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Preface

In 1997 Gerard Maugin organized the first International $@mon “Geometry, Continua
and Microstructures” at the P. and M. Curie University ini®afThe success of the Seminar
induced the organizers to repeat it in Madrid (1998) and id Barrenalb (1999). Hence, when
Gerard Maugin asked me to organize the fourth edition of #maiBar in Turin, | accepted with
pleasure and | am now honoured to present the proceedindge dtInternational Seminar ,
which was held at the Department of Mathematics of the Usityeof Turin from October 26th
-28th, 2000.

The proceedings of the meeting appear as a special issueRétidiconti del Seminario Matem-
atico (Universita e Politecnico di Torino) and | am indebte the Editor, Andrea Bacciotti, who
gave me the opportunity to publish the papers in this journal

The meeting, as the previous ones, was successful and déhsgcigntific results, as demon-
strated by the contents, the number of lectures, the 23 papleich fill two volumes of the
proceedings as well as the high scientific level of participgabout 50 scientists and young
researchers from many different countries of Europe, Is€anada, U.S.A, and Russia).

The focus of the Seminar was the modelling of new phenomenaritinuum mechanics which
require the introduction of non-standard descriptors. fiém@ework is Rational Continuum Me-
chanics which encompasses all descriptions of new phermifinem the macroscopic point of
view. Processes occurring at microscopic scales are tken tato account by suitable general-
ized parameters. The introduction of these new descripes®nriched the classical framework,
since they often take values in manifolds with non trivigdatogical and differential structure
(i.e. liquid crystals) and the purpose of the Seminar wastqudiscuss and point out the various
problems related to these topics.

The lectures appearing in this volume provide an up-to-ohsight of the state of the art and of
the more recent evolution of research, with many new rekeresults. Such evolution emerged
clearly from the proceedings of the previous meetings aisdvililume represents a step along
the way. In fact, a ¥ International Seminar bearing the same title and focusimghe same
topics has been organized by Sanda Cleja-Tigoiu in Sinaieng®ia) from Seprember 25th -
28th, 2001 and will surely constitute a new milestone foufatdevelopments in this field of
research.
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E. Binz - S. Pods - W. Schempp

NATURAL MICROSTRUCTURES ASSOCIATED WITH
SINGULARITY FREE GRADIENT FIELDS IN THREE-SPACE
AND QUANTIZATION

Abstract.

Any singularity free vector fieldX defined on an open set in a three-dimen-
sional Euclidean space with cud = 0 admits a complex line bundE2 with a
fibre-wise defined symplectic structure, a principal burfdfeand a Heisenberg
group bundleG2. For the non-vanishing constant vector fidddhe geometry of
P2 defines for each frequency a Schrodinger representati@nyfibre of the
Heisenberg group bundle and in turn a quantization proeefhurhomogeneous
quadratic polynomials on the real line.

1. Introduction

In [2] we described microstructures on a deformable mediyra principal bundle on the body
manifold. The microstructure at a point of the body manifiddencoded by the fibre over it,
i.e. the collection of all internal variables at the poinh€eTstructure group expresses the internal
symmetries.

In these notes we will show that each singularity free gratdield defined on an open set
of the Euclidean space hides a natural microstructure. fbetare group idJ (1).

If the vector fieldX is a gradient field with a nowhere vanishing principal @arsay, then
there are natural bundles over such as a complex line bundE? with a fibre-wise defined
symplectic formw?, a Heisenberg group bund®&? and a four-dimensional principal bundi®
with structure groupJ (1). (Fibres overO are indicated by a lower index) For anyx € O the
fibre F2 is the orthogonal complement afx) formed inE and encodes internal variablescat
It is, moreover, identified as a coadjoint orbit®§. The principal bundlé”2, a subbundle of
the fibre bundleF2, is equipped with a natural connection fosfi, encoding the vector field in
terms of the geometry of the local level surfaces: The fi¢lchn be reconstructed froaf. The
collection of all internal variables provides all tangeattors to all locally given level surfaces.
The curvatureR? of o describes the geometry of the level surfaces of the grafiedtn terms
of »® and the Gaussian curvature.

