for processing this information.

The purpose of this work is to evaluate the performance of various approaches
to estimate VaR for the following ten minutes. As far as the authors are aware,
these kinds of exercises for the Colombian case have not been published in the past.
To accomplish this objective, VaR is calculated using different approaches, includ-
ing parametric, non-parametric, and semi-parametric approaches, and a portfolio
that replicates the Colombian Stock Market General Index (IGBC, from its Span-
ish acronym). To this end, it is essential to acknowledge that the calculus of the
VaR entails predicting the performance of the conditional distribution of the port-
folio for the following period. A conditional distribution can be different from one
day of the week to another (see Alonso & Romero 2009) and even within the same
day (see Alonso & García 2009). Therefore, we use VaR models that capture both
the weekday effect and the hour-effect as well as the most commonly discussed
(Alonso & Arcos 2006) stylized facts such as, the volatility clustering and the
heavy tails of the distribution of returns.

This paper is organized as follows: The first section provides a brief intro-
duction and the second provides a brief discussion of the calculations and the
evaluation of the Value at Risk in this exercise. The third section addresses the
kind of data to be used and the necessary considerations for estimating models
using intraday data. The fourth section summarizes the results obtained, and
finally, the last section presents the final comments.

4See Giot (2000) for an extensive discussion of the reasons for the usefulness of calculating
VaR for short time periods.
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2. Calculation and Evaluation of Value at Risk

As mentioned above, the concept behind Value at Risk (VaR) is very straight-
forward and intuitive; these characteristics make this technique very popular.
Nevertheless, despite its conceptual simplicity, its calculation poses a relatively
sophisticated statistical problem. VaR is intuitively defined as the maximum loss
expected from a portfolio with a certain confidence level in a given period of time
(see, for example, Alonso & Berggrun 2008).

Formally speaking, the VaR for the following trading period t + 1 given the
information available in the current period t (V aRt+1|t) is defined as:

P
(
Zt+1 < V aRt+1|t

)
= α (1)

whereas Zt+1 stands for future yield (in Colombian pesos) of the portfolio value for
the following period and (1− α) is the level of confidence of the VaR. Therefore,
the calculation of the VaR depends on the assumptions regarding the function of
distribution of potential losses or gains (absolute yield) from the portfolio Zt+1.

It can be easily proved that if Zt+1 follows a distribution with its first two
finite moments (such as a normal or a t-distribution), then the value at risk will
be as follows:

V aRt+1|t = F (α) · σt+1 (2)

whereas σt+1 stands for the standard deviation of the distribution of Zt+1, and
F (α) represents the α percentile of the corresponding (standardized) distribution.
Thus, the calculation of the VaR critically depends on two assumptions regarding
the behavior of the distribution of Zt+1: (i) its volatility (standard deviation σ)
and (ii) its distribution F (·).

As noted earlier, there are several methodological approaches to estimate VaR.
These approaches can be classified in three large groups: (i) historical simulation or
the non-parametric approach, which does not assume a distribution and does not
require estimating parameters; (ii) a parametric approach which involves assuming
a distribution and estimating a set of parameters; and (iii) a semi-parametric
approach which involves techniques that combine estimating parameters and using
the non-parametric approach, such as, for example, filtered historical simulation.

In general, the results obtained after using the various kind of approaches are
different and, in each case, the adequacy of these models must be evaluated on
an individual case basis. On the other hand, backtesting the performance of an
approach to the calculation of the VaR is not an easy task either. A description of
the various types of approaches used here for estimating VaR is provided below,
including a discussion of the methods to be used for evaluating the performance
of the various approaches.

2.1. Some Approaches for the Estimation of VaR

The most common non-parametric approach is the historical simulation. This
kind of approach involves determining the α percentile based on historical data.
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In other words, this method assumes that past realizations of yield values from the
portfolio represent the best approximation of the portfolio yield distribution for the
following period. Therefore, V aRt+1|t will be equal to the α percentile of historical
portfolio yield values. This approximation will be named as the specification 1.

On the other hand, any parametric approach involves assuming a given distri-
bution function F (·) and the behavior of the parameter that characterizes it, e.g.,
σt+1. A well-documented fact of yields on assets is the presence of clustered vari-
ance (volatility clustering) (for a discussion of this stylized fact for the Colombian
case, see, for example, Alonso & Arcos (2006)). This means, in other words, that
volatility is not constant and, therefore, σ will be a function of time. Taking into
account this stylized fact, the VaR of a portfolio can then be estimated using the
following expression:

V aRt+1|t = F (α) · σt+1|t (3)

where σt+1|t stands for the standard deviation for period t+1 subject to the infor-
mation available in period t. Thus, it will be necessary to model the conditional
variance in order to obtain a one-step-ahead forecast and to assume a distribution
for calculating VaR.

Following Alonso & García (2009), we will use ten different approximations in
this exercise to estimate the behavior of the variance5, and for each parametric ap-
proach, a model is estimated assuming a normal distribution and a t-distribution6.

In our case, we will consider eight parametric specifications of the GARCH
model. Specification 2 reflects the GARCH(p,q) model proposed by Bollerslev
(1986). We will particularly use the GARCH(1,1) model, which, as suggested by
Brooks (2008), is usually sufficient to capture the clustered volatility phenomenon.
Hence, specification 2 can be represented as follows:

σ2
t+1 = α0 + α1σ

2
t + α2z

2
t (4)

where zt stands for the error in the mean equation, and α0, α1 and α2 are non-
negative. Additionally, a necessary and sufficient condition for the variance gen-
erating process to be stationary is that α1 + α2 < 1.

Specification 3, which was proposed by Berument & Kiymaz (2003), among
others, incorporates dummy variables in the GARCH(1,1) model, capturing the
effect of each day on the volatility of returns7. In this case, the variance has the
following behavior:

σ2
t+1 = α0 + α1σ

2
t + α2z

2
t +

4∑
i=1

βiDit (5)

5The mean is modeled using an autoregressive moving average (ARMA) process, particu-
larly an ARMA(1,1) model that was selected based on the Akaike, Schwarz and Hannan-Quinn
information criteria.

6A Student’s t distribution is assumed in order to take into account a possible heavy tail
behavior in the yield distribution, which is another stylized fact of yields from a portfolio or an
asset (Alonso & Arcos 2006).

7These dummy variables are also incorporated into the mean equation.
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where D1t equals one, if day t is a Monday or, otherwise, zero. D2t = 1 if t is a
Tuesday or zero otherwise, and so forth, respectively. Summarizing, Dit are the
dummy variables for the first four days of the week.

The day of the week effect (DOW) has been documented in several countries.
The findings of recent studies such as Mittal & Jain (2009), for the case of India,
and, Kamath & Chinpiao (2010) for the case of Turkey, have shown that this effect
exists in emerging markets. For the Colombian case, Alonso & Romero (2009) and
Rivera (2009) have shown that this effect is present in the volatility of the IGBC
and the Colombian peso-US dollar exchange rate.

Following Giot (2000), specification 4 considers the hour of the day effect
(HOD) in our GARCH(1,1) model for variance. There are a fairly good num-
ber of studies available in financial literature documenting a U-shaped behavior
of volatility and returns within a day. Panas (2005) presented an extensive bib-
liographic review that documents the presence of this effect in various financial
markets worldwide. This specification is aimed at capturing intraday behavior by
means of dummy variables. Taking into account that the trading hours at the
Colombian Stock Exchange run from 9:00 am to 1:00 pm in the periods being
reviewed, this means that there are, in total, four hours for trading. Hence, the
hour of the day effect is incorporated into the model using three dummy variables
for time,

σ2
t+1 = α0 + α1σ

2
t + α2z

2
t +

3∑
i=1

βiHit (6)

where Hit takes the value of one, if t equals trading hour i, or zero otherwise.
The fifth specification to be considered incorporates both the day of the week

effect and the hour of the day effect into the GARCH(1,1) model. Dummy variables
are included, which take the value of one taking into account time and day. All
together, (4×5)−1 = 19 dichotomous variables are used. In this case, the variance
is modeled as follows:

σ2
t+1 = α0 + α1σ

2
t + α2z

2
t +

5∑
i=1

4∑
j=1

ϕijDitHjt − ϕ54D5tH4t (7)

The GARCH(1,1) specifications considered so far do not capture one of the
common stylized facts observed for yields: The leverage effect. The leverage effect
reflects the trend in volatility of having a greater increase when the price drops
than when the price rises to the same extent. The TGARCH model (GARCH
model with a threshold)8 is customarily used in financial literature for captur-
ing the asymmetric behavior of volatility. Thus, specification 6 corresponds to a
TGARCH model. This model matches the model proposed by Glosten, Jagan-
nathan & Runkle (1993), which can be expressed as follows:

σ2
t+1 = α0 + α1σ

2
t + α2z

2
t + α3dtz

2
t (8)

where dt = 1 if zt < 0 and dt = 0 if zt > 0. It can also be expected that if the
leverage effect is present, then α3 > 0. The condition for obtaining non-negative

8This model is also known as the GARCH GJR model.
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variances will continue to be that α0, α1 and α2 must be non-negative values.
Another condition is that α1 + α3 > 0. On the other hand, the model continues
to be admissible if α3 < 0, provided that α1 + α3 > 0. A necessary and sufficient
condition for the variance generating process to be stationary is α1 + α2 < 1.

Specifications 7, 8, and 9 incorporate the day of the week effect, the hour of
the day effect, and the day of the week and hour of the day effect, respectively,
into the TGARCH model.

Table 1: Summary of specifications of the models used in this exercise.
Specification Acronym Model

1 HS Historical simulation

2 GARCH σ2
t+1 = α0 + α1σ2

t + α2z2t

3 GARCH + DOW σ2
t+1 = α0 + α1σ2

t + α2z2t +
4∑

i=1
βiDit

4 GARCH + HOD σ2
t+1 = α0 + α1σ2

t + α2z2t +
3∑

i=1
βiHit

5 GARCH + DOW + HOD σ2
t+1 = α0 + α1σ2

t + α2z2t

+
5∑

i=1

4∑
j=1

ϕijDitHjt − ϕ54D5tH4t

6 TGARCH σ2
t+1 = α0 + α1σ2

t + α2z2t + α3dtz2t

7 TGARCH + DOW σ2
t+1 = α0 + α1σ2

t + α2z2t + α3dtz2t +
4∑

i=1
βiDit

8 TGARCH + HOD σ2
t+1 = α0 + α1σ2

t + α2z2t + α3dtz2t +
3∑

i=1
βiHit

9 TGARCH + DOW + HOD σ2
t+1 = α0 + α1σ2

t + α2z2t + α3dtz2t

+
5∑

i=1

4∑
j=1

ϕijDitHjt − ϕ54D5tH4t

10 FHS Filtered historical simulation
Note: DOW: Day of the week effect, HOD: Hour of the day effect.
dt is defined as follows: dt = 1 if zt < 0 and dt = 0 if zt > 0.
Hit are the dummy variables for the first three hours of trading at the stock exchange.
Dit are the dummy variables for the first four days of the week.

Lastly, a semi-parametric approach, an average-filtered historical simulation is
considered. This approach makes it possible to filter an autocorrelation of yields.
Thus, yields are filtered by using an ARMA (p,q)9 process. The estimated residual
will be used to perform a historical simulation as described above. This approach
has an advantage over historical simulation since it provides an empirical function
of density that is more “realistic” in capturing autocorrelation (see, for example,

9As described above, in this case an ARMA(1,1) model will be used.
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Dowd 2005). A summary of the specifications described above is presented in
Table 1.

2.2. Approaches to Assess the Estimated VaR Models

The fit of our models is assessed based on two backtesting or calibration tests
and one loss-function criterion. The difficulty in assessing a calculation of VaR lies
in the fact that the VaR cannot be observed directly. If one wants to conduct an
assessment outside of the sample, in practice there is only information about the
realization of yield for the following period, but information about the realization
of VaR for that period will not be available.

The most commonly used test available in the literature is Kupiec’s (1995) pro-
portion of failures. The purpose of this test is to determine whether the observed
proportion of losses that exceed the VaR (also known as proportion of failures) is
consistent with the theoretical proportion of failures which provided the basis for
constructing the VaR. In other words, the model must provide (non-conditional)
coverage in constructing the VaR. In particular, according to the null hypothe-
sis that our model has a “good fit”, the n number of failures follows a binomial
distribution10. In general, considering a total number of observations N and a the-
oretical level of proportion of failures equal to α (significance level), the probability
of observing n losses is calculated as follows:

P (n|N,α) =

(
N

n

)
αn(1− α)N−n (9)

To test the null hypothesis that the proportion of failures (ρ) is the same as
the theoretically expected value (α) (H0 : ρ = α), Kupiec (1995) suggested the
following statistic:

tU =
ρ̂− α√

ρ̂(1− ρ̂)/N
(10)

where ρ̂ is the observed proportion of failures. Kupiec (1995) demonstrated that
tU follows a t distribution with N − 1 degrees of freedom.

Christoffersen (1998) suggested a test which considers that the calculation of
VaR for t + 1 represents a forecast subject to the information available in period
t. Then, VaR provides coverage subject to the information available at t and,
therefore, the backtest should take this into consideration.

The idea underlying this test is that if the best model of VaR is being used,
then using all information available at the time of predicting VaR, one should not
be able to predict whether the VaR value was exceeded or not. This means that
the observed number of failures must be random over time. Thus, a risk model
will be said to have suitable non-conditional coverage if the probability of failure
equals ρ, i.e. P ( PLt+1 > V aRp

t+1) = ρ.11 A risk model will be said to have
correct conditional coverage if Pt( PLt+1 > V aRp

t+1) = ρ.
10A random variable is defined which takes the value of one if a loss is greater than the VaR

or zero otherwise.
11Where PLt+1 stands for the portfolio loss in period t+ 1.
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Therefore, having correct non-conditional coverage means that a model has
failures with a probability of ρ on average as the days go by. Having correct
conditional coverage, on the other hand, means that the model has failures with
a probability of ρ every day, given all the information available on the previous
day. It must be noted that correct non-conditional coverage is a necessary, yet not
sufficient, condition for correct conditional coverage.

Christoffersen’s (1998) idea entails separating specific forecasts being tested
and then testing each individual forecast separately. The first is the equivalent
of examining whether the model generates a correct proportion of failures, i.e.,
whether it provides correct non-conditional coverage. The latter implies to test
that observed failures are statistically independent from each other. This means
that failures should not cluster over time. Evidence of such clustering would
mean that the model specification is not correct, even if the model meets the
non-conditional coverage requirement.

Given that the theoretical probability of failures is α, Christoffersen (1998)
suggests a test that can be expressed in terms of a likelihood ratio (LR) test.
Under the null hypothesis of correct non-conditional coverage, the test statistic
will be as follows:

LRuc = −2 ln[(1− α)N−nαn] + 2 ln[(1− ρ)N−nρn] (11)

This statistic follows an χ2
1 distribution. Coming back to the independence

test, let nkl be the number of days on which status l occurs at t after status k
occurred a t− 1, where the status refer to failures or non-failures. Besides, let πkl
be the probability that status l occurs for any t, given that the status at t− 1 was
k. Under the null hypothesis of independence, the test statistic is as follows:

LRind = −2 ln[(1− π̂2)n00+n11 π̂n01+n11
2 ]+

2 ln[(1− π̂01)n00 π̂n01
01 (1− π̂11)n10 π̂n11

11 ]
(12)

This statistic also follows an χ2
1. Additionally, the estimated probabilities are

defined as follows:

π̂01 =
n11

n00 + n01
, π̂11 =

n11
n10 + n11

, π̂2 =
n01 + n11

n00 + n10 + n01 + n11
(13)

Overall, under the combined hypothesis of correct coverage and independence
–i.e., the hypothesis of correct conditional coverage– the test statistic is as follows:

LRcc = LRuc + LRind (14)

which follows an χ2
2 distribution. Thus, Christoffersen’s (1998) test allows testing

the hypothesis of coverage and independence concurrently. It also tests these
hypotheses separately, making possible to identify where the model is failing.

Meanwhile, López (1998) proposes a different approach to evaluate the behavior
of VaR using a utility function for selecting the best model based on a set of
models that meet the correct conditional coverage requirement. López’s (1998)
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loss function considers the number of failures and the magnitude of each failure in
the following manner:

Ψt+1 =

{
1 + (PLt+1 − V aR t+1|t)

2 if PLt+1 < V aRt+1|t
0 otherwise

(15)

where Ψt+1 represents the loss function.
Thus, by penalizing the method with the largest failures, the intent is to find

a model that minimizes:

Ψ =

N∑
t=1

Ψt+1 (16)

3. Description of Our Exercise

In order to evaluate the behavior of the ten approaches12 above with α = 0.05
a recursive window is used. The evaluation exercise involves the following steps:

1. Calculate the VaR for period T + 1 (next 10 minutes) using the first T
observations;

2. Save the estimated V aRT+1|T and compare it against the observed loss or
gain;

3. Update the sample by incorporating an additional observation;

4. Repeat 1,000 times steps 1 to 3 using the last 1,000 observations; and

5. Perform the tests described above.

Below a description is provided of the data used and some special considerations
for using intraday data.

3.1. Data

We used ten-minute observations of the returns from the IGBC (General Colom-
bian Stock Exchange Index). In order to achieve our objective of determining the
behavior of the various VaR’s specifications for a very short time horizon. This
exercise was carried out with two samples that represent different environments in
the international and macroeconomic markets.

The two samples were used to perform different comparisons of the effectiveness
of the VaR’s specifications in a relatively steady scenario (2006-2007) versus a
scenario of increased uncertainty and volatility (2008-2009). The first sample
began at 9:00 am on December 27, 2006, and ended at 1:00 pm on November 9,
2007, with a total of 5,088 observations. The second sample (2008-2009), which

12The exercise is carried out under the assumptions of either a normal distribution or a t-
distribution.
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corresponds to the financial crisis period, started at 9:00 am on June 3, 2008, and
ended at 1:00 pm on March 17, 2009, with a total of 4,655 observations.