There is a natural link between this sort of microstructund guantum mechanics. To
demonstrate the mechanism we have in mind, the principthpdrthe vector fieldX is assumed
to be constant (for simplicity only). Thus the integral eesyi.e. the field lines, are straight lines.
Fixing somex € O and a solution curvg passing througlt € O, we consider the collection of
all geodesics on the restriction of the principal burffeto 8. Each of these geodesics with the
same speed is called a periodic lift®and passes through a common initial paigte P2, say.

If the periodic lifts rotate in time, circular polarized wesare established. Hence the integral

1



2 E. Binz - S. Pods - W. Schempp

curveg is accompanied by circular polarized wavesffof arbitrarily given frequencies. This
collection of periodic lifts ofg defines unitary representatiops of the Heisenberg grou@,
the Schrodinger representations (cf. [11] and [13]). Tiegdencies of the polarized waves
correspond to the equivalence classep,oflue to the theorem of Stone-von Neumann.

The automorphism group @ is the symplectic grougp(F2) of the symplectic complex
line F&. Therefore, the representatipa of G2 yields a projective representation 8fx F2),
due to the theorem of Stone-von Neumann again. This pregeotipresentation is resolved to
a unitary representatiow of the metaplectic group p(F2) in the usual way. Its infinitesimal
representatiod W of the Lie algebranp(F2) of Mp(FZ) yields the quantization procedure for
all homogeneous quadratic polynomials defined on the neal Df course, this is in analogy to
the quantization procedure emanating from the quadraticoagmation in optics.

2. The complex line bundle associated with a singularity fre gradient field in Euclidean
space

Let O be an open subset not containing the zero vector 0 in a thineendional orientedR-
vector spaceé with scalar produck , >. The orientation on the Euclidean spd€eshall be
represented by the Euclidean volume fqum.

Our setting relies on a smooth, singularity free vector fieldO — O x E with principal
parta: O — E, say. We shall frequently identifi{ with its principal part.

Moreover, letH := R - e ® E be the skew field of quaternions wheres the multiplicative
unit element. The scalar produet , > and the orientation oit extend to all ofH such
thate € H is a unit vector and the above splitting Bf is orthogonal. The unit sphers?’,
i.e. Spin(E), is naturally isomorphic t&U(2) and coversS O(E) twice (cf. [8] and [9]).

Given anyx € O, the orthogonal complemeig of a(x) € E is a complex line as can be
seen from the following: Le€2 ¢ H be the orthogonal complement Bf. Hence the field of
quaterniond splits orthogonally into

@ H=C§eoFg.
As itis easily observed,
a(x)
C&=R-epR-
X lax)|

is a commutative subfield df naturally isomorphic t& due to

2
(a(x)) =—e VxeO,

[a(x)|

where| - | denotes the norm defined By, >. This isomorphism shall be called
j2:.Cc— C8;

it maps 1 toe andi to |gf§§\' The multiplicative group on the unit circle @2 is denoted by
U2(1). Itis a subgroup oSU(2) ¢ H and hence a group of spins. Obviousli) generates
the Lie algebra ol 2(1).

F&is aC&-linear space under the (right) multiplicationlifand hence &-linear space, a
complex line. MoreoverH is the Clifford algebra of¢ equipped with— <, > (cf. [9]).

The topological subspadg? := Jycof{X} x FZ of O x E is aC-vector subbundle of
O x E, if curl X = 0, as can easily be seen. In this c&Skis a complex line bundle (cf. [15]),
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the complex line bundle associated wkh Let p : F& — O be its projection. Accordingly
there is a bundle of field§2 — O with fibre C2 at eactx € O. Clearly,

OxH=C2x F2

as vector bundles oved. Of course, the bundlE® — O can be regarded as the pull-back of
T & via the Gauss map assigni i Q‘ toanyx € O.

We, therefore, assume that cul = 0 from now on. Due to this assumption there is a
locally given real-valued functio, a potential ofa, such thata = grad V. Each (locally
given) level surfac& of V obviously satisfie§ S= F3|s. HereF?3|g = [ Jys{X} x FZ. Each

fibre F2 of F2is oriented by its Euclidean volume folimy 1 ‘= ug (%, e ) For
Tal

any level surface the scalar product yields a Riemannianierggt on S given by

gs(X; vx, wx) = < vy, wx > ¥VXxe O and VYux, wx € TxS.

For any vector fieldy on S, anyx € O and anyvyx € TxS, the covariant derivativé/ S of
Levi-Civita determined byg satisfies

VoY) = dY(x vx) + < Y(X), Wa(vy) > .