The IGBC series for the first period was obtained from the Bloomberg informa-
tion system, while the series for the second period of analysis was obtained from
Reuters13 financial information platform. Figures 1 and 2 show the IGBC series,
both for 2006-2007 and 2008-2009, including the returns, the corresponding his-
tograms, and probability charts for the normal, t with 3 and 4 degrees of freedom
theoretical distributions.

Based on the charts it is possible to infer that the distribution of yields has
relatively heavy tails in comparison to the normal distribution. The descriptive
statistics for both samples are reported in Table 2. Jarque-Bera’s normality test
leads to the conclusion that there is no evidence in favor of the normal distribution
of yields for either of the samples. This result is consistent with the stylized facts
of yields as discussed by Alonso & Arcos (2006) for this same series.

Figure 1: IGBC series and returns 2006-2007.

This means that the probability of obtaining extreme values is much greater
in the empirical distribution of yields than the expected from a normal distribu-
tion. Consequently, in addition to the parametric estimation of VaR under an

13The use of different sources of information does not pose any issues to this exercise. Both
sources obtain information from the registry system at the Colombian Stock Exchange, so data
reported from both sources are identical. There was a change in the source of information because
one of the information service providers charged a more convenient fee.
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assumption of normality, the parametric VaR estimation was carried out using
a Student’s t distribution, which relatively adjusts better to the reality of data
used14, as shown by the qq-plots of the t distribution with 3 and 4 degrees of
freedom for the 2006-2007 sample and 4 and 5 degrees of freedom for the 2008-
2009 sample. As can be seen, the theoretical percentiles from the aforementioned
distribution not only adjust more closely to those observed, but also incorporate
the stylized fact of heavy tails.

Figure 2: IGBC series and returns 2008-2009.

Table 2 shows the apparent symmetry that can be observed in each of the
histograms. The kurtosis of both samples is relatively high, especially for the
sample from the period that coincides with the financial crisis. On the other
hand, the variance of the sample from the financial crisis period is 2.23 greater
than that of the other sample. These two results confirm that the financial crisis
period is more volatile. These characteristics of the samples, but particularly of
the second sample, represent a challenge to the modeling of variance based on
GARCH models.

14The degrees of freedom were estimated for each iteration based on the conditional variance
of the returns assumed under GARCH models.
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Table 2: Descriptive statistics of returns for every 10 minutes of the IGBC for both
samples.

Sample 2006-2007 2008-2009
Mean −4.60E-006 −0.5083E-004
Variance 4.89E-06 1.092E-05
Asymmetry coefficient 0.22 0.30

Kurtosis 44.56 196.23

Jarque-Bera 77671.30*** 6764.49***
(***) The null hypothesis of normality is rejected with a 99 % level of confidence.

3.2. Special Considerations for Intraday Data

The nature of the data used for this research brings some methodological prob-
lems as mentioned by Andersen & Bollerslev (1997) and Giot (2005). By modeling
the volatility of returns at high frequencies (i.e., every 5, 10 or 20 minutes), Ander-
sen & Bollerslev (1997) show that the existence of bias is more likely to occur in
GARCH and ARCH parameters with high-frequency data when a GARCH model
is estimated. Particularly, the probability that the sum of the coefficients equals
one increases15, and thus the probability of estimating non-stationary models for
the variance process will also increase. This means that using higher frequency
samples involves the risk of capturing the “noise” associated with intraday season-
ality and, ultimately, the existence of bias in the estimation of parameters for the
GARCH model.

As suggested in literature, there are several alternatives for preventing bias or
noise associated with intraday seasonality. Andersen & Bollerslev (1997) propose
the use of “deseasonalized” returns (r∗t ). Deseasonalization can be assumed to be
deterministic, and when intraday observations are available at regular intervals
(e.g., every 10 or 30 minutes), deseasonalized returns can be calculated using the
formula:

r∗t =
rt√
φ(it)

(17)

where rt stands for observed returns and φ(it) represents the deterministic com-
ponent of intraday seasonality. To calculate this component, Giot (2005) proposes
an average of all square returns that correspond to the same time and day of the
week of the observed return rt. Hence, for 10-minute periods, for each of the five
days of the week, the same number of φ(it) is obtained as the number of 10-minute
periods in a trading day16. Therefore, the specifications will be estimated using
the “deseasonalized” series. Later, intraday seasonality will be incorporated in
order to calculate the VaR.

15In this case, the probability that α1 + α2 = 1 increases, which implies that the variance
process will explode.

16In the case of the IGBC index, there are four hours of trading and six 10-minute periods per
hour. This means that there are 24 different φ( it).
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4. Results

Table 3 shows the proportion of failures for each of the samples as well as
for the non-parametric approach (specification 1), the semi-parametric approach
(specification 10), and GARCH and TGARCH specifications under the assump-
tion of a normal distribution. For the ten approaches, the hypothesis of correct
unconditional coverage is rejected if the Kupiec’s (1995) test is used. In other
words, the forecast proportion of failures using our models is different from the
observed proportion of failures.

In fact, it can be observed in Table 3 that the proportions of failure are lower
than the 5%, expected proportion of failures. This could be an indication that
these specifications are fairly conservative in estimating the VaR. Table 4 on the
other hand, reports the same results for GARCH and TGARCH specifications that
use a t-distribution. The results are different. In the case of the first sample, the
hypothesis of correct unconditional coverage cannot be rejected for specifications
2, 3, 6, and 7. This means that the observed proportion of failures for these
specifications is the same as the theoretical proportion used for designing the VaR.
For other specifications, the coverage is relatively lower than theoretically expected
(α = 0.05). For the second sample, specification 8 is the only specification using
does not provide correct unconditional coverage.

Thus, if only nunconditional coverage is considered, those specifications using
a t-distribution exhibit a better behavior than those where a normal distribution
is assumed.

Table 3: Proportion of failures and Kupiec’s (1995) test. Normal distribution.
Sample 2006-2007 Sample 2008-2009

Spec. ρ̂ tU ρ̂ tU
1 0.038 −1.985** 0.016 −8.569**
2 0.030 −3.708** 0.028 −4.217**
3 0.027 −4.487** 0.032 −3.234**
4 0.033 −3.009** 0.032 −2.234**
5 0.031 −3.467** 0.035 −2.581**
6 0.030 −3.708** 0.028 −4.217**
7 0.027 −4.487** 0.03 −3.708**
8 0.033 −3.009** 0.033 −3.009**
9 0.031 −3.467** 0.032 −3.234**
10 0.035 −2.367** 0.020 −7.234**

tU = Kupiec’s t-statistic.

(**) Rejects the null hypothesis of non-conditional

coverage (ρ = 0.05) with a 5% significance level.

Let us now consider Lopez’s magnitude loss function (see Table 5). Under
the assumption of normality for parametric approaches, it is found that, for the
first sample (2006-2007), the third specification is the one that minimizes the loss
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Table 4: Proportion of failures and Kupiec’s (1995) test. t-distribution.
Spec. Sample 2006-2007 Sample 2008-2009

t-distribution ρ̂ tU ρ̂ tU
2 0.04 −1.614 0.041 −1.435

3 0.042 −1.261 0.041 −1.435

4 0.038 −1.985** 0.042 −1.261

5 0.037 −2.178** 0.043 −1.091

6 0.039 −1.797 0.041 −1.435

7 0.040 −1.435 0.042 −1.261

8 0.037 −2.178** 0.033 −3.009**
9 0.037 −2.178** 0.044 −0.925

tU = Kupiec’s t-statistic.

(**) Rejects the null hypothesis of non-conditional

coverage (ρ = 0.05) with a 5% significance level.

Table 5: Results of Lopez’s (1998) loss function. Normal distribution.
Sample 2006-2007 Sample 2008-2009

Spec. Ψ Ψ

1 2333046836358.57 2647046846407.870

2 1653110917303.23 451650358867.146

3 1578224677463.77* 453951659137.534

4 1684453701968.83 431233167551.233

5 1603126383687.97 435309131396.309

6 1657300659233.63 453207153145.048

7 1581276624589.99 452283235911.192

8 1689813156174.26 430361362409.036*
9 1613824157927.02 433582401277.377

10 2033048131561.07 2036136846407.654

(*) Lowest loss from Lopez’s magnitude loss function.

The units of measure for this test are square Colombian pesos.

The initial portfolio value for each period equals 100 million Colombian pesos.

function. On the other hand, for the 2008-2009 sample, specification 8 is the
one that exhibits the best behavior with regard to this criterion. None of these
specifications, however, provides correct unconditional coverage.

In the case of parametric specifications where a t-distribution is assumed, we
find that specification 6 is the one that minimizes Lopez’s loss for the first sample,
and specification 5 does the same for the second sample. Both specifications
provide correct coverage for their corresponding samples.

This would mean that, based on these two criteria, the VaR calculated from
a TGARCH model, without considering week day effect or day time effect and a
t-distribution, and a GARCH model considering week day and day time effects
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Table 6: Results of Lopez’s (1998) loss function. t-distribution.
Spec. Sample 2006-2007 Sample 2008-2009

t-distribution Ψ Ψ

2 1850889691317.980 512915110922.186

3 1872451233890.160 504166038902.471

4 1858706617825.380 511117944321.063

5 1865178096796.600 502818217742.356*
6 1846764259665.510* 541384048077.450

7 1868859264549.290 550978138480.490

8 1852149851803.150 3540151295984.520

9 1858768144055.600 529705197041.650

(*) Lowest loss from Lopez’s magnitude loss function.

The units of measure for this test are square Colombian pesos. The initial portfolio

value for each period equals 100 million Colombian pesos.

and a t-distribution would be the best specifications for estimating VaR for the
first and second samples, respectively.

Finally, Table 7 shows the results for Christoffersen’s (1998) correct conditional
coverage test for the estimated models under the assumption of normality. It can
be observed that, for the 2006-2007 sample, there are four specifications that
stand out, namely, 1, 4, 8, and 9, because there is not sufficient evidence to
reject the null hypothesis of correct conditional coverage. Thus, for this sample,
there are a GARCH model considering the day time effect (specification 4), a
GARCH model with leverage and day time effects (specification 8), a historical
simulation (specification 1), and a filtered historical simulation (specification 10).
None of these approaches, however, provides the lowest Lopez’s loss function for
that sample. The results differ from those of the 2008-2009 sample. In fact,
based on Christoffersen’s (1998) test, none of the specifications provides correct
conditional coverage.

If we consider the parametric models estimated under the assumption of a t-
distribution (see Table 8), we find that, for the first sample, all models with the
exception of models 5, 8, and 9, the hypothesis of correct conditional coverage
cannot be rejected. Out of these specifications, specification 6 (TGARCH without
considering the day and time effect) is the one that exhibits the lowest loss function.
For the second sample, model 8 is the only one that rejects the hypothesis of
correct conditional coverage. And in this case the specification 5 (GARCH model
considering day and time effect) provides both correct conditional coverage and
the lowest Lopez’s loss function.

López’s (1998) loss function allows to make a comparison of models that have
correct conditional coverage estimated both under the assumption of normal dis-
tribution and the assumption of a t-distribution for each of the samples. For the
2006-2007 sample, specification 6 (TGARCH model without considering day and
time effect), which was estimated under the assumption of a t-distribution, mini-
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mizes Lopez’s loss function and, therefore, has a better behavior than a historical
simulation or a filtered historical simulation. For the second sample, the best
model is model 5, which represents a GARCH(1,1) model considering week day
and day time effect, estimated under the assumption of a t-distribution17.

Table 7: Christoffersen’s (1998) coverage and independence test. Normal distribution.
Sample 2006-2007 Sample 2008-2009

Spec. LRuc LRind LRcc LRuc LRind LRcc

1 3.29 2.43 0.864 32.74** 0.01 32.74++

2 9.77** −0.51 9.26++ 12.04** 0.02 12.06++

3 13.28** 0.02 13.29++ 7.78** 0.03 7.81++

4 6.88** −1.28 5.59 7.78** 0.035 7.81++

5 8.74** −0.77 7.96++ 5.27** 0.04 5.31

6 9.77** −0.51 9.26++ 12.04** 0.02 12.06++

7 13.28** 0.0206 13.299++ 9.769** 0.0285 9.797++

8 6.88** −1.2873 5.591 6.878 ∗ ∗ 0.0381 6.916++

9 8.74** −0.7769 7.962++ 7.777** 0.0347 7.811++

10 4.93 2.93 1.99 35.84** 0.05 35.79++

(**) Rejects the null hypothesis of non-conditional coverage at a 5% significance level.
(++) Rejects the null hypothesis of correct conditional coverage at a 5% significance level.

Table 8: Christoffersen’s (1998) coverage and independence test. t-distribution.
Sample 2006-2007 Sample 2008-2009

Spec. LRuc LRind LRcc LRuc LRind LRcc

2 2.25 −2.84 −0.59 1.812 0.07 1.89

3 1.42 −3.23 −1.81 1.812 0.07 1.89

4 3.29 3.86◦◦ 7.15++ 1.42 0.079 1.50

5 3.89** −0.74 3.15 1.08 0.0858 1.17

6 2.75 −2.639 0.11 1.81 0.074 1.89

7 1.81 −3.039 −1.23 1.42 0.079 1.50

8 3.89** −0.74 3.15 6.88** 0.67 7.56++

9 3.99** −0.74 3.15 0.79 0.09 0.88

(**) Rejects the null hypothesis of non-conditional coverage at a 5% significance level.
(◦◦) Rejects the null hypothesis of independence at a 5% significance level.
(++) Rejects the null hypothesis of correct conditional coverage at a 5% significance level.

5. Final Remarks and Conclusions

In order to test our hypothesis that intraday behavior patterns could provide
relevant information that could be used for improving risk measures such as the

17After completing all of the calculations reported above, an exercise was carried out in order
to guarantee the robustness of our results both at the beginning and at the end of the two samples
being reviewed. For this purposed, the same exercises were replicated, starting with one month,
two months, and three months less of data. The results and conclusions remained unchanged.
This exercise was also carried out omitting one month, two months, and three months of data
at the end of both samples. The conclusions did not change substantially. For the purpose of
saving space, these results are not reported here.
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VaR, we evaluated the behavior for the next ten minutes of trading at the Colom-
bian Stock Exchange using 18 different ways to estimate VaR for a portfolio with
the same behavior as that of the Colombian Stock Exchange index. We consid-
ered a non-parametric approach, eight parametric models under the assumption
of a normal distribution, and 8 models under the assumption of a t-distribution
and one semi-parametric approach. These methods were applied to two different
samples, one for a relatively steady period (2006-2007)18 and another sample for
a scenario of increased uncertainty and volatility (2008-2009)19.

The parametric specifications include the day of the week effect and the hour
of the day effect as well as different ways to forecast volatility for the following ten
minutes (for a summary of specifications used, see Table 1).

In all cases, prior to the estimation of the models, data is deseasonalized fol-
lowing Giot’s (2005) recommendations. The results obtained can be summarized
as described below. Firstly, in the case of parametric VaRs with the assumption
of normality, we find that there is no model that provides correct non-conditional
coverage for the two samples being considered.

Secondly, for both samples, the estimated VaR models under the assumption
of a t-distribution have, overall, a better performance than those under the as-
sumption of a normal distribution. Thirdly, we found that, using Christoffersen’s
(1998) test and López’s (1998) loss function to compare models that have correct
conditional coverage, we found that the TGARCH(1,1), model without consider-
ing week-day and day-time effect and a t-distribution, is the best model for the
2006-2007 sample20. For the second sample, the best model is GARCH(1,1), which
considers week-day effect and day-time effect estimated under the assumption of
a t-distribution. This result validates our hypothesis that intraday behavior pat-
terns can provide relevant information for improving risk measures such as the
VaR.

The normal probability charts, Jarque-Bera’s normality test, and conditional
coverage tests are useful for inferring that, in general, using the assumption of
a t-distribution seems to be a better approach than using a normal distribution
assumption, which supports our results.

Lastly, our results suggest that there is a need to study intraday behavior of
stock portfolios in more detail and encourage a review of approaches that incor-
porate the dynamic of each of the assets that comprise the portfolio. In other
words, it will be necessary to investigate the effect of modeling the multivariate
conditional distribution of all assets involved. In order to be able to achieve this,
the conditional matrix of variance and covariance will have to be estimated.

18This sample, consisting of 5,088 observations in total, runs from 9:00 am on December 27,
2006, to 1:00 pm on November 9, 2007.

19This sample, consisting of 4,655 observations in total, begins at 9:00 am on June 3, 2008 and
ends at 1:00 pm on March 17, 2009.

20It is worth mentioning that Alonso & García (2009) found that, using the first sample, the
best model for forecasting the IGBC average for the next ten minutes is a model that did not
consider the day or time effect. In other words, these authors showed that day and time are
not important when it comes to forecasting the behavior (average) of the IGBC for the next
ten minutes. Our results for this sample allow drawing a similar conclusion with regard to the
behavior of the variance.
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Abstract

The aim of this work is to examine multinomial logistic models when
the response variable can assume three levels, generalizing a previous work
of logistic models with binary response variables. We also describe some
related models: The null, complete, and saturated models. For each model,
we present and prove some theorems concerning to the estimation of the
corresponding parameters with details that we could not find in the current
literature.
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Resumen

El objetivo de este trabajo es examinar los modelos de regresión logís-
tica multinomial cuando la variable de respuesta puede asumir tres niveles,
generalizando un trabajo anterior con variables respuesta binarias. Tam-
bién describimos algunos modelos relacionados: los modelos nulo, completo
y saturado. Para cada modelo, presentamos y demostramos teoremas rela-
cionados con la estimación de los parámetros correspondientes con detalles
que no fueron posibles encontrar en la literatura.