HereWg : TxS — TxSis the Weingarten map d assigning to eaclvx € Tx S the vector
d% (X; wy), the differential of% at x evaluated atvx. The Riemannian curvature of vS at
anyx is expressed by the well-known equation of Gauss as
(2 RO vx, wx.Ux, Yx) = < We(wx), Ux > - < W (vx), Yx >

— < W8(vx), ux > - < W (wx), Yx >

for any choice of the vectons,, wy, Ux, Yx € TxS.

A simple but fundamental observation in our setting is ttethefioreF2 ¢ F2 carries a
natural symplectic structue? defined by

o?(x;h, k) ;= <hxaXx),k>=<h-aX),k> vh ke F2,

wherex is the cross product, here being identical with the produ@t.iln the context of-2 as
a complex line we may write

0?(x; hg, hy) = ja(X)|- < hg-i,hy > .

This is due to the fact that anda(x) are perpendicular elementsn The bundleF2 is fibre-
wise oriented by-w?. In factew? extends on all oE by setting

o?(X;y,2) ;=< yxaXx),z>

for all y,z € E; itis not a symplectic structure 0®, of course. Letc(x) := detwg for all
X € S, the Gaussian curvature 8f Providedvy, wx is an orthonormal basis dk S, the relation
between the Riemannian curvatiReandw is given by

Kk (X)
[a(x)]

R(X; vx, wx.Ux, Yx) = 'wa(xi Ux, Yx)

for everyx € Sanduy, yx € TxS= F2.
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3. The natural principal bundle P2 associated withX

We recall that the singularity free vector fiexdon O has the formX = (id, a). Let P2 c Fg
1
be the circle centred at zero with radiagx)|™ 2 for anyx € O. Then

P = | (x} x P§
xeO

equipped with the topology induced B is a four-dimensional fibre-wise oriented submanifold

of F&. It inherits its smooth fibre-wise orientation froRf'. Moreover, P2 is aU (1)-principal

bundle.U (1) acts from the right on the fibrBg of P2 via j2|y (1) : U(1) — UZ(D) for any

x € O. This operation is fibre-wise orientation preserving. Téason for choosing the radius
1

of PZ to beja(x)|~ 2 will be made apparent below.

Both F& and P2 encode collections of internal variables ov@rand both are constructed
out of X, of course. Clearly, the vector bundfé is associated wit#®2.

The vector fieldX can be reconstructed out of the smooth, fibre-wise orientigtipal
bundleP? as follows: For eackx € O the fibrePZ is a circle inF& centred at zero. The
orientation of this circle yields an orientation of the agional complement oF2 formed in
E, the direction of the field ax. Hencela(x)| is determined by the radius of the circig.
Therefore, the vector fieldl admits a characteristic geometric object, namely the smdibtre-
wise oriented principal bundi®2 on which all properties oK can be reformulated in geometric
terms. Vice versa, all geometric properties?f reflect characteristics af. The fibre-wise
orientation can be implemented in a more elegant way bydotimg a connection formy?2,
say, which is in fact much more powerful. This will be our neagk. SinceP? c O x E, any
tangent vectot € T, P2 can be represented as a quadruple

&= (X, vx,h,0,) e OXE xE x E

forx € O, vx € P;'Z‘ andh, ¢,, € E C H with the following restrictions, expressing the fact that
£ is tangent tgP?2:

Given a curver = (o1, o2) onP2 with 4(s) € O ando,(s) € 7331(5) for all s, then
<05(9),a(01(8) >= 0 and |o2(9)% = SV
2 = 2 la(o1(9)] '
Each¢ € T,, P2 given bys = o2 (0) is expressed as
ax) Ux vx X a(x)
=rq- +ro. — A
CT R0l T o T ol Aol
with
a [vx| )
r=—<Wg(x),h> |, r2=—7-dln|a|(x, h)

and a free parametere R. The Weingarten mag/g is of the form
da(x; k) = |a(x)| -W;'("(k) +a(x) -dInja|(x; k) Vxe O, YkeE,
where we seWg(a(x)) = 0 for all x € O. With these preparations we define the one-form

«?: TP SR
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for eacht e TP2 with & = (x, vx, h, ¢) to be
3) a®(vx, & i=<wvx xaX),¢ >.