Palabras clave: distribución binomial, logit multinomial, modelo logístico.
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1. Introduction

Llinás (2006) studied logistic models with a dichotomous response variable.
A theorem was proved on the existence and uniqueness of maximum likelihood
(ML) estimations for the logistic model and also about its calculations. Addition-
ally, based on asymptotic theory for these ML-estimations and the score vector,
approximations were found for different deviations −2 logL, where L is the likeli-
hood function. Based on these approximations, statistics were obtained for several
hypothesis tests, each with an asymptotic chi-squared distribution. The asymp-
totic theory was developed for the case of independent, non-identically distributed
variables; thus, modifications are required to apply this theory to the case of iden-
tically distributed variables. In this article, a distinction is always made between
grouped data and ungrouped data.

Applications of the multinomial logistic model in various fields of engineering
and health sciences have made this technique as a fundamental tool for data anal-
ysis and subsequent decision making. For this reason firstly, it is important to
clarify the theoretical foundations of these models so that they can be applied to
specific situations within the data analysis process, which requires more than the
use of a statistical program.

We will present to the reader the theoretical background of this model in an
effort to describe the continuity of its construction and the elements that are used
to perform different analyses with respect to hypothesis tests, relative risks, odds,
odds ratios, etc.

For this reason, and following the methodology proposed by Llinás (2006), this
article studies multinomial logistic models only for the case in which the variable
of interest can assume one of three levels. We describe related models, such as the
null, full, and saturated models. For each model, the estimation theorems for the
corresponding parameters are presented, providing details that are not found in
the current literature (e.g., Agresti 1990, Hosmer & Lemeshow 2000, Kleinbaum
& Klein 2002).

The article is organized into six sections. The first section consists of a intro-
duction motivating this reason. The second section explains the basic Bernoulli
model. The third section explains the full model. The fourth section explains the
null model. The fifth section studies the saturated model and the basic assump-
tions, and the sixth section develops the theory corresponding to the multinomial
logistic model.

2. The Bernoulli Model

Let us suppose that the variable of interest Y can assume one of three values or
levels: 0, 1 or 2. For each r = 0, 1, 2, we let pr := P (Y = r) denote the probability
that Y assumes the value r.
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The Multinomial Logistic Model 133

With n independent observations of Y , a sample Y = (Y1, . . . , Yn)
T is obtained

with data yi ∈ {0, 1, 2} for i = 1, . . . , n, in which yi is a possible value of Yi, which
are independent of one another.

In order to construct the likelihood function, we create three independent bi-
nary variables with values of 0 and 1 as follows:

Uri =

{
1, if Yi = r

0, otherwise

where r = 0, 1, 2 and i = 1, . . . , n. Observe that Uri ∼ B(1, pri), where
pri = P (Yi = r).

In terms of the Uri variables, the sample variables are Yi = (U0i, U1i, U2i), with

values of yi = (u0i, u1i, u2i), in which
2∑

r=0
uri = 1, for a fixed i. A statistical model

is obtained in which

P (Yi = yi) =

2∏
r=0

puri
ri , i = 1, . . . , n

Setting y = (y1, . . . , yn)
T , we obtain the logarithm of the likelihood function

for the 2n-dimensional parameter p = (p01, p11, . . . , p0n, p1n)
T :

L(p) =
n∑

i=1

[u0i ln p0i + u1i ln p1i + (1− u0i − u1i) ln(1− p0i − p1i)] (1)

3. The Complete Model

The complete model is characterized by the assumption that all pri (with
r = 0, 1, 2 and i = 1, . . . , n) are considered parameters.

Theorem 1. In the complete model, the ML-estimations of pri are P̂ri = Uri with
values p̂ri = uri for r = 0, 1, 2 and i = 1, . . . , n. Additionally, Lc := L(y) = 0.

Proof . Consider equation (1), in which

L(p) =
∑

i
u0i=1,u1i=0

ln p0i +
∑

i
u0i=0,u1i=1

ln p1i +
∑

i
u0i=0,u1i=0

ln(1− p0i − p1i).

Consider that L(p) !
= 0 if and only if p0i = u0i and p1i = u1i for each

i = 1, . . . , n. This condition proves the existence of the ML-estimations. If for
some i it is true that pri 6= uri, r = 0, 1, then L(p) < 0. This condition demon-
strates that the ML-estimations are unique because if p̃ is a vector that has at
least one pri component that is different from uri, then L(p) < Lc (given that
upon replacing pri = uri in L(p), Lc = 0).
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4. The Null Model

The null model is characterized by the assumption that for each r = 0, 1, 2, all
the pri values (i = 1, . . . , n) are considered equal; that is, there are two parameters,
p0 and p1. In this case, equation (1) becomes

L(p) = n[u0 ln p0 + u1 ln p1 + (1− u0 − u1) ln(1− p0 − p1)] (2)

in which ur =
n∑

i=1

uri

n .

Theorem 2. In the null model, the ML-estimation of pr is P̂r = Ur with value
p̂r = ur. Additionally, Lo := L(p̂) < 0 if and only if 0 < u0 + u1 < 1.

Proof . It is clear that from equation (2) that

• If u0 + u1 = 0, then u0 = u1 = 0. Therefore, L(p) = 0 if and only if
pr = 0 = ur.

• If u0 +u1 = 1, then u0 = 0 or u1 = 0. Therefore, for u0 = 0, L(p) = 0 if and
only if p1 = 1 = u1 and u1 = 1, L(p) = 0 if and only if p0 = 1 = u0.

• Now let us assume that 0 < u0 + u1 < 1. From equation (2) and for a given
r, it can be proven that

∂L(p)
∂pr

=
ur
pr
− 1− u0 − u1

1− p0 − p1
= 0

if and only if p̂r = ur. Given that

∂2L(p̂)
∂p2r

= −
[
ur
p̂2r
− 1− u0 − u1

(1− p̂0 − p̂1)2

]
< 0

this solution is unique. Additionally, lnur and ln(1 − u0 − u1) are both
negative. Therefore, Lo < 0.

5. The Saturated Model and Assumptions

The saturated model is characterized by the following assumptions:
Assumption 1. It is assumed that:

1. There are K explanatory variables X1, . . . , XK (some may be numerical and
other may be categorical) with values x1i, . . . , xKi for i = 1, . . . , n (which
are set or observed by the statistician depending on whether the variables
are deterministic or random);

2. Among the n individual vectors (x1i, . . . , xKi) of the values of the explana-
tory variables Xs, there are J different possible combinations, defining J
populations. Therefore, J ≤ n. J is often referred to as the number of
covariate patterns in the applied literature.
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Notation. The notation for each population j = 1, . . . , J is denoted as follows:

• The number of Yij observations (or of Urij observations in the r category)
in each jth population is nj , with n1 + · · ·+ nJ = n;

• For a fixed r = 0, 1, 2; the random variable corresponding to the sum of the

nj observations of Urij , given by Zrj :=
nj∑
i=1

Urij with value zrj =
nj∑
i=1

urij , in

which
J∑

j=1

zrj =
n∑

i=1

uri.

For simplicity, the jth population (x1j , . . . , xKj) will be abbreviated with the
symbol ?.

Assumption 2. For each fixed r = 0, 1, 2, each population j = 1, . . . , J and each
observation i = 1, . . . , n in population j, it is assumed that

• (Urij | ?) ∼ B(1, prj)

• The (Urij | ?) variables are independent of one another.

Below, the ? symbol will be omitted. Assumption 2 implies the following:

1. For each r = 0, 1, 2 and each fixed j = 1, . . . , J , all the prij , i = 1, . . . , n, in
each jth population are equal. In other words, the 2J-dimensional
p = (p01, p11, . . . , p0J , p1J)

T vector is the parameter.

2. For each r = 0, 1, 2 and each population j = 1, . . . , J :

• Zrj ∼ B(nj , prj)

• The Zrj variables are independent among populations.

In the saturated model, the logarithm of the maximum likelihood function will be

L(p) =
J∑

j=1

[z0j ln p0j + z1j ln p1j + (nj − z0j − z1j) ln(1− p0j − p1j)] (3)

Theorem 3. In the saturated model, the ML-estimations of prj are P̃rj =
Zrj

nj
,

with the values p̃rj =
zrj
nj

, j = 1, . . . , J . Furthermore,

L(p̃) =
J∑

j=1

nj [p̃0j ln p̃0j + p̃1j ln p̃1j + (1− p̃0j − p̃1j) ln(1− p̃0j − p̃1j)] (4)

It also holds that Ls := L(p̃) < 0 for 0 < p̃rj < 1.
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Proof . Let us hold r and j. If 0 < p̃rj < 1, then we have

∂L
∂prj

=
zrj
prj
− nj − z0j − z1j

1− p0j − p1j
= 0

if and only if p̃rj =
zrj
nj

. Therefore, if 0 < zrj < nj , for each r and j, then we have

∂2L
∂p2rj

∣∣∣∣∣
prj=p̃rj

= −

[
n2j
zrj

+
n2j

nj − z0j − z1j

]
< 0

Two extreme cases must be analyzed:

• If zrj = 0, then ∂L
∂prj

= − nj

1−p0j−p1j
decreases in pj . In this case, L decreases

in prj ; that is, L(p) is maximized for prj = 0.

• If zrj = nj , then, ∂L
∂pj

=
nj

pj
increases in prj . In this case, L increases in prj ;

that is, L(p) is maximized for prj = 1.

In the saturated model, the value of L can be obtained by replacing in equation
(3), each prj with p̃rj , j = 1, . . . , J . Thus, we obtain equation (4). Under the
condition that 0 < p̃rj < 1 it can be shown that ln p̃rj y ln(1 − p̃rj) are both
negative. Therefore, the sum of the right side of equation (4) is also negative.

6. The Multinomial Logistic Model

6.1. Assumptions

Assumptions 1 and 2 from section 5 are preserved, with the additional assump-
tion that a matrix

C =

 1 x11 · · · xK1

...
...

...
1 x1J · · · xKJ


has a complete range Rg(C) = 1 + K ≤ J . To obtain a logistic model, one of
the categories of the dependent variable Y , such as 0, is used as a reference. The
following additional assumption is also made:
Assumption 3.

g1(xj) = ln

(
p1j
p0j

)
= δ1 + β11xj1 + · · ·+ β1KxjK (5)

g2(xj) = ln

(
p2j
p0j

)
= δ2 + β21xj1 + · · ·+ β2KxjK (6)

in which xj := (1, xj1, . . . , xjK)T . Let

α = (δ1, β11, . . . , β1K , δ2, β21 . . . , β2K)T
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denote the vector of the 2(1+K) parameters in the model. Note that the assump-
tion that Rg(C) = 1 +K allows the α parameter to be identified.

For a given observation xj in population j and for the so-called risk is calculated
as follows:

prj =
exp{gr(xj)}
2∑

s=0
exp{gs(xj)}

(7)

for each r = 0, 1, 2 and with g0(xj) = 0. The logarithm of the likelihood function
can be written as a function of α, as follows:

L(α) =
J∑

j=1

[
z1g1(xj) + (nj − z0j − z1j)g2(xj)− nj ln

(
2∑

r=0

exp{gr(xj)}

)]
(8)

6.2. Relation between the Multinomial Logistic Model and
the Saturated Model

The equations of assumption 3 in Section 6.1 can be written in a vector form,
where gr = Cβr, r = 1, 2, in which gr is a J-dimensional vector with elements
g(xj), j = 1, 2, . . . , J .

Given the above, the following cases can be highlighted:

Case 1. J = 1 +K
In this case, C is an invertible matrix. Therefore,

βr = C−1gr, r = 1, 2

That is, there is a one-to-one relationship between the parameters of the
saturated model and those of the logistic model. In other words, the two
models express the same thing.
Particularly, the ML-estimations of the probabilities prj are equal in both
models: p̂rj = p̃rj for each j = 1, 2, . . . , 1 +K.

Case 2. J > 1 +K
In this case, α̂ must first be calculated, and based on these values, the prj
values can be calculated. In general, we observe that p̂rj 6= p̃rj .

7. Likelihood Equations

The likelihood equations are found by calculating the first derivatives of L(α)
with respect to each one of the 2(1 + K) unknown parameters, as follows. For
every k = 0, 1, . . . ,K, we have

∂L(α)
∂β1k

=

J∑
j=1

[
z1jxjk −

nj xjk e
g1(xj)

1 + eg1(xj) + eg2(xj)

]
=

J∑
j=1

xjk(z1j − njp1j)
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and

∂L(α)
∂β2k

=

J∑
j=1

[
(nj − z0j − nz1j)xjk −

nj xjk e
g2(xj)

1 + eg1(xj) + eg2(xj)

]

=

J∑
j=1

xjk[(nj − z0j − z1j)− njp2j ]

=

J∑
j=1

xjk(z2j − njp2j)

Therefore, for every k = 0, 1, . . . ,K and every r = 0, 1, 2, the likelihood equa-
tions are given by

∂L(α)
∂βrk

=

J∑
j=1

xjk(zrj − njprj)

The estimator of maximum likelihood is obtained by setting these equations
equal to zero and solving for the logistic parameters. The solution requires the
same type of iterations that were used to obtain the estimations in the binary case,
as demonstrated in Llinás (2006).

8. Conclusions

We have studied the multinomial logistic models when the response variable
can assume one of three values and also described some related models such as the
null, complete, and saturated models. We have presented and proved the theorems
1, 2 and 3, which give us the estimation of the corresponding parameters.[
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Abstract

We discuss a situation in which, once a logit model is fitted to the data in
a contingency table, some factor levels are grouped. Generally, researchers
reapply a logit model on the pooled data, however, this approach leads to
the violation of the original distributional assumption, when the probabili-
ties of success of the random variables of aggregation differ. In this paper
we suggest an alternative procedure that operates under the unsaturated,
multifactorial, binomial, logit model. Based on asymptotic theory and tak-
ing advantage of the decrease in the variance when the correct distributional
assumption is made, the suggested procedure significantly improves the esti-
mates, reduces the standard error, produces lower residuals and is less likely
to reject the goodness of fit test on the model. We present the necessary
theory, the results of an extensive simulation designed for this purpose, and
the suggested procedure contrasted with the usual approach, through a com-
plete numerical example.

Key words: Contingency tables, Generalized linear model, Levels sets, Logit
model.

Resumen

Se discute la situación en la que, una vez ajustado un modelo logit a
los datos contenidos en una tabla de contingencia, se selecciona un factor
cualquiera de los participantes y se agregan algunos de sus niveles. General-
mente los investigadores proceden a postular nuevamente un modelo logit
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sobre los datos agrupados, sin embargo, este proceder conduce a la violación
del supuesto distribucional original, cuando las probabilidades de éxito de
las variables aleatorias de la agregación, son disímiles. En este trabajo se
sugiere un procedimiento alternativo que opera en el marco del modelo logit
binomial no saturado, multifactorial. Con base en la teoría asintótica y
aprovechando la disminución en la varianza cuando se postula el modelo dis-
tribucional correcto, el procedimiento sugerido mejora apreciablemente las
estimaciones, reduce el error estándar, produce valores residuales más cer-
canos al cero y menores probabilidades de rechazo en la prueba de bondad
del ajuste del modelo. Sustentan tales afirmaciones tanto los desarrollos
teóricos necesarios, como los resultados de una extensa simulación diseñada
al efecto. También se expone el procedimiento sugerido contrastado con el
habitual, mediante un ejemplo numérico completo.

Palabras clave: conjuntos de niveles, modelo lineal generalizado, modelo
logit, tablas de contingencia.

1. Introduction

Assume a Bernoulli phenomenon, that is, an experiment whose outcome regard-
ing an individual can only be a success or a failure (or equivalently, the presence
or absence of a feature, membership to a particular group or other similar forms).
Assume also that a researcher wants to test whether the outcome of the experiment
is determined by certain characteristics, measurable in each individual and possi-
bly the direction of the relationship if it exists. For this, the researcher collects
data from a previous study or by sampling, for example, and builds a contingency
table including the levels of the factors under study, the number of cases in which
tests the response of interest (success or failure) and total individuals examined,
for each combination of these levels.

A statistical model is related to a contingency table in order to capture the
essence of the phenomenon of study in a manageable way and to draw valid con-
clusions for the population regarding about the causal relationships between the
observed response and the measured characteristics.

Now, assuming that the responses are distributed as independent binomials,
a model that postulates a certain function of the probability of success of the re-
sponse and relates linearly with the measured characteristics in individuals looks
suitable for analysis. Thus, taking the probit model as a precursor, are the lo-
gistic regression for continuous variables and its counterpart, the logit model for
categorical explanatory variables or factors introduced by Joseph Berkson in 1944
(Hilbe 2009, p. 3).

In the case of a logit model, the link function considered is logit(p) = log( p
1−p

).

Applied to the probability of success p of a Bernoulli random variable, logit(p)
represents the logarithm of the possibility. This, in turn, is defined as the ratio
between the probability of success p and its complement, the probability of failure
1 − p.
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Moreover, suppose that the researcher, after fitting a logit model to the data,
decides to add some levels of one factor, and repeat the analysis, i.e., fit a new
logit model on a contingency table resulting from the aggregation.

It happens that in reiterating a logit model on a second contingency table,
with grouped levels of the factors, generally the original binomial assumption is
violated, with important implications on the estimated variances (Ponsot, Sinha
& Goitía 2009)1.

In seeking to address this problem and keep the situation under the general-
ized linear model frame (Nelder & Wedderburn 1972), this paper postulates the
problem of aggregation of factor levels in a broad context, i.e., in multifactorial
unsaturated logit model situation, and proposes and demonstrates some theorems
needed to suggest a procedure, alternative to the usual, that takes advantage of
the true variance of the random variables added. It is shown theoretically by
asymptotic means, and by simulation, that the suggested procedure is appropriate
and in many cases, better than the usual procedure.

This paper continues with the next section presenting a summary of the main
background of the work. The third section presents the problem and its solution,
including the theorems that support the suggested procedure and their proofs.
The fourth section illustrates the suggested procedure with a numerical example.
The fifth section summarizes the extensive simulation results comparing the two
procedures (normal and suggested). The sixth section is devoted to conclusions,
and the work ends with the acknowledgments, references and a brief appendix on
the design matrix for the saturated and unsaturated models.

2. Backgrounds

Ponsot et al. (2009) present the problem of aggregation levels of an explana-
tory factor in the saturated logit model. The authors study the affectation of the
binomial distributional assumption and show that, once factor levels are grouped,
which involves adding independent binomial random variables (RV’s), in the gen-
eral case where the probabilities of success are different, the random variable (RA)
resulting from the aggregation does not follow a binomial distribution. Proper dis-
tribution is as follows:

Let X1 and X2 be two independents RV’s such that X1 ∼ Bin(n1, p1) and
X2 ∼ Bin(n2, p2) with n1 ≤ n2. Then, the RV Z = X1 + X2 is distributed as
follows:

P[Z = k] =

(
p1

1 − p1

)k

(1 − p1)n1(1 − p2)n2S(k) (1)

1This is central in the doctoral thesis of first author (Ponsot 2011), one of whose results is
this paper.
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where

S(k) =





k∑

i=0

(
n1

k − i

)(
n2

i

)[
p2(1 − p1)

p1(1 − p2)

]i

, k = 0, . . . , n1

k∑

i=k−n1

(
n1

k − i

)(
n2

i

)[
p2(1 − p1)

p1(1 − p2)

]i

, k = n1 + 1, . . . , n2

n2∑

i=k−n1

(
n1

k − i

)(
n2

i

)[
p2(1 − p1)

p1(1 − p2)

]i

, k = n2 + 1, . . . , n1 + n2

The authors also prove that as the difference between the probabilities of suc-
cess of the RV’s involved in the aggregation increases, the correct variance of the
resulting RV [distributed as in (1)], becomes less than the variance calculated
assuming that the RV resulting is binomially distributed.

In general, let X1, X2, . . . , Xa be independents RV’s such that Xi ∼ Bin(ni, pi)
for i = 1, . . . , a. Let Xa−k+1, Xa−k+2, . . . , Xa, the k last RV’s being added
(1 < k < a) forming the RV Z = Xa−k+1 +Xa−k+2 +· · ·+Xa. Due to the indepen-
dence of the originals RV’s, V[Z] is the simple sum of V[Xi] for i = a− k + 1, . . . , a.
However, if Z is assumed (incorrectly) binomial, the variance (VBin) should be
calculated differently, making assumptions about the probability of success. By
studying the difference ∆V = VBin[Z] − V[Z], it follows that:

∆V =

a−1∑

i=a−k+1

a∑

j=i+1

ninj(pi − pj)2

a∑

i=a−k+1

ni

(2)

Clearly ∆V ≥ 0, then the correct variance is generally smaller than the bino-
mial (equal if and only if pi = pj , ∀i, j).

Based on these facts and using arguments of asymptotic nature, these authors
suggest an alternative procedure to the reiteration of the logit model fitting when
factor levels are added. This procedure improves the precision of the estimates,
using the true variance of the RV’s involved.

Now, as mentioned, the entire development applies in the univariate situation
and saturated model exclusively, leaving pending the study of unsaturated logit
model in the multifactorial situation. Such an extension is the aim in this work.

Besides, it must be mentioned that there are different courses of action than the
asymptotic approach to the problem. For example, we may include (1) as a factor
in the likelihood function; however, clearly an analytically intractable expression
is obtained, and therefore, very difficult to derivate.

Another possible course of action is to postulate the exact distribution for each
given data set, from the contingency table. This way to avoid the assumption of
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binomial populations, leading to the hypergeometric distribution and combinato-
rial analysis. This path has been explored successfully in the theory of generalized
linear model; however, it is not of very frequent application because it imposes
considerable computational challenges.

It should also be mentioned that the aggregation of factor levels and subsequent
repetition of a logit setting is of common practice among statisticians. Hosmer
& Lemeshow (2000, p. 136) suggested as a strategy to overcome the drawback of
responses with very low or no representation in the contingency table. Examples
abound in which the researcher adds factor levels, simply to reduce the complexity
of the analysis or because wish to concentrate posteriori on some levels and try the
other anonymously. An exercise that illustrates this approach can be seen in Hilbe
(2009, pp. 74 y 88). In his text the author develops models from the Canada’s
National Cardiovascular Registry, using a first opportunity to age with four levels
as an explanatory factor, and another time, this factor grouping up to only two
levels. Another example of the latter type is shown in Menard (2010). In his text
the author uses data from the National Center for Opinion Research (University of
Chicago, USA), taken from the General Social Survey. In some instances, operates
with three or even more levels for the factor “race” (Caucasian, African descent
and others), while in alternative examples, it does so with only two levels (not
Caucasian and other), grouping the original levels.

3. The Problem and Its Solution

Let T a contingency table for a binary response with s crossed factors A1, A2,
. . . , As, each with t1, t2, . . . , ts levels, respectively. Each combination of factor lev-
els has an observed response (yi1i2···is

) as the number of successes, all assumed in-
dependently binomially distributed with a total number of observations (ni1i2···is

),
ij = 1, . . . , tj and j = 1, . . . , s. On T , an unsaturated logit model is fitted with
the reference parameterization [see for example Rodríguez (2008, cap. 2, p. 29)
or SAS Institute Inc. (2004, p. 2297)], then let:

ηi1i2···is
= logit(pi1i2···is

) = xT
i1i2···is

β, ij = 1, . . . , tj ;

j = 1, . . . , s
(3)

be the univariate version of the logit model for crossed factors A1, . . . , As. To sim-
plify the treatment of the subscripts of the model, assume that each combination
of factors is reindexed orderly, making it correspond to a single value as:

1 ≡ (1, 1, . . . , 1), . . . , i ≡ (i1, i2, . . . , is), . . . , k ≡ (t1, t2, . . . , ts)

so as to produce k = t1 × · · · × ts sequenced indexes. In turn, the response is re-
indexed as y1, y2, . . . , yk and so the totals as n1, n2, . . . , nk. Then (3) is expressed
in the usual way as:

ηi = logit(pi) = xT
i β, i = 1, . . . , k (4)
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In (4) xT
i is the row vector corresponding to the combination of levels i1, i2, . . . ,

is of the design matrix Xk×m and βm×1 is the vector of parameters to be esti-
mated. Let η = [η1 · · · ηk]T be the vector that groups the logit elements, then
the multivariate version of the binomial logit model can be expressed as η = Xβ.

Suppose that after fitting the model to the data, we decide to group some levels
of a factor. In the multifactorial situation, the grouping of levels of a factor occurs
in several separate clusters, whose number is directly related to the number of
levels of other factors of the model. For example, let s = 3, A1, A2, A3 be crossed
ordered factors and t1 = t2 = t3 = 3 its levels. This factor structure contains the
tuples (1, 1, 1), (1, 1, 2), . . . , (3, 3, 3), resulting in 3 × 3 × 3 = 27 tuples.

Let examine the following situation for illustrative purposes: Levels 2 and 3 of
A3 are grouped. In this situation, the new number of levels of A3 is t∗3 = 2 and
factor structure is reduced to 3 × 3 × 2 = 18 tuples. For i = 1, 2, 3 and j = 1, 2, 3,
original tuples (i, j, 2) and (i, j, 3) collapse in the new tuples (i, j, 2∗) by adding the
corresponding values of the response variables yij2 +yij3 and the totals nij2 +nij3.
It is easy to notice that 9 aggregation sets are required, ck, k = 1, 2, . . . , 9, each one
with two elements or levels c1 = {(1, 1, 2), (1, 1, 3)}, . . . , c9 = {(3, 3, 2), (3, 3, 3)}.

If the proposed model is saturated (k = m), i.e. the number of available
observations equals the number of model parameters, the X matrix is a square, full
rank, and therefore invertible matrix. Moreover, when assuming an unsaturated
logit model, generally k > m, the design matrix X is no longer square and it has
no inverse.

It has been proved by McCullagh & Nelder (1989, p. 119) that

V [β̂] = (XTWX)−1

where W = diag[nipi(1−pi)]. These authors also discuss that the problems of over
or under dispersion, deserve detailed study and that they can be solved by simply
scaling V [β̂] by a constant, obtained from the deviance or Pearson’s statistics and
residual degrees of freedom ratio.

Thus, assuming no over or under dispersion (which simply involves the appro-
priate scaling of the estimated variance-covariance matrix), an immediate conse-
quence of the fact that X has no inverse is that, once parameters have been es-
timated by iterative reweighted least squares (Searle, Casella & McCulloch 2006,

p. 295), V [Xβ̂] = X(XTWX)−1XT , do not support further simplification.

Let be Σ = X(XTWX)−1XT , with elements [σij ], i, j = 1, . . . , k. In general,
though not necessarily, σij 6= 0. Then, due to the central limit theorem (Lehmann
1999, p. 73) and asymptotic properties of maximum likelihood estimators:

η̂ = Xβ̂ ∼ AN(Xβ;Σk×k) (5)

In (5), “AN” is the abbreviation for “Asymptotically Normal”, commonly used
in the statistical literature. Moreover, it is necessary the asymptotic distribution
of the p̂i. It is developed in the following theorem:
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Theorem 1. If η̂ = [logit(p̂1) logit(p̂2) · · · logit(p̂k)]T is distributed as in (5),
then p̂ = [p̂1 p̂2 · · · p̂k]T , such that:

p̂i =
ex

T
i β̂

1 + ex
T
i
β̂
, i = 1, . . . , k

is asymptotically distributed as multivariate normal with E[p̂i] = pi = ex
T

i
β/(1 +

ex
T

i
β) and variance covariance matrix Ψ = [ψij ] with elements ψij = σijpi(1 −

pi)pj(1 − pj), i, j = 1, . . . , k.

Proof . Let g−1

i for i = 1, . . . , k be real-valued functions defined as

g−1

i (η̂1, . . . , η̂i, . . . , η̂k) =
eη̂i

1 + eη̂i

then,

∂g−1

i

∂η̂j

=

{
0 , i 6= j

eη̂i/(1 + eη̂i )2 , i = j

ψij =

k∑

s=1

k∑

t=1

σst

∂g−1

i

∂η̂s

∂g−1
j

∂η̂t

∣∣∣∣∣
η̂=η

=

k∑

s=1

σsj

∂g−1

i

∂η̂s

∂g−1
j

∂η̂j

∣∣∣∣∣
η̂=η

= σij

∂g−1
i

∂η̂i

∂g−1

j

∂η̂j

∣∣∣∣∣
η̂=η

= σij

eηi

(1 + eηi )2

eηj

(1 + eηj )2

= σijpi(1 − pi)pj(1 − pj)

Thus, given the existence of the partial derivatives around η̂, multivariate ver-
sion of the delta method (Lehmann 1999, p. 315) ensures that p̂ = [p̂1 p̂2 · · · p̂k]T

is asymptotically normal with E[p̂i] = pi = ex
T

i
β/(1 + ex

T

i
β) and variance covari-

ance matrix Ψ = [ψij ] with ψij = [σijpi(1 − pi)pj(1 − pj)], i, j = 1, . . . , k.

Suppose then that the researcher wants to add r levels (1 < r < ti) of i-th
factor Ai and, therefore, a = t1 × · · · × ti−1 × ti+1 × · · · × ts sets are produced,
whose elements are each r of the indexes 1, . . . , k without repetition, affected by
the aggregation. Let the sets (called “aggregation sets”), be defined by:

cν = {ξi
1, ξ

i
2, . . . , ξ

i
r}, ξi

j ∈ {1, . . . , k}; j = 1, . . . , r;

i = 1, . . . , a; ν = min{ξi
1, ξ

i
2, . . . , ξ

i
r} for each i;

cν ∩ cν′ = φ, ∀ ν, ν′

for each of which, in turn is defined:

n∗
ν =

∑

cν

ni, p̂∗
ν =

∑
cν
nip̂i

n∗
ν

(6)
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Since p̂∗
ν is the weighted sum of asymptotically normal RV’s, p̂∗

ν is an asymp-
totically normal RV for all ν and covaries with the other probability estimators.
It is easy to verify that E[p̂∗

ν ] = p∗
ν = (

∑
cν
nipi)/n

∗
ν , however, the variance and

covariance associated with p̂∗
ν are more complex, as is proved in the following

theorem:

Theorem 2. Given p̂ = [p̂1 p̂2 · · · p̂k]T distributed as in Theorem 1, if p̂∗
ν =

(
∑

cν
nip̂i)/n

∗
ν with n∗

ν =
∑

cν
ni, then:

V[p̂∗
ν ] =

1

(n∗
ν)2




∑

cν

n2
iψii + 2

∑

i∈cν−max{cν }

∑

j∈cν>i

ninjψij





Cov[p̂∗
ν , p̂j] =

∑
i∈cν

niψij

n∗
ν

, for all j /∈

a⋃

i=1

ci

Cov[p̂∗
ν , p̂

∗
ν′ ] =

∑
i∈cν

∑
j∈cν′

ninjψij

n∗
νn

∗
ν′

for any two aggregation sets cν , cν′ .

Proof .

(p̂∗
ν)2 =

{∑
cν
nip̂i

n∗
ν

}2

=
1

(n∗
ν)2




∑

cν

n2
i p̂

2
i + 2

∑

i∈cν−max{cν}

∑

j∈cν >i

ninj p̂ip̂j





(E[p̂∗
ν ])2 =

{∑
cν
niE[p̂i]

n∗
ν

}2

=
1

(n∗
ν)2




∑

cν

n2
i (E[p̂i])

2 + 2
∑

i∈cν−max{cν}

∑

j∈cν >i

ninjE[p̂i]E[p̂j ]





E[(p̂∗
ν)2] =

1

(n∗
ν)2




∑

cν

n2
i E[p̂2

i ] + 2
∑

i∈cν−max{cν}

∑

j∈cν >i

ninjE[p̂ip̂j]



 ⇒

V[p̂∗
ν ] = E[(p̂∗

ν)2] − (E[p̂∗
ν ])2

=
1

(n∗
ν)2

{
∑

cν

n2
i (E[p̂2

i ] − E[p̂i]
2)

+2
∑

i∈cν−max{cν}

∑

j∈cν >i

ninj(E[p̂ip̂j ] − E[p̂i]E[p̂j ])




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=
1

(n∗
ν)2




∑

cν

n2
i V[p̂i] + 2

∑

i∈cν−max{cν}

∑

j∈cν >i

ninjCov[p̂i, p̂j ]





=
1

(n∗
ν)2




∑

cν

n2
iψii + 2

∑

i∈cν−max{cν}

∑

j∈cν >i

ninjψij





Furthermore, for j /∈ cν :

Cov[p̂∗
ν , p̂j ] = E[p̂∗

ν p̂j ] − E[p̂∗
ν ]E[p̂j ]

=

∑
cν
niE[p̂ip̂j ]

n∗
ν

−

∑
cν
niE[p̂i]E[p̂j ]

n∗
ν

=

∑
cν
niCov[p̂i, p̂j]

n∗
ν

=

∑
cν
niψij

n∗
ν

Finally:

p̂∗
ν p̂

∗
ν′ =

(∑
cν
nip̂i

n∗
ν

)(∑
cν′
nip̂i

n∗
ν′

)
=

1

n∗
νn

∗
ν′




∑

i∈cν

∑

j∈cν′

ninj p̂ip̂j



 ⇒

Cov[p̂∗
ν , p̂

∗
ν′ ] = E[p̂∗

ν p̂
∗
ν′ ] − E[p̂∗

ν ]E[p̂∗
ν′ ]

=
1

n∗
νn

∗
ν′




∑

i∈cν

∑

j∈cν′

ninjE[p̂ip̂j]





−
1

n∗
νn

∗
ν′




∑

i∈cν

∑

j∈cν′

ninjE[p̂i]E[p̂j ]





=
1

n∗
νn

∗
ν′




∑

i∈cν

∑

j∈cν′

ninjCov[p̂i, p̂j ]





∑
i∈cν

∑
j∈cν′

ninjψij

n∗
νn

∗
ν′

Note that the cardinality of the index range of the model (originally k) has
been reduced given the aggregation levels and is now k∗ = k − a(r − 1). Each
group of r originals RV’s, for each of the a different combinations of the levels
of the other factors (A1, . . . , Ai−1, Ai+1, . . . , Ak), gives way to a single random
variable constructed from the sum, renamed in its index at the lower value of
the aggregation set that corresponds. So, having both likelihood estimators not
affected by aggregation, as those who effectively are, we can settle the new vector:

p̂∗

k∗×1 ∼ AN(p∗

k∗×1;Ψ∗

k∗×k∗ ) (7)
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where:

p̂∗ =



p̂∗

1

...

p̂∗
k


 , p∗ =



p∗

1

...

p∗
k


 , Ψ∗ =




ψ∗
11 ψ∗

12 · · · ψ∗
1k

ψ∗
21 ψ∗

22 · · · ψ∗
2k

...
...

. . .
...

ψ∗
k1 ψ∗

k2 · · · ψ∗
kk




except that the range of the index 1, . . . , k in Ψ
∗, although ordered, is not corre-

lated with N, that is, some of their values are no longer present.

Also, p̂∗
i ≡ p̂i, p

∗
i ≡ pi, ψ

∗
ij ≡ ψij for all i, j /∈ ∪cν and p̂∗

i , p∗
i , ψ∗

ij are as in the
definition and Theorem 2 for the remaining i, j.

Example 1. Let T be a contingency table with two factors A1 and A2, the first
with 2 levels (1, 2) and the second with three (1, 2, 3). Reindexing the original
subscripts properly, we have:

1 ≡ (1, 1); 2 ≡ (1, 2); 3 ≡ (1, 3); 4 ≡ (2, 1); 5 ≡ (2, 2); 6 ≡ (2, 3)

with the original logit model estimates p̂ = [p̂1 p̂2 p̂3 p̂4 p̂5 p̂6]T .