One easily shows that? is a connection form (cf. [10] and for the field theoretic agij&]). To
match the requirement of a connection form in this metritirsgt the size of the radius g2
is crucial for anyx € O. The negative of the connection form @&f is in accordance with the
smooth fibre-wise orientation, of course.

Thus the principal bundI®? together with the connection foraf characterizes the vector
field X, and vice versa. To determine the curvat@® which is defined to be the exterior
covariant derivative of?2, the horizontal bundles ifi?2 will be characterized. Giveny € P2,
the horizontal subspadeor,, c TP?is defined by

Hory, = ker a®(vy; ...).

A vector&,, € Hor,,, being orthogonal tox x a(x), has the forn(x, vx, h, ghor) e OxEx
E x E whereh varies inO and¢"°" satisfies

209 _ Il g1 jajoc by - 2

hor a
=— <Wo(vx),h>-
¢ x (¥ a2 o]

SinceTpr® : Hor,, — TxO is an isomorphism for anyx € P&, dim Hor,, = 3 for all
vx € P2 and for allx € O. The collectionHor ¢ TP? of all horizontal subspaces in the
tangent bundld P2 inherits a vector bundle structufeP?.

The exterior covariant derivativd°" o2 is defined by
d"%a® vy, 9. £1) = daP(vx: £5°7, £1°T)

for every&g, &1 € T, P2, vx € PZ andx € O.

The curvatureQ? = d"° 42 of o2 is sensitive in particular to the geometry of the (locally
given) level surfaces, as is easily verified by using equa®):

PrRopPOSITIONL. Let X be a smooth, singularity free vector field on O with ppatpart
a. The curvatureR? of the connection form? is
08 — K P
|al
wherex : O — R is the leaf-wise defined Gaussian curvature on the foliatib©® given
by the collection of all level surfaces of the locally det@ved potential V. The curvatur@?
vanishes along field lines of X.

The fact that the curvatui®? vanishes along field lines plays a crucial role in our sethup.
will allow us to establish (on a simple model) the relatiotvEen the transmission of internal
variables along field lines ok and the quantization of homogeneous quadratic polynoroials
the real line.

4. Two examples

If we consider specific vector fields in these notes, we witiaantrate on the two types presented
in more detail in this section. At first let us regard a constactor fieldX on O c E\{0} with
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a principal part having the non-zero valae= E for all x € O. Obviously the principal bundle
Pajs trivial, i.e.
Pa =0 x U31).

Since an integral curvg of X is a straight line segment parametrized by
Bt)=t-a+xy with B(tg) = Xg,

the restrictiorP2|ip, g of P2 to the imagam g is a cylinder with radiu$a|’%.

As the second type of example of a principal bun@fé associated with a singularity free
vector field let us consider a central symmetric fidd= grad V5o on E\{0O} with the only
singularity at the origin. The potenti&k) is given by

m
Vsol(X) = —m VxeO

wherem is a positive real. This potential governs planetary matiand hence graisg is
called the solar field here. The principal panf the gradient field is

4) grad Vsel(x) = —ﬂz X wxeE\(O).
x| IX]

For reasons of simplicity we illustrate from a longitudipaiint of view the principal bundi@®?
associated with the gradient field. An integral cupvpassing througlx at the timetg = 1 is of
the form

) Bt)=—m-B-t—23.x  for §<t<oo.

Hence the (trivial) principal bundi®?|im g is a cone. The radiusof a circleP§ with x € im
isr = XL
isr = NG for all x € O (cf. [12]).

5. Heisenberg group bundles associated with the singulasitfree vector field and curves
and the solar field

Associated with thé2 + 1)-splitting of the Euclidean spade caused by the vector field there
is a natural Heisenberg group bun@é with »? as symplectic form. The bund@? allows us
to reconstrucX as well. Heisenberg groups play a central role in signalrthézs. [13], [14]).
We essentially restrict us to the two types of examples ptesan the previous section.

Givenx € O, the vectora(x) # 0 determined=2 with the symplectic structure®®) and
C% which decomposel according to (1).