Now suppose we add levels 2 and 3 of factor A2. Aggregation sets that arise are
c2 = {2, 3} and c5 = {5, 6}, and the new model estimates p̂∗ = [p̂∗

1 p̂∗
2 p̂∗

4 p̂∗
5]T ,

where:

p̂∗
1 = p̂1

p̂∗
2 =

n2p̂2 + n3p̂3

(n2 + n3)

p̂∗
4 = p̂4

p̂∗
5 =

n5p̂5 + n6p̂6

(n5 + n6)

In addition, the variance covariance matrix of p̂ is

Ψ =




ψ11 ψ12 ψ13 ψ14 ψ15 ψ16

ψ21 ψ22 ψ23 ψ24 ψ25 ψ26

ψ31 ψ32 ψ33 ψ34 ψ35 ψ36

ψ41 ψ42 ψ43 ψ44 ψ45 ψ46

ψ51 ψ52 ψ53 ψ54 ψ55 ψ56

ψ61 ψ62 ψ63 ψ64 ψ65 ψ66




while the variance covariance matrix of p̂∗ (symmetric) is

Ψ
∗ =




ψ∗
11 ψ∗

12 ψ∗
14 ψ∗

15

ψ∗
21 ψ∗

22 ψ∗
24 ψ∗

25

ψ∗
41 ψ∗

42 ψ∗
44 ψ∗

45

ψ∗
51 ψ∗

52 ψ∗
54 ψ∗

55



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where, following the Theorem 2:

ψ∗
11 = ψ11

ψ∗
12 = (n2ψ12 + n3ψ13)/(n2 + n3)

ψ∗
14 = ψ14

ψ∗
15 = (n5ψ15 + n6ψ16)/(n5 + n6)

ψ∗
22 = (n2

2ψ22 + n2
3ψ33 + 2n2n3ψ23)/(n2 + n3)2

ψ∗
24 = (n2ψ24 + n3ψ34)/(n2 + n3)

ψ∗
25 = (n2n5ψ25 + n2n6ψ26 + n3n5ψ35 + n3n6ψ36)/[(n2 + n3)(n5 + n6)]

ψ∗
44 = ψ44

ψ∗
45 = (n5ψ45 + n6ψ46)/(n5 + n6)

ψ∗
55 = (n2

5ψ55 + n2
6ψ66 + 2n5n6ψ56)/(n5 + n6)2

Now, returning to the theoretical development, the following theorem shows
the required distribution of logit(p̂∗

i ), i = 1, . . . , k, prior to the estimation of the
parameters associated with the factors.

Theorem 3. If p̂∗ is distributed as in (7), then:

logit(p̂∗
) =

[
logit(p̂∗

1) · · · logit(p̂∗
k)
]T

is asymptotically distributed multivariate normal with E[logit(p̂∗
i )] = logit(p∗

i ) and
variance covariance matrix Σ

∗ = [σ∗
ij ] = [ψ∗

ij [p∗
i (1 − p∗

i )p∗
j (1 − p∗

j)]−1].

Proof . Lets gi(i = 1, . . . , k), real-valued functions defined as

gi(p̂
∗
1, . . . , p̂

∗
i , . . . , p̂

∗
k) = logit(p̂∗

i )

then,

∂gi

∂p̂∗
j

=

{
0 , i 6= j

[p̂∗
i (1 − p̂∗

i )]−1, i = j

and

σ∗
ij =

k∑

s=1

k∑

t=1

ψ∗
st

∂gi

∂p̂∗
s

∂gj

∂p̂∗
t

∣∣∣∣∣
p̂∗=p∗

= ψ∗
ij [p∗

i (1 − p∗
i )p∗

j (1 − p∗
j )]−1

And because in this case also there are the partial derivatives around p̂∗, using
again a multivariate version of the delta method, logit(p̂∗

) is asymptotically dis-
tributed multivariate normal with E[logit(p̂∗

i )] = logit(p∗
i ) and variance covariance

matrix Σ
∗ = [σ∗

ij ] = [ψ∗
ij [p∗

i (1 − p∗
i )p∗

j (1 − p∗
j)]−1].

Finally, the following theorem shows the distribution of the new parameters
β̂∗, from the new design matrix X∗. Its proof is omitted since it is easily obtained
by appealing to the results included in the Appendix.
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Theorem 4. Given the model

Y = logit(p̂∗

) = X∗β∗ + ǫ, ǫ ∼ AN(0,Σ∗)

in which, Y = logit(p̂∗
) is a column vector whose elements are logit(p̂∗

i ), i =
1, . . . , k and Σ

∗ is the variance covariance matrix, both constant and known, cal-
culated according to the Theorem 3. Let X∗ be the new design matrix2, using
the reference parameterization, proposed after the process of aggregation of factor
levels, constrained to include the same factors that included the original design ma-
trix X. And let β∗ be the new vector of parameters to be estimated by maximum
likelihood (β̂∗). Then:

• β̂∗ = [(X∗)TX∗]−1(X∗)TY .

• V[β̂∗] = [(X∗)TX∗]−1(X∗)T
Σ

∗X∗[(X∗)TX∗]−1.

• β̂∗ is distributed asymptotically normal.

A modification in this asymptotical distribution has been induced for the orig-
inal and transformed RV’s, by applying aggregation some factor levels and some
required sets of aggregation (cν). Thus, the suggested procedure is as follows:

1. Fit a logit model by preserving the calculation of the vector of estimates of
pi and the variance covariance matrix Σ estimated for β̂.

2. Define the required aggregation sets, in order to calculate point estimates
for the p∗

ν as in the Theorem 2 and the variance covariance matrix Ψ
∗ of p̂∗,

like in (7).

3. Compute logit(p̂∗
i ) for the resulting range of values i and its variance covari-

ance matrix Σ
∗, following Theorem 3.

4. Build the new design matrix X∗

k∗×m∗ according to the new desired parame-
ters vector β∗

m∗×1.

5. In general, setting a generalized least squares regression (Christensen 2002,

pp. 33, 86) to estimate β̂∗

m∗×1 with a new model formulated as follows:

Y = logit(p̂∗
) = X∗β∗ + ǫ, ǫ ∼ AN(0,Σ∗)

in which the matrix Σ
∗ is the result of step 3. However, using the reference

parameterization, the computation of both, the vector of parameters to be
estimated and the variance covariance matrix, is greatly simplified by using
the Theorem 4.

Finally, it is clear that the deductions have been made for the aggregate of
r levels of a single factor. However, this approach does not diminish generality.
If the researcher wants to group two or more factors, we just weed to iteratively
apply the suggested procedure, one factor at a time. In other words, we simply
applies the suggested procedure, repeatedly.

2Note that X∗ has a smaller number of columns than X (hence β∗ has fewer elements β),
because it models a smaller number of junctions in the levels of the factors.
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4. Illustration of the Suggested Procedure

Table 1 presents a situation where the interest lies in studying the relationship
between a response variable Y and two explanatory factors A1 and A2 with 2 and
3 levels, respectively. The observed frequencies or number of successes for each
levels combination are shown in Table 1 above.

Table 1: Example Y (0, 1) vs. A1(1, 2), A2(1, 2, 3).
i A1 A2 No. of successes Total

1 1 1 53 133

2 1 2 11 133

3 1 3 127 133

4 2 1 165 533

5 2 2 41 533

6 2 3 476 533

Total 873 1998

In this particular case, the proposed logit model omits interactions between
the factors, and therefore is not saturated. Using the first level of each factor as a
reference, the equations are as follows:




logit(p1)

logit(p2)

logit(p3)

logit(p4)

logit(p5)

logit(p6)




=




1 0 0 0

1 0 1 0

1 0 0 1

1 1 0 0

1 1 1 0

1 1 0 1







β1

β2

β3

β4


 (8)

In (8), β1 represents the intercept effect, β2 represents the level 2 of A1 effect,
β3 represents the level 2 of A2 effect and β4 the level 3 of A2 effect. The levels 1
of A1 and 1 of A2 are not explicitly represented in the model (are the references
levels).

Preliminary tests and goodness of fit for this model are shown in Table 2.
The model fits the data appropriately, as it is deduced from the deviance and
Pearson’s statistics. Also, according to the Pearson’s statistic, the overdispersion
is negligible.

Table 3 contains the parameter estimates with their corresponding standard
tests for H0 : βi = 0, i = 1, 2, 3 and 95% confidence intervals (CI) for βi. The
predicted probabilities and their CI’s are also shown in Table 4.

Now suppose that we cluster levels 2 and 3 of the factor A2 in Table 1, pro-
ducing the Table 5 with aggregate data, and postulate the usual procedure: a new
logit model.
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Table 2: Original model. Preliminary tests and goodness of fit.
Test Value

Residual deviance: 2.5065

Residual degrees of freedom (DF): 2

Deviance χ2/DF: 0.2856

Deviance test: No reject

Pearson’s statistic: 2.3104

Pearson’s χ2/DF: 0.315

Pearson’s test: No reject

Deviance/DF: 1.2533

Pearson’s/DF: 1.1552

Table 3: Original model. β̂i and normal tests (H0 : βi = 0).
Estimation of βi 95% CI

i β̂i SE z-Value p (> |z|) Conclusion Ll Ul

1 −0.39857 0.14688 −2.71369 0.00666 Reject −0.68644 −0.11070

2 −0.40725 0.15536 −2.62130 0.00876 Reject −0.71176 −0.10275

3 −1.75603 0.16676 −10.53046 0.00000 Reject −2.08286 −1.42919

4 2.99348 0.15665 19.10956 0.00000 Reject 2.68646 3.30051

SE: Standard Error. Ll: Lower limit. Ul: Upper limit.

Table 4: Original model. Predicted probabilities and 95% CI’s.
i p̂i Ll Ul i p̂i Ll Ul

1 0.4017 0.3325 0.4708 4 0.3088 0.2713 0.3463

2 0.1039 0.0702 0.1376 5 0.0716 0.0521 0.0912

3 0.9305 0.9068 0.9542 6 0.8991 0.8752 0.9231

Table 5: Example Y (0, 1) vs. A1(1, 2), A2(1, 2∗).
i A1 A2 No. of success (y) Total (t) y/t

1 1 1 53 133 0.3984

2 1 2∗ 138 266 0.5188

3 2 1 165 533 0.3096

4 2 2∗ 517 1066 0.4850

Total 873 1998

The new unsaturated model (ignoring interactions), using the reference param-
eterization (with level 1 of both factors by reference), unfolds as follows:




logit(p∗
1)

logit(p∗
2)

logit(p∗
3)

logit(p∗
4)


 =




1 0 0

1 0 1

1 1 0

1 1 1






β∗

1

β∗
2

β∗
3


 (9)

Now in (9), β∗
1 represents the intercept effect, β∗

2 level 2 of A1 effect and β∗
3

the level 2∗ of A2 effect. Some measures of goodness of fit for this model are
reproduced in Table 6.

The model fits the data with negligible overdispersion. Re-adjusting a logit
model over the resulting contingency table, the new estimates are shown in Table
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7. Without regard the parameters significance, the probabilities predicted by the
model are reproduced in Table 8.

Table 6: Usual procedure. Testing goodness of fit of the aggregate data model.
Test Value

Residual deviance: 1.0986

Residual degrees of freedom (DF): 1

Deviance χ2/DF: 0.2946

Deviance test: No reject

Pearson’s statistic: 1.1051

Pearson’s χ2/DF: 0.2932

Pearson’s test: No reject

Deviance/DF: 1.0986

Pearson’s/DF: 1.1051

Table 7: Usual procedure. β̂∗

i and normal tests (H0 : β∗

i = 0).
β∗

i
estimation 95% CI

i β̂i SE z-Value p (> |z|) Conclusion Ll Ul

1 −0.5485 0.1220 −4.4965 0.0000 Reject −0.7876 −0.3094

2 −0.2162 0.1137 −1.9014 0.0573 No reject −0.4390 0.0067

3 0.6885 0.0992 6.9401 0.0000 Reject 0.4941 0.8830

Table 8: Usual procedure. Predicted probabilities and 95% CI without regard to model
parameters statistical significance.

i p̂∗

i
Ll Ul

1 0.3662 0.3107 0.4217

2 0.5349 0.4831 0.5868

3 0.3176 0.2811 0.3542

4 0.4810 0.4519 0.5100

The new parameter vector β∗ is estimated differently in both models (original
and aggregated data). With α = 0.05, Table 7 suggests the absence of sufficient
evidence to reject the null hypothesis about β∗

2 . This finding has important impli-
cations for the analysis: Since it is not possible to conclude that β∗

2 is significantly
different that 0, the predicted probabilities in Table 8, in strict statistical sense,
should not be considered valid. Statistical valid predictions are as follows:

p̂∗
1 =

eβ̂∗

1

1 + eβ̂∗

1

= 0.3662

p̂∗
2 =

eβ̂∗

1
+β̂∗

3

1 + eβ̂∗

1
+β̂∗

3

= 0.5349

p̂∗
3 =

eβ̂∗

1
+β̂∗

2

1 + eβ̂∗

1
+β̂∗

2

=
eβ̂∗

1
+0

1 + eβ̂∗

1
+0

= 0.3662 (10)
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p̂∗
4 =

eβ̂∗

1
+β̂∗

2
+β̂∗

3

1 + eβ̂∗

1
+β̂∗

2
+β̂∗

3

=
eβ̂∗

1
+0+β̂∗

3

1 + eβ̂∗

1
+0+β̂∗

3

= 0.5349 (11)

Finally, Table 9 contains the estimates and the 95% CIs for the logit model
postulated in (9), obtained by the procedure suggested in this paper. Note that
the point estimates of the standard procedure and the suggested procedure are
slightly but significantly different. Using the suggested procedure, the Pearson’s
goodness of fit of the model produces a χ2 of 0.0104 that leaves a probability of
0.9188 at right. Then, the model analyzed by the suggested procedure properly
fits the data; in fact it fits in a better way than with the usual procedure, which
produces a Pearson’s statistic 1.1051 that leaves a probability of 0.2932 at right
(see Table 6).

Table 9: Suggested procedure. β̂∗

i and normal tests (H0 : β∗

i = 0).
β∗

i
estimation 95% CIs

i β̂i SE z-Value p (> |z|) Conclusion Ll Ul

1 −0.4685 0.1257 −3.7280 0.0002 Reject −0.7149 −0.2222

2 −0.2673 0.1019 −2.6236 0.0087 Reject −0.4670 −0.0676

3 0.6074 0.0931 6.5234 0.0000 Reject 0.4249 0.7899

Table 9 shows that the estimated standard errors for the parameters β∗
2 and

β∗
3 , using the suggested procedure are lower than those found by conventional

procedure (Table 7).

Table 10 presents the predicted probabilities, now fitting the data according to
the procedure suggested in this paper. Note that the predicted probabilities are
considerably closer to those expected for the new data set (see the column and y/t
in the Table 5), than those predicted with the usual procedure.

Table 10: Suggested procedure. Predicted probabilities and 95% CIs.
i p̂∗

i
Ll Ul

1 0.4017 0.3325 0.4708

2 0.5172 0.4927 0.5417

3 0.3088 0.2713 0.3463

4 0.4854 0.4696 0.5012

Also, note in Table 9 that the conclusion about the significance of β∗
2 is no

lunger the same. The standard procedure statistically valid estimates (10) and
(11) and look considerably different from using the suggested procedure. The
predictions on Table 10 are statistically valid, approaching in a better way than
would be expected from the available data.

Finally, Figure 1 presents the Pearson’s standardized residuals, calculated us-
ing both methods. Clearly, the estimates produced by the suggested procedure
are much closer to the expected value than those produced by the conventional
procedure.
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Figure 1: Pearson’s standardized residuals calculated by both procedures.

5. Comparison of Alternative Procedures Through

Simulation

In a situation with a binary response Y and two explanatory factors A1, A2,
the first with 2 levels and the second with 3 leves, we propose a simulation in
order to study the effect of the aggregation of levels 2 and 3 for the factor A2,
using pseudo-random generation of a large number of contingency tables of the
type shown in Table 11.

Table 11: Original arrangement for simulation Y vs. A1(1, 2), A2(1, 2, 3).
i A1 A2 No. of successes (yi) Total (ni)

1 1 1 y1 n1

2 1 2 y2 n2

3 1 3 y3 n3

4 2 1 y4 n4

5 2 2 y5 n5

6 2 3 y6 n6

Total y· n·

An unsaturated logit model is fitted to of the generated tables signoring the
effect of interactions, using the first level of each factor as a reference, by




logit(p1)

logit(p2)

logit(p3)

logit(p4)

logit(p5)

logit(p6)




=




1 0 0 0

1 0 1 0

1 0 0 1

1 1 0 0

1 1 1 0

1 1 0 1







β1

β2

β3

β4


 (12)

In (12), pi represents the probability of success of the i-th combination of levels
of the two explanatory factors identified in Table 11 (i = 1, . . . , 6), while βj are
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the parameters to be fitted (j = 1, . . . , 4). Specifically, β1 represents the effect of
the intercept, β2 is the effect of level 2 of factor A1, β3 is the effect of level 2 of
the factor A2 and β4 is the effect of the level 3 of the factor A2.

The Table 12 is formed by grouping the last two levels of the second factor in
the Table 11.

Table 12: Aggregated data for simulation Y vs. A1(1, 2), A2(1, 2∗).
i A1 A2 No. of successes (yi) Total (ni)

1 1 1 y1 n1

2 1 2∗ y2 + y3 n2 + n3

3 2 1 y4 n4

4 2 2∗ y5 + y6 n5 + n6

Total y· n·

Following the usual procedure, we set a new unsaturated logit model for the
Table 12, than also ignores the effect of interactions and uses the first level of each
factor as a reference:




logit(p∗
1)

logit(p∗
2)

logit(p∗
3)

logit(p∗
4)


 =




1 0 0

1 0 1

1 1 0

1 1 1






β∗

1

β∗
2

β∗
3


 (13)

Now, in (13) p∗
i represents the probability of success of the i-th combination of

levels of the two explanatory factors identified in the Table 12 (i = 1, . . . , 4), with
β∗

1 representing the effect of the intercept, β∗
2 the effect of level 2 of the factor A1

and β∗
3 the effect of level 2∗ of the factor A2.

Lastly, following the suggested procedure, from the original model results (12)
we estimate the parameters of the new model with aggregate levels of the factor.
The comparison between the two procedures (usual and suggested) is then used
to analyze the resulting performance statistics in each case.

5.1. Design of the Experiment of Simulation

That total in the experiment set n· = 2000 is distributed in two randomized
numbers to each level of A1 and, within these, in three randomized numbers for
each level of A2. In this particular study, it is not of interest to compare the effect
of both procedures on the levels of factor A1, or on the first level of factor A2, p1

y p4. Then, independent pseudo-randomly uniform (0, 1) samples are generated.
Using the generated values of n1, n4 (selected randomly from n·) and p1 and p4,
the samples Y1 ∼ Bin(n1, p1) and Y4 ∼ Bin(n4, p4) are generated.

For the factor levels being compared in A2, the samples Y2 ∼ Bin(n2, p2),
Y3 ∼ Bin(n3, p3), Y5 ∼ Bin(n5, p5) and Y6 ∼ Bin(n6, p6), are generated nj

randomized as before and sequentially using combinations of ∆p = |p2 − p3| =
|p5 − p6| = 0.0, 0.2, 0.4, 0.6, 0.8. Such combinations are obtained by maintaining
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the values p2 = p5 = 0.1 as constant and varying by the values of p3 = p6 =
0.1, 0.3, 0.5, 0.7, 0.9.

For each combinations of ∆p to experiment several, contingency tables are pro-
duced, regrading to by the binomials generated, which are independent within each
table and between tables. We only incorporate samples that meet the following
conditions:

1. Lead to acceptance of the original logit model, as assessed by the Pearson’s
goodness of fit.

2. Lead to an original logit model the does not present important problems on
subdispertion. That is, that produces a statistical ratio of the Pearson’s and
residual degrees of freedom in the range (0.75; 1.25).

3. Lead to acceptance of the logit model with levels 2 and 3 of the factor added
A2, also following the Pearson’s test of goodness of fit.

4. Lead to a logit model with aggregate levels of the factor, which does not
have important problems of subdispertion. This in order to produce a sta-
tistical ratio of the Pearson’s and residual degrees of freedom in the range
(0.75; 1.25).

Finally, there are 10,000 valid samples, 2,000 for each combination of ∆p, and
significance level is set up with for testing α = 0.05. The performance measures
considere were:

a) Firstly, we examine descriptive statistics of the differences the Pearson’s χ2

goodness of fit test, obtained using standard procedures and suggested (in
that order).

b) We compare the absolute differences in point estimates of β∗
1 , β

∗
2 y β∗

3 , ob-
tained by the standard and suggested procedures, regardless to their statis-
tical significance.

c) Compare the differences in the lengths of the calculated CIs using the usual
and suggested procedure. It uses the average ratio between the lengths of
the first and the second (in that order). These ratios are calculated for the
CIs accompanying the parameter estimates β∗

1 , β
∗
2 and β∗

3 .

d) We study the absolute frequency of occurrence of the change in the conclusion
of the analysis of variance (acceptance to rejection, or vice versa) for testing
hypotheses about the parameters H0 : β∗

1 = 0, H0 : β∗
2 = 0 y H0 : β∗

3 = 0,
when they are contrasted by the usual way, and when they are contrasted
by the suggested procedure.

e) Finally, for each sample Pearson’s standardized residuals produced by both
methods were calculated. Also, analysis of each value of ∆p, we construct
boxplots their corresponding.
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5.2. Results of the Simulation Experiment

a) Firstly, Table 13 shows means and standard deviations (SD) of the simple
differences between the probabilities that leaves to the right Pearson’s χ2

test, in the examination of the goodness of fit of the model, obtained by the
usual and suggested procedure.

Table 13: Mean and standard deviations of the differences to the Pearson’s χ2 proba-
bilities (Usual - Suggested).

∆p Mean SE

0.0 −0.0002 0.0006

0.2 −0.0104 0.0214

0.4 −0.0219 0.0615

0.6 −0.0314 0.1148

0.8 −0.1173 0.1884

Since the average values in Table 13 are all negative, it is clear that the
suggested procedure fits the data consistently better than the usual, with
the increase in the differences ∆p.

As evidence of goodness of fit of the model, the Pearson’s statistic is partic-
ularly suitable in this case, since it is based on the accumulation of the stan-
dardized residuals. Although the variability is high, Table 13 that steadily
as there are greater differences between the probabilities of the variables
involved in the aggregation, the probability to the right of Pearson’s χ2

goodness of fit test increases in the suggested procedure compared with the
usual.

In practice this means that, on average, the estimated parameters using the
suggested procedure are closer to the expected for a given dataset in compar-
ison to the estimates produced by the usual procedure. It also means that
the model fitted using the suggested procedure is less likely to be rejected
than the other model.

b) Without considering the significance of the estimated parameters, the Table
14 contains the ranges obtained by both methods (standard and suggested)
for each estimate. It can be seen that these ranges are very similar in gen-
eral and, as should be verified, the same when ∆p = 0, and slightly more
dissimilar as ∆p increase.

Table 15 contains the averages and standard deviations of the absolute dif-
ferences between the parameters. As seen there, both the average and the
standard deviation of the differences between the parameters estimated by
the usual procedure (u) and suggested (s), |β∗

i (u) − β∗
i (s)|, i = 1, 2, 3 behave

similarly. This is, they grow as the probabilities of the variables involved in
the aggregation are more dissimilar.

Nevertheless, given the ranges shown in Table 14, these differences do not
seem important on average. The conclusion here is that both procedures
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(usual and suggested) essentially estimate the same values of model param-
eters, in most situations.

Table 14: Ranges of β̂∗

i according to the usual and suggested procedures.

β̂∗

1 β̂∗

2 β̂∗

3

Usual Suggested Usual Suggested Usual Suggested

∆p Min Max Min Max Min Max Min Max Min Max Min Max

0.0 -2.43 2.51 -2.43 2.51 -1.31 1.20 -1.31 1.20 -4.69 0.43 -4.69 0.43

0.2 -2.57 2.50 -2.58 2.50 -0.70 0.92 -0.71 0.92 -4.04 1.22 -4.04 1.22

0.4 -2.38 2.65 -2.38 2.65 -0.53 0.54 -0.54 0.55 -3.51 1.63 -3.50 1.63

0.6 -2.51 2.70 -2.51 2.69 -0.57 0.45 -0.66 0.50 -3.13 2.09 -3.13 2.09

0.8 -2.44 2.52 -2.47 2.59 -0.38 0.32 -0.50 0.39 -2.54 2.52 -2.54 2.45

Table 15: Average of absolute differences and deviations between the parameters esti-
mated by both methods.

|β̂∗

1 (u) − β̂∗

1 (s)| |β̂∗

2(u) − β̂∗

2 (s)| |β̂∗

3 (u) − β̂∗

3 (s)|

∆p Mean SD Mean SD Mean SD

0.0 0.000 0.000 0.000 0.000 0.000 0.000

0.2 0.002 0.002 0.001 0.001 0.002 0.003

0.4 0.004 0.005 0.004 0.004 0.006 0.007

0.6 0.008 0.010 0.009 0.008 0.011 0.013

0.8 0.012 0.018 0.014 0.014 0.016 0.022

c) Regarding to the lengths of the CIs for each estimator, Table 16 presents
the results of the average rates and standard deviations obtained. In general
terms, the CI length for the intercept effect shows no appreciable variations
in both procedures. However, for the other parameters, the higher ∆p is the
higher the average ratio of the CIs lengths estimated by both methods. Then,
it consistently appears that the confidence intervals related to the suggested
procedure are narrower and therefore preferable than those estimated by the
usual procedure.

Table 16: Averages of the ratio between the lengths of confidence intervals (LCI) ob-
tained by the usual method (u) and the suggested method (s).

β∗

1 : LCI(u)/LCI(s) β∗

2 : LCI(u)/LCI(s) β∗

3 : LCI(u)/LCI(s)

∆p Mean SD Mean SD Mean SD

0.0 1.00 0.00 1.00 0.00 1.00 0.00

0.2 1.00 0.00 1.01 0.00 1.01 0.00

0.4 1.01 0.01 1.03 0.01 1.03 0.01

0.6 1.01 0.02 1.06 0.01 1.05 0.02

0.8 1.00 0.04 1.09 0.03 1.06 0.05

Another aspect to note is that while in average terms the conclusion is clear,
the differences for the unsaturated case are not as significant as they were
in the saturated case developed by Ponsot et al. (2009). The introduction of
the covariance and the fact that it examines a larger number of factors have
somewhat dampened these differences.
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d) Table 17 shows the absolute frequencies of occurrence of the change in the
conclusions on the significance of model parameters (H0: β∗

i = 0 for i =
1, 2, 3), when they are examined with the usual procedure and when they
are examined with the suggested procedure.

β∗
1 changes occur in similar frequency and any direction. This indicates

that is not possible to suggest preferences between the two procedures for
intercept estimation. On the other hand, for the remaining two parame-
ters, the conclusion about the statistical significance of not rejecting the null
hypothesis and its rejection, greatly promotes the suggested procedure. Im-
provements in the results on β∗

2 are remarkable. There was no change from
rejection to acceptance of the null hypothesis, however, there were consider-
able changes to the contrary, i.e., acceptance to rejection of this hypothesis.
The suggested procedure allows us to reject the null hypothesis of model
parameters, in a higher proportion of cases, generally increasing with ∆p.

Table 17: Change of the conclusions for H0: β∗

i = 0 from the suggested procedure,
compared to usual.

Rejection Acceptance

∆p to acceptance without changes to rejection

For H0: β∗

1 = 0

0.0 0 2000 0

0.2 1 1998 1

0.4 1 1997 2

0.6 3 1989 8

0.8 9 1983 8

For H0: β∗

2 = 0

0.0 0 2000 0

0.2 0 1982 18

0.4 0 1946 54

0.6 0 1951 49

0.8 0 1901 99

For H0: β∗

3 = 0

0.0 0 2000 0

0.2 0 2000 0

0.4 1 1992 7

0.6 1 1990 9

0.8 2 1973 25

e) Finally, the Figures from 2 to 6 contain Pearson’s standardized residuals
boxplots, grouped according to the procedure that gave rise to (usual and
suggested), for each yi, i = 1, . . . , 4. Observe that for ∆p from 0.0 to 0.4,
boxplots not vary appreciably, indicating that the residuals produced by
both procedures are very similar. However, when ∆p is greater, although
the variability of residuals becomes less stable, their averages are closer to
0 in those settings using the suggested procedure. This confirms that in
trend terms, the suggested procedure produces better fits than the usual
procedure3.

3All programs, both for example, as for the simulation, were made with R statistical system
(R Development Core Team 2007).
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Figure 2: Pearson’s standardized residuals boxplots for∆p = 0.0.
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Figure 3: Pearson’s standardized residuals boxplots for ∆p = 0.2.
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Figure 4: Pearson’s standardized residuals boxplots for ∆p = 0.4.
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Figure 5: Pearson’s standardized residuals boxplots for ∆p = 0.6.
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Figure 6: Pearson’s standardized residuals boxplots for ∆p = 0.8.

6. Conclusions

This paper addresses and resolves a problem rarely studied, which arises from
the practical application of the binomial logit model. We discuss the situation in
which, once fitted a logit model to the data in a contingency table, a factor from
any of the participants is selected and some levels are added as a new level, to
reiterate a logit setting.

In general, there is a problem in the logit model fit with aggregate levels of the
factor, particularly when the probabilities of success of RV’s involved in aggrega-
tion are far from each other. Consequently, this paper suggests a procedure that
operates in a broader context, i.e., under the binomial unsaturated multifactorial
logit model, and with arguments of asymptotic nature, taking advantage of the
reduction in variance when postulates proper distributional model instead of the
binomial model, significantly improves the estimates, while lowering the standard
error.
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As the difference in the probabilities of success accentuates, it becomes better
supported by the suggested procedure, instead of the usual. The model fitted by
the suggested procedure, also produces closer to zero residuals and less chance of
rejection in the goodness of fit test.

In summary, it is proposed to the researcher logit model user, an alternative
procedure that can provide theoretical correctness, greater accuracy and less com-
putational effort in the state of aggregation levels of a factor, especially when they
involve sample proportions which are markedly dissimilar.
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Appendix. Study of the Design Matrix X for

Saturated and Unsaturated Models

Theorem 5. Using the reference parameterization, the design matrix of the saturated
logit model is invertible.

Proof . We prove the invertibility of the matrices of design, both in the univariate situ-
ation, as in the multifactorial situation, then:

1. Let the saturated univariate logit model design matrix be:

Xk×k =




1 1 0 · · · 0 0
1 0 1 · · · 0 0
...

...
...

. . .
...

...
1 0 0 0 1 0
1 0 0 0 0 1
1 0 0 0 0 0




The calculation of the determinant of X by cofactors decomposition (Xij) is |X | =

(−1)k+1|I | = (−1)k+1 6= 0, pivoting the last row of the matrix, since the only one
nonzero element is xk1. Then, since |X | 6= 0, X−1 exists.

2. Suppose A1, A2, . . . , As factors, each one t1, t2, . . . , ts levels, respectively. Using
the reference parameterization, the followings are postulated:

a) 1 parameter for the effect of the intercept.

b) t1 −1 parameters for the main effects of A1 factor levels, except the reference;
t2 −1 parameters for the main effects of A2 factor levels, except the reference;
and so on until ts−1 parameters for the main effects of As factor levels, except
the reference; in total,

∑s

i=1
(ti − 1) parameters for the main effects.
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c) (t1 − 1)(t2 − 1) parameters for the double interaction effects between levels of
the factors A1 and A2; (t1 − 1)(t3 − 1) parameters for the double interaction
effects between levels of the factors A1 and A3; so on until (ts−1 − 1)(ts − 1)
parameters for the double interaction effects between levels of the factors

As−1 and As; in total
∑s−1

i=1

∑s

j=i+1
(ti − 1)(tj − 1).

d) (t1 − 1)(t2 − 1)(t3 − 1) parameters for the triple effects of interaction be-
tween levels of the factors A1, A2 and A3; (t1 − 1)(t2 − 1)(t4 − 1) parameters
for the triple effects of interaction between levels of the factors A1, A2 and
A4; so on until (ts−2 − 1)(ts−1 − 1)(ts − 1) parameters for the triple ef-
fects of interaction between levels of the factors As−2, As−1 and As; in total∑s−2

i=1

∑s−1

j=i+1

∑s

k=j+1
(ti − 1)(tj − 1)(tk − 1).

In general, for order a interactions (1 ≤ a ≤ s) the followings parameters are
postulated

s−a+1∑

i1=1

s−a+2∑

i2=i1+1

· · ·

s∑

ia=ia−1+1

a∏

j=1

(tij
− 1)

As the model is saturated, the k total number of postulated parameters equals the
number of observations in the contingency table (k = t1 × t2 × · · · × ts). Now,
including the interaction of order a (1 ≤ a ≤ s) in its i1, i2, . . . , ia levels, requires
a row of X like:

[
1 x1 · · · xs x12 · · · x(s−1)s · · · xi1i2···ia 0 · · · 0

]

where

xi =

{
1, i ∈ {i1, i2, . . . , ia}
0, otherwise

xij =

{
1, i y j ∈ {i1, i2, . . . , ia}
0, otherwise

and so on until xi1i2···ia = 1. In other words, the equation that introduces a new
parameter representing the interaction of any kind involves only the parameter
representing this interaction, and those representing the lower-order interactions
contained in it.

Appropriately arranging the rows of X thus constructed, it is easy to verify that
a triangular matrix is formed, whose diagonal consists of ones only. Then, using
Theorems 1.5.3 and 8.6.5 of Graybill (1969, pp. 8, 191), |X | ≡ ±1 6= 0, and
therefore X

−1 exist.

Corollary 1. With reference to parameterization, the design matrix X of the logit model
is such that there is (XT

X)−1.

Proof . Clearly in the saturated model situation, as there is X
−1, (XT )−1 exist and

then (XT
X)−1 also exist.

In the unsaturated model situation, the design matrix X is no longer square and
has no inverse. However, the unsaturated model starts from the saturate model ignoring
parameters in reverse order of the interactions (high order to low order) as desired by
the researcher, always following the construction rules described in item 2 of Theorem
5. Therefore, the construction of an unsaturated model is produced by simply removing
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columns in the design matrix of the corresponding saturated model. However, as the
columns of the saturated model design matrix are linearly independent, any subset of
the columns in it (in this case X) is also such that its columns are linearly independent,
whereby the unsaturated model matrix is columns full range and following the corollary
B.53 of Christensen (2002, p. 415), (XT

X)−1 exist.
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Random Time-Varying Coefficient Model
Estimation through Radial Basis Functions

Estimación de los coeficientes de un modelo de coeficientes dinámicos
y aleatorios a través de funciones radiales kernel
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Abstract

A methodology to estimate a time-varying coefficient model through a
linear combination of radial kernel functions which are centered around all
the measuring times, or their quantiles is developed. The linear combination
is weighted by a bandwidth that may change or not among coefficients.
The proposed methodology is compared with the local polynomial kernel
methods by means of a simulation study. The proposed methodology shows
a better behavior in a high proportion of times in all cases, or at least it has
a similar behavior in relation with the estimation through local polynomial
kernel regression, that in a low rate of times has a better behavior in relation
with the average mean square error. In order to illustrate the methodology
the data set ACTG 315 related with an AIDS study is taken into account.
The dynamic relationship between the viral load and the CD4+ cell counts
is investigated.

Key words: Cross validation, Kernel function, Longitudinal data analysis,
Mixed model.