1
The submanifoldGg := |a(x)|”2 - e- U & FZ of H carries the Heisenberg group
structure the (non-commutative) multiplication of whishdefined by

1 . a
6) (z+h)-(Z2+hy)i=lax)| 2 217, €2 %MD G Ly 4,

for any twozy, zp € |a(x)|’% -e-U&(1) and any paihq, hy € F2 (cf. [12]). The (commutative)
multiplication in the centrea(x)|% -e-UZ(1) of G& is given by adding angles. The reason

the centre has radiug(x)|~ 2 is the length scale off for anyx € O. The group bundle
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1
Uxeo{X} x [a(x)|~ 2 -e-UZ(1), which is the collection of all centres, is associated Withand
forms a natural torus bundle together wii. The collection

G2 = U {x} x G&
xeO

can be made into a group bundle which is associated with theipal bundleP?, too. Clearly
F2 c G2 as fibre bundles. In the cases of a constant vector field ansbthefield the Heisen-
berg group bundle along field lines is trivial.

X]
m

1 1 1
In particular,a in (6) takes the valueg(x)|”2 = |a|” 2 andja(x)|” 2 = ‘= forallx € O
in the cases of the constant vector field respectively thar $ield.
The Lie algebraz2 of G¢ is

a

G&:=R.- —F2
X |a| X
together with the operation
a a a
M -— +hy v —+ hz] = o0?(x;h1. hy) - —
[ |al |al |al

for any #1, 9 € R and anyh;, h, € FZ. The exponential map ey ! g8 — G%is
surjective. ObviouslyX can be reconstructed from bo@? and G2. The coadjoint orbit of
Ad?" passing through o - & +hi > GF with 9 £ 0isv - & @ F2.

In this context we will study the solar field next (cf. [12])t first let us see how it emanates
from Keppler's laws of circular planetary motion. Suppesis a closed planetary orbit iB\ {0}
defined on all oRR; it liesin a pIaner/, say, withb’ € E\{0}, due to Keppler's second law. Let
o be acircle of radius. It is generated by a one-parameter grguip SO(FP) with generator
b, say, yielding

o) =P vteR.
Hence

§=b"-9o=—IpP-¢.
This generator, a skew linear map so(FP), is identified with a vector irE in the obvious
way. The invariant norms osno(Fb) are positive real multiples of the trace norm, and hence on
so(Fb) the generator has a norm

Ib]|> = =G'?- trb? = G- |bj?
for some positive real numb&’ and a fixed constantb||.
The time of revolutionT := ng_l is determined by Keppler's third law which states
©) T2 =r3. const

Therefores of ¢ := ¢ - Xg with |Xg| = r has the form

b em
G2 Is1? sl
with G2 = G=1.r3 andm := ||b||? as solar mass. This is the reason whywith principal

part gradVsg here is called the solar field. Newton’s field of gravitatiocludes the mass of
the planet, which is not involved here.
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Next let us point out a consequence of the comparison of the7é6|,3 embedded intg¢
for a fixedx € im B, but shifted forward such that its vertex is incOE, with the coneCy; of
a Minkowski metricg,’c\llI ongGa. The metricg,’c\llI relies on the following observation: Up to the
choice of a positive constant there is a natural Minkowski metric dfi inherited from squaring
any quaterniork = A - e + u with A € R andu e E since thee-componenik?)e of k2 is

—(K%e = (lu? —2%) - e= (b? - Kd)e

with b e S2. Introducing the positive constant the Minkowski metricgf(‘,| on G& mentioned
above is pulled back tg2 by the right multiplication with% and reads

g (h1.hp) ;=<ug,up > —C- A1 A

a
for anyhy € F1al represented bliy = Ay - \%I + ur forr = 1, 2. The respective interior angles

9% andgc,, which the meridians ofP iy, g andCy form with the axisR - % satisfy

1
2

1
tang® =m~2 and tamyc, = -

and

m-cZ2=G"1.coyp?. cotz(pcM,
providedm := % This is a geometric basis to derive within our settthg= m- c? from special
relativity (cf. [12]).

Now we will study planetary motions in terms of Heisenbergebkas. In particular we
will deduce Keppler's laws from the solar field by means of sobgmphic principle (we will
make this terminology precise below). To this end we firstdbe natural Heisenberg algebras
associated with each time derivative of a smooth injectiv@eo in O defined on an interval
I C R. Foranyt € | then-th derivatives (M (1), assumed to be different from zero, defines a
Heisenberg algebra bund®™ for n = 0, 1. . . with fibre

n ._ n (n)
Gory =R-c™ O @ F 1)
where Fg('g) = oM t)L (formed inE) with the symplectic structure™ defined by

oM@ t):h,hy) = <hixo®),hy>  VYhyhye F;r(‘g).