Resumen

Se propone una metodología para estimar los coeficientes de un modelo
de coeficientes dinámicos y aleatorios a través de una combinación lineal
de funciones radiales kernel centradas en los diferentes puntos de medición,
o en cuantiles de éstos, escalada por un ancho de banda que puede cam-
biar de coeficiente a coeficiente. En un estudio de simulación se compara
la metodología propuesta con la estimación mediante los métodos de poli-
nomios locales kernel, obteniéndose que la nueva metodología propuesta es la

aLecturer. E-mail: juan.sosa@uexternado.edu.co
bAssociated professor. E-mail: lgdiazm@unal.edu.co
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mejor opción en un alto porcentaje de veces para todos los escenarios simu-
lados, o por lo menos se desempeña similarmente a la estimación a través
de la regresión de polinomios locales kernel, que pocas veces se desempeña
mejor que la estimación mediante funciones radiales kernel, en relación al
error cuadrático medio promedio. Para ilustrar la estrategia de estimación
propuesta se considera el conjunto de datos ACTG 315 asociado con un es-
tudio del SIDA, en el que se modela dinámicamente la relación entre la carga
viral y el conteo de células CD4+.

Palabras clave: análisis de datos longitudinales, función kernel, modelo
mixto, validación cruzada.

1. Introduction

Longitudinal Data Analysis (LDA) takes place when a set of subjects are ob-
served repeatedly along time, measuring the response variable in accordance with
the covariates that may or may not be time-dependent. Given the characteris-
tics of this kind of data, an underlying property that must be thought fitting
a statistical model, is the correlation between repeated measures of the response
variable within each experimental unit, considering measures independent between
subjects. That is, measurements are correlated inside experimental units and inde-
pendent between subjects. This way, the main purpose is to identify and describe
the evolution of the response variable and to determine how it is affected by the
covariates. For instance, in clinic trials, it is of interest to evaluate the impact of
a dose or other related factors, over the progress of a disease along time.

Parametric techniques for LDA have been exhaustively studied in the literature
(Diggle, Liang & Zeger 1994, Davis 2000, Verbeke & Molenberghs 2005, Fitzmau-
rice, Davidian, Verbeke & Molenberghs 2009). While these tools are useful under
some reasonable restrictions, always arise doubts and questions about the adequacy
of the model assumptions and the potencial impact of model misspecifications on
the analysis (Hoover, Rice, Wu & Yang 1998). Non parametric techniques re-
cently introduced in LDA allow a functional dependence more flexible between
the response variable and the covariates.

Hart & Wehrly (1986), Altman (1990), Hart (1991) propose methods for choos-
ing smoothing parameter through cross-validation using kernel functions and con-
sidered kernel methods for estimating the expectation of the response variable
without covariates, while Rice & Silverman (1991) did it by using a class of smoo-
thing splines. Although the kernel and splines methods are successful in predicting
the mean curve of the response variable, they only consider the time effect and do
not take into account other important covariates (Hoover et al. 1998).

In order to quantify the influence of covariates, Zeger & Diggle (1994) studied
a semi-parametric model as follows:

yij = µ(tij) + xi(tij)
Tβ + eij

j = 1, . . . , ni, i = 1, . . . , n
(1)
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where n is the number of subjects, ni is the number of repeated measures associated
with the i-th experimental unit, tij , yij ≡ yi(tij),

xi(tij) = [xi0(tij), xi1(tij), . . . , xid(tij)]
T

and eij ≡ ei(tij) are respectively the measuring time, the response variable, the
covariate vector in Rd+1 and the error term, associated with the j-th measure of
the i-th subject. Moreover, µ(·) is an arbitrary smooth real function and β =
[β0, β1, . . . , βd]

T is a parameter vector in Rd+1. Working with longitudinal data, it
is usually assumed that repeated measures are independent between experimental
units and that ei(t) is a Gaussian Process (GP) with E[ei(t)] = 0, for each t ∈ Ti,
with covariance function γei(r, s), r, s ∈ Ti, and Ti = {tij : j = 1, . . . , ni}; this is
written as

ei = [ei1, . . . , eini
]T ∼ PG(0ni

,Γi)

where 0ni
is a column-vector with ni × 1 zeros and Γi = [γei(tik, til)]k,l=1,...,ni

.
Hoover et al. (1998) considered a generalization of the model (1) that allows

the parameters to vary over time. This extension is as follows:

yij = xi(tij)
Tβ(tij) + eij ,

j = 1, . . . , ni, i = 1, . . . , n
(2)

where
β(tij) = [β0(tij), β1(tij), . . . , βd(tij)]

T

is a vector of arbitrary real smooth functions. Components in vector β(t) are
called dynamic coefficients or dynamic parameters, and the statistical model (2)
is referred as Time-Varying Coefficient Model (TVCM). This kind of model has
been widely studied by Wu & Zhang (2006) who investigated various alternatives
for estimating the model coefficients. Sosa & Díaz (2010) proposed a methodol-
ogy to estimate true-varying coefficients models through generalized estimation
equations.

A Random Time-Varying Coefficient Model (RVCM) is an extension of a
TVCM, and it was firstly investigated by Guo (2002). As in a Linear Mixed
Effects Model (LMEM), this extension decomposes the term error ei(tij) of model
(2) into two parts: one of them that describes the characteristics of each subject
that differs of the mean population behavior, and other related with the pure
random error; that is, it is done by the decomposition

ei(tij) = zi(tij)
Tvi(tij) + εi(tij)

j = 1, . . . , ni, i = 1, . . . , n

where zi(tij)Tvi(tij) is the model component that describes the characteristics
related with each subject (random effects component), with

zi(tij) = [zi0(tij), zi1(tij), . . . , zid∗(tij)]
T

a covariate vector in Rd∗+1, with components that vary along time, associated
with the vector

vi(tij) = [vi0(tij), vi1(tij), . . . , vid∗(tij)]
T
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of random time-varying coefficients with size (d∗ + 1) × 1 and εij ≡ εi(tij) is the
random error term associated with the j-th measurement of the i-th experimental
unit. Thus, a RVCM is a model with the following form:

yij = xi(tij)
Tβ(tij) + zi(tij)

Tvi(tij) + εij

j = 1, . . . , ni, i = 1, . . . , n
(3)

where
vi(t) ∼ PG(0d∗+1,Γ)

and
εi(t) = [εi1, . . . , εini

]T ∼ PG(0ni
,Ri)

with Γ = [γ(tik, til)]k,l=1,...,d∗+1 and Ri = [γεi(tik, til)]k,l=1,...,ni . It is supposed
that the repeated measurements are independent between subjects, and vi(t) and
εi∗(t) are independent Gaussian processes.

This paper is structured as follows: In Section 2 and Section 3 the estimation
through local polynomial kernel techniques is presented and an estimation method-
ology by means of radial kernel functions is proposed, respectively. In Section 4
some techniques to choose the bandwidth associated with the estimation method-
ologies is studied. In section 5 it is shown a simulation study where the estimation
alternatives through the average mean square error are compared. In Section 6
the methodology is illustrated by analyzing the data set ACTG 315 (Liang, Wu
& Carroll 2003), where the relationship between viral load and CD4+ cell counts
is investigated dynamically in a AIDS clinical trial. Finally, results are discussed
in 7.

2. Estimation Through Local Polynomial Kernel
Regression

The basic idea behind the estimation through Local Polynomial Kernel (LPK)
regression is to approximate the dynamic coefficients by means of a Taylor expan-
sion. Thus, in a fix time point t0, it is supposed that the dynamic parameters
βr(t0), r = 0, 1, . . . , d, and vis(t0), s = 0, 1, . . . , d∗, have (p+1) continuous deriva-
tives for some non-negative integer p. Then, by means of an approximation in a
Taylor expansion of order p around t0, it follows that:

βr(tij) ≈ hTijαr, r = 0, 1, . . . , d (4)

and
vsi(tij) ≈ hTijbsi, s = 0, 1, . . . , d∗ (5)

for j = 1, . . . , ni, i = 1, . . . , n, where

hij = [1, tij − t0, (tij − t0)2, . . . , (tij − t0)p]T

Revista Colombiana de Estadística 35 (2012) 167–184



Random Time-Varying Coefficient Model 171

is the vector of (p + 1) × 1 components related with the polynomials in the ap-
proximation, αr = [αr0, αr1, . . . , αrp]

T and bsi = [bsi0, bsi1, . . . , bsip]
T , with

αrk =
β
(k)
r (t0)

k!
(6)

and

bsik =
v
(k)
si (t0)

k!
(7)

for k = 0, 1, . . . , p.
Let α = [αT0 ,α

T
1 , . . . ,α

T
d ]
T and bi = [bT0i, b

T
1i, . . . , b

T
d∗i]

T be the vectors associ-
ated with the approximation of the dynamic coefficients. Given that the repeated
measurements are independent between subjects and that vi(t) ∼ PG(0d∗+1,Γ),
it follows that the sequence of vectors b1, . . . , bn constitutes a random sample
from a population with a multivariate normal distribution with mean 0(d∗+1)(p+1)

and covariance matrix D ≡ D(t0) with size d∗(p + 1) × d∗(p + 1). Thus, in a
neighborhood of t0, model (3) can be approximately expressed as

yij ≈ xTijα+ zTijbi + εij

j = 1, . . . , ni, i = 1, . . . , n
(8)

where xij = xi(tij) ⊗ hij , zij = zi(tij) ⊗ hij , with bi ∼ N(0(d∗+1)(p+1),D) and
εi ∼ N(0ni

,Ri)

Thus, in a neighborhood of t0, model (8) is a standard LMEM where it is
required to estimate α and find the Best Linear Unbiased Predictor (BLUP) of
bi, with the purpose of finding the estimations of β(t) and vi(t). In order to
incorporate the information given in the neighborhood, as in Wu & Zhang (2006,
p. 297), it is constituted the following objective function:

(y −Xα− Zb)TK
1/2
h R−1K

1/2
h (y −Xα− Zb) + bT D̃−1b (9)

where

b = [bT1 , . . . , b
T
n ]
T

y = [yT1 , . . . ,y
T
n ]
T , yi = [yi1, . . . , yini ]

T

X = [XT
1 , . . . ,X

T
n ]
T , Xi = [xi1, . . . ,xini

]T

Z = diag[Z1, . . . ,Zn], Zi = [zi1, . . . ,zini
]T

D̃ = diag[D, . . . ,D], R = diag[R1, . . . ,Rn]

Kh = diag[K1h, . . . ,Knh], Kih = diag[Kh(ti1 − t0), . . . ,Kh(tini − t0)]

(10)

with Kh(·) = K(·/h)/h, K(·) a kernel function and h a bandwidth.
The estimators can be found fitting the model

ỹ = X̃α+ Z̃b+ ε

b ∼ N(0N , D̃), ε ∼ N(0N ,R)
(11)
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where ỹ = K
1/2
h y, X̃ = K

1/2
h X, Z̃ = K

1/2
h Z and N =

∑n
i=1 ni.

Therefore, given the variance components D̃ and R, the kernel function K(·)
and the bandwidth h, to minimize (9) in relation with α and b leads to

α̂ =
(
XTK

1/2
h V−1K

1/2
h X

)−1
XTK

1/2
h V−1K

1/2
h y (12)

b̂ = D̃ZTK
1/2
h V−1K

1/2
h (y −Xα̂) (13)

and
b̂i = DZiK

1/2
ih V−1i K

1/2
ih (yi −Xiα̂)

where
V = diag[V1, . . . ,Vn] = K

1/2
h ZD̃ZTK

1/2
h + R

with
Vi = K

1/2
ih ZiDZTi K

1/2
ih + Ri

3. Estimation through Radial Kernel Functions

The idea behind the estimation through Radial Kernel Functions (RKF) is to
approximate the dynamic coefficients by means of a linear combination of kernel
functions treated as radial basis functions. Thus, it is possible to express the
dynamic parameters by means of

β(t) = Ξ(t)Tα (14)

and
vi(t) = Θ(t)T bi, i = 1, . . . , n (15)

where α = [αT0 ,α
T
1 , . . . ,α

T
d ]
T , Ξ(t) = diag[Ξ0(t),Ξ1(t), . . . ,Ξd(t)],

αr = [αr1, . . . , αrM ]T Ξr(t) =

[
ξr

(
|t− t1|
h

)
, . . . , ξr

(
|t− tM |

h

)]T
for r = 0, 1, . . . , d, bi = [bT0i, b

T
1i, . . . , b

T
d∗i]

T , Θ(t) = diag[Θ0(t),Θ1(t), . . . ,Θd∗(t)]

bsi = [bsi1, . . . , bsiM ]T Θs(t) =

[
θs

(
|t− t1|
h

)
, . . . , θs

(
|t− tM |

h

)]T
for i = 1, . . . , n, s = 0, 1, . . . , d∗, with ξr : [0,∞) → R and θs : [0,∞) → R kernel
functions, t1, . . . , tM are all theM measurements time points that are different (or
quantils of these) and h is a bandwidth.

If ξr ≡ ξ for each r = 0, 1, . . . , d and θs ≡ θ for each s = 0, 1, . . . , d∗, then

β(t) = [Id+1 ⊗ ξ(t)]T α (16)

and
vi(t) = [Id∗+1 ⊗ θ(t)]T bi, i = 1, . . . , n (17)
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where Ik denote the identity matrix of k × k,

ξ(t) =

[
ξ

(
|t− t1|
h

)
, . . . , ξ

(
|t− tM |

h

)]T
(18)

and

θ(t) =

[
θ

(
|t− t1|
h

)
, . . . , θ

(
|t− tM |

h

)]T
(19)

As above, given that vi(t) ∼ PG(0d∗+1,Γ) and that the repeated measure-
ments are independent between subjects, it follows that the sequence of vectors
b1, . . . , bn constitutes a random sample from a population with a multivariate nor-
mal distribution with mean 0(d∗+1)(p+1) and covariance matrix D ≡ D(t) with size
d∗(p+ 1)× d∗(p+ 1). Due to (3) and (15), it follows that γ(s, t) = Θ(s)TDΘ(t),
so that an estimator of D leads directly to an estimator of Γ.

Thus, model (3) can be approximately expressed as

yij ≈ xTijα+ zTijbi + εij

j = 1, . . . , ni, i = 1, . . . , n
(20)

where xij = Ξ(tij)xi(tij) and zij = Θ(tij)zi(tij), with bi ∼ N(0(d∗+1)(p+1),D)
and εi ∼ N(0ni

,Ri).
If ξr ≡ ξ and θs ≡ θ then

xij = (Id+1 ⊗ ξ(tij))xi(tij)

and
zij = (Id∗+1 ⊗ θ(tij))zi(tij)

where ξ(t) and θ(t) are given in (18) and (19).
Given the vectors Ξr(t), r = 0, 1, . . . , d, and Θs(t), s = 0, 1, . . . , d∗, and the

bandwidth h, model (20) is a standard LMEM where it is required to estimate α
and find the BLUP of bi in order to calculate the estimations of β(t) and vi(t).

4. Bandwidth Selection

By estimating the dynamic components of model 3 through LPK or RKF, it
is mandatory to choose the bandwidth h carefully. In this section are presented
two selection criterions designed to choose smoothing parameters: Subject Cross-
Validation (SCV) and Point Cross-Validation (PCV).

4.1. Subject Cross-Validation

This criterion was proposed by Rice & Silverman (1991), and has been studied
by many authors, as Hoover et al. (1998) for instance. The idea behind this criteria
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is to choose the smoothing parameter vector that minimize the expression

SCV (h) =

n∑
i=1

ni∑
j=1

wi

[
yij − xi(tij)T β̂

(−i)
(tij)

]2
(21)

where yij and xi(tij) are defined as in model (3), β̂
(−i)

(t) denotes the estimation
of β(t) excluding the data related with the i-th subject, and wi for i = 1 . . . , n, is
a weight given by some of the following schemes:

Scheme 1 All weights are given by wi = 1/N , i = 1, . . . , n, where N =
∑n
i=1 ni.

Scheme 2 All weights are given by wi = 1/(nni), i = 1, . . . , n.

Scheme 1 uses the same weight for all experimental units and was proposed by
Hoover et al. (1998). Scheme 2 is considered by Huang, Wu & Zhou (2002) and
uses different weights for the subjects taken into account in the study. In Huang
et al. (2002) it is shown that scheme 1 could lead to inconsistent estimators of α.

4.2. Point Cross Validation

Let {tl : l = 1, . . . ,M} be the set formed by all the measuring times that are
different (or quantiles of these) in all the data set. For a given time point tl, let
{il∗ : l∗ = 1, . . . ,ml} be the set of all experimental units at time tl.

The idea behind this criteria is to choose the smoothing parameter vector that
minimize the expression

PCV (h) =

M∑
l=1

ml∑
l∗=1

wl

[
yil∗ (tl∗)− ŝ

(−l)
il∗

(tl)
]2

(22)

where yil∗ (tl∗) is the value of the response variable for subject il∗ at time tl∗ ,
wl = (Mml)

−1 is the weight associated with the l-th measuring time and ŝ(−l)il∗
(tl)

denotes the estimation of the response variable for experimental unit il∗ at time tl
when all the observations related with the response variable at time tl have been
excluded.

5. Simulation

This section presents a simulation study to evaluate the performance of the
estimation methods. The comparison is performed through the Average Mean
Square Error (AMSE) given by

AMSE(κ) =
1

n

n∑
i=1

1

ni

ni∑
j=1

[κ(tij)− κ̂(tij)]2 (23)

with κ(·) a function that corresponds to any dynamic coefficient of model (3).
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Simulation strategy is similar to that followed by Wu & Liang (2004). The
simulation model is structured as follows:

yi(t) = β0(t) + xi1(t) [β1(t) + v1i(t)] + εi(t), i = 1, . . . , n

xi1(t) = 1− exp [−0.5t− (i/n)]

β0(t) = 3 exp(t), β1(t) = 1 + cos(2πt) + sin(2πt)

v1i(t) = ai0 + ai1 cos(2πt) + ai2 sin(2πt)

ai = [ai0, ai1, ai2]
T ∼ N

(
[0, 0, 0]T , diag[σ2

0 , σ
2
1 , σ

2
2 ]
)

εi(t) ∼ N(0, σ2
εx

2
i1(t))

(24)

where β0(t), β1(t) and v1i(t), are the dynamic parameters of the model, xi(t) is
the covariate of the model associated with β1(t) and where v1i(t) and εi(t) are
random errors. This model corresponds to the RVCM given in (3) where

β(t) = [β0(t), β1(t)]
T , vi(t) = [v1i(t)], xi(t) = [xi0(t), xi1(t)]

T , zi(t) = [zi1(t)]

with xi0(t) ≡ 1 and zi1(t) ≡ xi1(t). Note that in the simulated model Ri is a
diagonal matrix and D is an unstructured covariance matrix. The observations
between subjects are simulated independent.