Here F (™ is the complex line bundle alorign o for which F™. := &™) for eacht. The

o(t) *
. . o)
two-forms »™ are extended to all 0® by lettinghy andhs vary also inR - IZ(:>E8|

; () Q) ;
t € 1. The Heisenberg algeb&}r(t) o (to) for a giventg € |, anyt
and anyn for whicho ™ (t) # 0.

As a subbundle of ™ we construc®®™ ¢ F™M which constitutes of the circlé@((;g) c

for all

is naturally isomorphic tg;

Fér('z) with radius|o (M (t)|’%. OnF ™M the curves admits an analogue™ of the one-formx?
described in (3), determined by

(W) =<o®) xo®®),h>  VYheF()
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for anyt. Since the Heisenberg algebra bundle evolves @ém we may ask howt (™ evolves
alonga, in particular fora™. The evolution ofx(™ can be expressed in termsaf™ defined
by

aWo);h = %a“‘)(a(t); h) —a™ @G (), h)

= <o®)xo™Dt),h> vhe Fér(]t))'

A slightly more informative form forr is

dPemih =o@Em:om.h)  YheF{

Thus the evolution of» alongo is governed by the Heisenberg algebed®, yielding in
particular
a® = const. iff ox&5=0meaning izo® =0.

HenceaD = const. is the analogue of Keppler’s second law. In this dasejtiaterniorb :=
o x ¢ is constant and heneeis in the planeF C E perpendicular td. ThusR - b x FPisa
Heisenberg algebra with

wP(hy,hp) ;=< hy xb,hp>  ¥hy hye FP

as symplectic form o 2. Hence the planetary motion can be described in only onesHeésg
algebra, namely i, which is caused by the angular momentbpof course. We havé =
f - o for some smooth real-valued function defined along a planetary motien implying

2 -
0@ = f. % - w?. In caser is a circle, f is identical with the constant map with valtf;&l,
due to the third Kepplerian law (cf. equation (7)). This naates us to set

2
(8) Yoty = gf;‘(t) vt

along any closed planetary motienwhich hence impliess® = w2 alongo. In turn one
obtains

9) (1) = gradVsei(o (1)) Vi,

a well-known equation from Newton implying Keppler's lawsquation (9) is derived from a
holographic principle in the sense that equation (8) stasgghe oriented circle (5?3 matches

®
the oriented circle o‘P?(t) at anyt.

6. Horizontal and periodic lifts of 8

Since, in generalR? £ 0, the horizontal distribution iff P2 does not need to be integrable
along level surfaces. Howeve? vanishes along field lines and thus the horizontal distidiout
is integrable along these curves. Let us Iool@éﬂﬂ whereg is a field line of the singularity
free vector fieldX.

A horizontal lift of 4 is a curveg"®" in Horg = kera? which satisfiesTpr2gh®" = 4

and obeys an initial condition iﬁl’Pa“g. Hence there is a unique curyﬁé“’r passing through
Vg(to) € Pg(to), say, called horizontal lift of. In the case of a constant vector field or in the
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case of the solar field this is nothing else but a meridian efaylinder respectively the cone
P24 containingug ty). Let B(tp) = x for a fixedx € O.

Obviously, a horizontal lift is a geodesic dﬁa|,3 equipped with the metrigHorﬁ, say,
induced by the scalar produet, > onE.

At first let a be a non-vanishing constant. A curveon Pa|ﬂ here is called a periodic lift
of B throughvy iff it is of the form

.q. &
y(© = "5 PVH P Vs

wherep is a fixed real.

Clearly, y is a horizontal lift throughvy iff y = ﬂhf’r, i.e. iff p = 0. In fact any periodic
lift ¥ of B is a geodesic o®?|g. Hencey is perpendicular t@2|g. Due to theJ (1)-symmetry
of P2|g, a geodesie onP?|4 is of the form

o(s) = N (9. 5) . PP T

Vs

as it is easily verified. Herp and6 denote realsd determines the speed of the geodesic. Thus
o and B have accordant speedsif= 1 (which will be assumed from now on), as can be easily
seen from

. a .
7O =pvx o+ O

for tg = 0. The real numbep determines the spatial frequency of the periodicjlifdue to

Z'T” = \v_pxl The spatial frequency af counts the number of revolutions aI’OUﬁ&hg per unit

time and is determined by tH&2-componentp of the initial velocity due to th&) (1)-symmetry
of the cyIinder’Pa|ﬂ. We refer top as a momentum.