It is assumed that σ2
1 = σ2

2 = σ2
ε = σ2. Then, the correlation coefficient

between repeated measurements within each experimental unit is

ρ = Corr[yi(t), yi(s))] =
σ2
0 + σ2 cos[2π(t− s)]

σ2
0 + 2σ2

, for s 6= t

therefore
σ2
0 − σ2

σ2
0 + 2σ2

≤ ρy ≤
σ2
0 + σ2

σ2
0 + 2σ2

To simulate different intensities of correlation are considered three cases:

Case 1 In which σ2
1 = σ2

2 = σ2
ε = σ2 = 0.01 and σ2

0 = 0.01. This corresponds to
ρy ∈ ( 0 , 0.67 ).

Case 2 In which σ2
1 = σ2

2 = σ2
ε = σ2 = 0.01 and σ2

0 = 0.04. This corresponds to
ρy ∈ ( 0.50 , 0.83 ).

Case 3 In which σ2
1 = σ2

2 = σ2
ε = σ2 = 0.01 and σ2

0 = 0.09. This corresponds to
ρy ∈ ( 0.73 , 0.91 ).

Design times are simulated in accordance with the expression

tij = j/(m+ 1), i = 1, . . . , n, j = 1, . . . ,m

where m is a positive integer. To simulate unbalanced data sets, a main character-
istic of the structure of longitudinal data, in each subject are removed randomly
repeated measures with a rate rm = 30%. Thus, there is approximately m(1−rm)
repeated measurements per experimental unit and nm(1 − rm) measurements in
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Table 1: Scenarios for the simulation study.
Scenario n m σ2

0 Scenario n m σ2
0 Scenario n m σ2

0

1 5 5 0.01 10 10 5 0.01 19 20 5 0.01
2 5 5 0.04 11 10 5 0.04 20 20 5 0.04
3 5 5 0.09 12 10 5 0.09 21 20 5 0.09
4 5 10 0.01 13 10 10 0.01 22 20 10 0.01
5 5 10 0.04 14 10 10 0.04 23 20 10 0.04
6 5 10 0.09 15 10 10 0.09 24 20 10 0.09
7 5 15 0.01 16 10 15 0.01 25 20 15 0.01
8 5 15 0.04 17 10 15 0.04 26 20 15 0.04
9 5 15 0.09 18 10 15 0.09 27 20 15 0.09

total. Smoothing parameters are chosen by using PCV. Table 1 contains all the
scenarios considered in the simulation study.

Each scenario was repeated N = 500 times and each time was calculated
AMSE(β0) and AMSE(β1), in order to compare the relative performance of
the Local Polynomial Kernel Regression Estimation (LPKE) with Radial Kernel
Functions Estimation (RKFE). For these estimations the next indicators are define

AMSER(RKFE/LPKE) =
1

N

N∑
k=1

AMSEk(κ, LPKE)

AMSEk(κ,RKFE)
× 100% (25)

and

AMSERKF(RKFE/LPKE)

=

∑N
k=1 I{AMSEk(κ,LPKE)>AMSEk(κ,RKFE)}

N
× 100% (26)

where AMSEk(κ, LPKE) and AMSEk(κ,RKFE) denote the value of AMSE(κ)
obtained in the k-th simulation replicate, k = 1, . . . , N , by using the RKFE and
the LPKE respectively, and IA denotes the indicator function of set A. AMSER
represents the average relative efficiency associated with the N replications and
AMSERKF is the percentage of estimations obtained through RKF that are be-
tter than those obtained through LPK in relation to the AMSE in AMSE in the N
replications. If AMSER ≈ 100% and AMSERKF ≈ 50%, LPKE and the RKFE
perform similarly; if AMSER > 100% y AMSERKF > 50%, RKFE has better
performance than LPKE; and if AMSER < 100% and AMSERKF < 50%,
LPKE has better performance than RKFE.

Table 2 contains the results of the simulation. According to this table, the
choice rules of an alternative estimation by using indicators (25) and (26), and
Tables 3 and 4 which summarizes the results, it follows that at 48% of cases the
best estimation strategy is the RKFE; by approximation to the rules given, that is,
following the criteria AMSER0 ≈ 100% y AMSERKF0 ≈ 50%, it has that in the
35.2% of the situations the two strategies behave similarly; furthermore, just 9.3%
of cases the best strategy is LPKE and for 7.4% of the scenarios the criterion does
not decide (AMSER > 100% and AMSERKF < 50%, or, AMSER < 100%
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Table 2: Simulation results.
n = 5 n = 10 n = 20

m = 5 m = 10m = 15 m = 5 m = 10m = 15 m = 5 m = 10 m = 15

σ2
0 = 0.01

AMSER0 100.0% 100.2% 101.1% 100.9% 100.0% 100.0% 101.0% 102.0% 100.8%
AMSERKF0 49.9% 50.2% 50.8% 50.8% 49.2% 48.4% 50.9% 46.0% 62.0%
AMSER1 100.5% 102.4% 101.4% 100.0% 101.5% 100.9% 99.6% 100.1% 100.4%
AMSERKF1 45.8% 51.2% 50.8% 48.1% 51.0% 50.4% 43.8% 61.9% 56.4%

σ2
0 = 0.04

AMSER0 100.1% 100.0% 100.0% 100.1% 101.0% 100.0% 100.0% 102.1% 100.5%
AMSERKF0 50.7% 49.4% 45.8% 47.8% 45.9% 49.9% 49.0% 63.1% 51.8%
AMSER1 99.6% 102.2% 100.7% 100.0% 100.8% 100.5% 100.7% 101.3% 100.4%
AMSERKF1 42.0% 52.7 % 48.1% 46.9% 50.1% 54.9% 50.2% 49.9% 52.8%

σ2
0 = 0.09

AMSER0 100.9% 100.5% 100.1% 100.0% 100.0% 100.3% 100.0% 100.7% 99.9%
AMSERKF0 50.5% 50.4% 51.1% 47.7% 49.7 % 51.0% 47.7% 48.6% 46.8%
AMSER1 99.3% 101.8% 101.6% 100.5% 101.3% 100.9% 99.5 % 102.0% 100.2 %
AMSERKF1 44.5% 49.0% 49.3% 49.6% 43.6% 51.6% 46.7% 52.0% 51.4%

and AMSERKF > 50%). It is also noted that the strategy most appropriate
for estimating, considering β0(t) and β1(t) simultaneously, is type RKFE which
corresponds to n = 5, m = 10 and σ2

0 = 0.01, n = 5, m = 15 and σ2
0 = 0.01,

n = 10, m = 15 and σ2
0 = 0.09, n = 10, m = 15 and σ2

0 = 0.01, and n = 10,
m = 15 and σ2

0 = 0.04; there is no case where LPKE improved the outcomes
for both dynamic components simultaneously. Furthermore, there are a variety of
cases where the best strategy is RKFE for one of the dynamic parameters and for
the other two strategies perform similarly.

According to Table 3, it is concluded that while the value of σ2
0 decreases, and

at the same time the correlation between repeated measurements, the proportion
of times that the best strategy is RKFE increase. Moreover, in all degrees of cor-
relation, the proportion of times that performs better RKFE is superior compared
to the proportion for LPKE. In the same way, in all degrees of correlation, the
proportion of times where the two strategies perform similarly is higher than the
proportion where LPKE is the best option. Also, these relationships are main-
tained in each case for the dynamic intercept and the dynamic slope. Therefore,
with any degree correlation and any dynamic parameter, in 83.3% of cases, RKFE
performs better or similarly than LPKE. Thus, it is concluded that in such cir-
cumstances, to choose RKFE is the best alternative.

Table 3: Proportion of times that a strategy is better than another for σ2
0 and βr(t).

RKF Equal LPK No

σ2
0 = 0.01

β0(t) 9.3% 5.6% 0.0% 1.9%
β1(t) 11.1% 1.9% 1.9% 1.9%

Total 20.4% 7.4% 1.9% 3.7%

σ2
0 = 0.04

β0(t) 5.6% 9.3% 0.0% 1.9%
β1(t) 9.3% 5.6% 1.9% 0.0%

Total 14.8% 14.8% 1.9% 1.9%

σ2
0 = 0.09

β0(t) 7.4% 7.4% 1.9% 0.0%
β1(t) 5.6% 5.6% 3.7% 1.9%

Total 13.0% 13.0% 5.6% 1.9%
Total general 48.1% 35.2% 9.3% 7.4%
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Table 4: Proportion of times that a strategy is better than another for n and m.
RKF Equal LPK No

n = 5

m = 5 3.7% 1.9% 3.7% 1.9%
m = 10 7.4% 3.7% 0.0% 0.0%
m = 15 5.6% 5.6% 0.0% 0.0%

Total 16.7% 11.1% 3.7% 1.9%

n = 10

m = 5 1.9% 9.3% 0.0% 0.0%
m = 10 3.7% 3.7% 0.0% 3.7%
m = 15 7.4% 3.7% 0.0% 0.0%

Total 13.0% 16.7% 0.0% 3.7%

n = 20

m = 5 3.7% 3.7% 3.7% 0.0%
m = 10 5.6% 3.7% 0.0% 1.9%
m = 15 9.3% 0.0% 1.9% 0.0%

Total 18.5% 7.4% 5.6% 1.9%

Total 48.1% 35.2% 9.3% 7.4%

Furthermore, according to Table 4, for all sample sizes, when the number of
repeated measurements of each individual increases, the proportion of scenarios
where RKFE performs better RKFE increases as well. It must also be noted that
this proportion is similar for all sample sizes, and is always significantly higher
than the proportion where LPKE is the best option. Moreover, when n = 10
is notorious the proportion of times where the two strategies perform similarly.
Finally, it is observed the fact that the proportion of times where LPKE is better
is equal to 0.0% in most cases for any value of n y m. Thus, it is concluded that
the proposed methodology is the best option a high percentage of times in all
simulated scenarios, or at least performs similarly to the LPKE, which very rarely
performs better than the RKFE.

6. Application

The viral load (plasma VIH RNA copies/mL) and cell count CD4+ are cur-
rently key indicators to assess AIDS treatments in clinical research. Initially it
was considered the CD4+ cell count as a primary indicator of AIDS immunod-
eficiency, but it was newly found that viral load is more predictive for clinical
outcomes. However, recently some researchers have suggested that a combination
of these two indicators may be more appropriate to evaluate the treatment of HIV
and AIDS. Therefore it is pertinent to study the relationship between viral load
and CD4+ cell count during treatment (Liang et al. 2003).

Figure 2 presents some graphs of a linear regression of viral load (log(RNA))
against to CD4+ cell counts in some measuring times of a clinical study of AIDS
(ACTG 315). In this investigation, there are 46 infected patients with an antiviral
therapy consisting of ritonavir, 3TC and AZT. After starting treatment, viral load
and CD4+ cell count were observed simultaneously at days 0, 2, 7, 10, 14, 28, 56,
84, 168, and 336. The number of repeated measurements for individual varies from
4 to 10 and in total 361 observations were obtained.

Revista Colombiana de Estadística 35 (2012) 167–184



Random Time-Varying Coefficient Model 179

Figure 1: Scatter plot for CD4+ cell count and viral load.
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Figure 2: Graphs related with the linear regression of viral load (log10(RNA)) against
CD4+ cell count in some measuring times. The model adjusted in each
case has got the form log10(RNA) = β0 + β1(CD4/100) + e. The p-value
corresponding to H0 : β1 = 0 against H1 : β1 6= 0 is also presented in each
case.

In general, it appears that the virologic (measured by the viral load) and the
immune response (measured by the CD4+ cell count) of the patient are negatively
correlated, and that their relationship is approximately linear during antiviral
therapy. Figure 1 shows the scatter plots associated with CD4+ cell count and
viral load. The logarithm of viral load is used to stabilize the variance for the
estimation procedures of the model fitted in the following.
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Figure 2 shows that the slope of the linear regression of viral load versus CD4+
cell count changes over time because in a few days the slope is significantly different
from zero and in others not. This motivates the fitting of a model with dynamic
coefficients in order to describe and quantify the change in the relationship. How-
ever, because it may be of interest to investigate the relationship between viral
load and CD4+ cell count in a particular patient, the fitting of a RVCM is needed.

The ACTG 315 data set has been studied extensively by Liang et al. (2003),
who showed a strong inverse relationship between viral load and CD4+ cell count.
In this section, a RVCM is fitted to investigate the dynamic relationship between
viral load (in logarithmic scale) and CD4+ cell count, and also to describe this
relationship particularly in any patient.

The RVCM fitted is

yij = β0(tij) + β1i(tij)xi1(tij) + eij , j = 1, . . . , ni, i = 1, . . . , 46 (27)

where yij , xi1(tij), and eij are viral load (in logarithmic scale), the CD4+ cell
count and the error associated with the j-th measurement of the i-th patient,
respectively, β0(t) is the dynamic coefficient associated with the intercept and
β1i(t) is the dynamic and random coefficient associated with the CD4+ cell count.
This parameter is given by

β1i(t) = β1(t) + vi(t), i = 1, . . . , 46

with β1(t) the coefficient associated with the mean dynamic relationship between
viral load and cell count CD4+ and vi(t) the coefficient related to the character-
istics of the i-th patient that differ from the average behavior.

The dynamic components of the model are estimated through LPK and the
proposed methodology by using RKF. The kernel functions used in the estimation
are Gaussian, and for selecting the smoothing parameters (bandwidths) the PCV is
implemented which gives the bandwidths hRKF = 0.999 and hRKF = 0.401 using
RKF and LPK respectively (Figure 3). Furthermore, models (8) and (20) are fitted
by using function lme4 (Bates, Maechler & Bolker 2011) in R (R Development Core
Team 2008).

Figure 4 shows the residuals of the RVCM fitted. It is observed that in both
cases, the RVCM has a good fit to the data. The value of the residuals by using
both estimation methods are similar prior 150-th day. From that day the value of
the residuals is less by using LPK, suggesting that the relationship at the end of the
treatment by using LPK is more accurate; however, both techniques indicate the
same at the end of treatment as it is evidenced in Figure 5 where are illustrated the
graphs associated with the estimation of β0(t) and of β1(t) by using LPK and RKF,
respectively. In both cases, the graphics are very similar to those obtained by Liang
et al. (2003).The right chart shows that the dynamic relationship between viral
load and CD4+ cell count is approximately direct to day 50, point at which the
association is weak; from this day the relationship between the indicators is inverse
to the end of treatment. Moreover, between week 1 and 14, RKF estimate suggests
that the relationship is apparently stronger. Also, major differences between the
estimation methodologies from day 150 of treatment are noted, where the estimate
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Figure 3: Graphs related with PCV against the bandwidth.

through LPK suggests that the relationship changes and it is strengthened –in an
inverse way– to the end of treatment. Overall, the dynamic relationship between
viral load and CD4+ cell count decreases gradually until the seventh week of
the study where the relationship begins to strengthen gradually until the end of
treatment.

One advantage of fitting a RVCM is that it is possible to characterize the
performance of the dynamic relationship of interest for any particular subject.
Figure 6 shows the estimates of the deviations typical of the population vi(t)
for patients 1, 3 y 16 using RKF and LPK. Not only the magnitude but also the
direction of changes can be see among individuals. Due to the high variation within
each of the individuals, the estimation of the relationship between the indicators
for each patient is very important because it allows to customize the treatment
and care of each patient. Using LPK more variability between individuals in the
dynamic relationship of viral load and CD4+ cell count is perceived. It is observed
how the relationship may even be direct. While using RKF variability is lower and
the pattern is very similar to the average dynamic relationship.

Figure 4: Residuals of RVCM fitted by using RKF and LPK.
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Figure 5: Graphs associated with the estimation of β0(t) and β1(t) for the RVCM fitted
by using RKF and LPK.

Figure 6: Graphs associated with the estimation of vi(t) for the RVCM fitted by using
RKF and LPK for patients 1, 3 and 16.

7. Discussion and Conclusions

This paper proposes a methodology to estimate the coefficients of a random
time-varying coefficient model through radial kernel functions, where model coeffi-
cients are approximated by a linear combination of kernel functions which centered
around all the measuring points, or their quantiles, weighted by a bandwidth that
may change or not among coefficients (Hastie, Tibshirani & Friedman 1990).

By means of a simulation study the estimation method is compared by using a
local polynomial kernel regression with the use of radial kernel functions in relation
with the average mean square error, resulting that the proposed methodology is
the best one in a high percentage of times in all simulated scenarios, or at least
performs similarly to the LPKE, who rarely performs better than the RKFE, in
relation with the average mean square error.

Analyzing the ACTG 315 data set (Liang et al. 2003), it was found that the
relationship between viral load and CD4+ cell count is inverse. Furthermore, as a
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future alternative modeling, it can be thought a model in which the response vari-
able is bivariate, consisting of viral load and CD4+ cell count, and the predicted
correspond to some covariates related to the treatment of patients with AIDS.

Further studies may investigate the consistency and asymptotic properties of
the estimators proposed, the impact of the functional form of the dynamic coef-
ficients of the model and mechanisms for testing hypotheses related to both the
dynamic and random coefficients model.

[
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Para las referencias bibliográficas dentro del texto se debe utilizar el formato
autor-año, dando el nombre del autor seguido por el año de la publicación dentro
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