For the solar fieldX (x) = (x, —#) with x € O, let|xg| = 1 and let a parametrization of

the body of revolutiori'?ahg be given in Clairaut coordinates via the mapl/ — E defined by
al

X(U, v) = —M- (v —2)3 -1 (e“'%) . (vx 4 i)

a a
on an open sé C R2. Herer is the representation &f 7/ (1) ontoSO(F W) foranyx € O.
Then a geodesig on Pa|ﬂ takes the form

y(9) = X(U(S), v(S) = —m-(3u(S) —2)3-r (e“@)'%) . (vx n %)

where the functions andv are determined by

_ . s 4
(10) us) = 2 arctan( ﬁd+2 d>+cz
3
1(/1 2 o\% 2
(12) and v(s) = i§ (<ﬁs+c1> +d) +§

(cf. [12]) with sin an open interval C R containing 1. Here; andcy are integration constants
determining the initial conditions. Since we are concemwét a forward movement along the
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channelR - \%I’ only the positive sign in (11) is of interest. The constéfixes the slope of the
geodesic via
d
cosy = >
L 2
( s+ &) +d

where? is the constant angle between the geodgsitalled periodic lift, again, and the parallels
given in Clairaut coordinates. This means tHatanishes precisely for a meridian. A periodic
lift y is a horizontal lift of 8 iff y is a meridian. Thus the parametrization of a meridian as a
horizontal IiftﬂhOIr of an integral curvgs parametrized as in (5) has the form

BTty = —m - (3t —2)3 - vy

with gNOT(1) = —rh - vy as well asB(1) = —m - x for % <t < land any initiahyx € Pg(l).

For the constant vector field from above, any periodicjlifof 8 throughvy is uniquely
determined by th& &(1)-valued map

a
s> eP ST,

while for the solar field a periodic lift is characterized by

a
s> O

with u(s) as in (10). These two maps here are called an elementandpefimction respectively
an elementary Clairaut map. Therefore, we can state:

PrRoPOSITION2. Let x = 8(0). Under the hypothesis that a is a non-zero constant, there
is a one-to-one correspondence between all elementarggiierd?(1)-valued functions and all
periodic lifts of 8 passing through a giveny € P&. In case X is the solar field there is a
one-to-one correspondence between all periodic lifts ipasthrough a givery € P& and all
elementary Clairaut maps.

An internal variable can be interpreted as a piece of infdiona Thus the fibres=2 and
P2 can be regarded as a collection of pieces of information @he periodic lifts ofg on Pa|,3
describe the evolution of information @fa“g alongp. This evolution can be further realized by
a circular polarized wave: Let the lift rotate with frequgnc 0. Then a pointu(s; t), say, on
this rotating lift is described by

hor
S —p.s)2&
(12) w(s; t) = |vx| P ©  2rve-poE yorer, s#£0

1B (9]

a circular polarized wave on the cylinder Wif—& as speed of the phase angl| as amplitude.

w travels alongR - \%I’ the channel of information. Clearlf;2|im g isin O x E and not inE.
However,w could be coupled to the spa&eand could be a wave i& traveling alongs, e.g. as
an electric or magnetic field. More types of waves can be nbthby using the complex line

bundleF?2 instead of the principal bundg2, of course.
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7. Representation of the Heisenberg group associated withepodic lifts of 8 on Palﬂ of a
constant vector field

Leta # 0 be constant o® andx € im 8 a fixed vector. There is a unique periodic liftof 8
passing throughk = y (0) with prescribed velocity (0). At first we will associate withy (0) a
well-defined unitary linear operator on a Hilbert space #evics.

The specification ofx € P2 turnsFg into afield Fa isomorphic toC, sincer;

-C=Fg.
[ox]
The real axis iR - ‘le and the imaginary one R - | ‘ \al We rename these axes tpaxis
carried by the unit vectafix and by p-axis carried by the unit vectquy, respectively. Clearly,
Px = Gx - j&(@). Any h € F&is thus of the formh = (g, p). The Schwartz space of the real axis
and itsL2- completion are denoted hy(R, C) and L2(R, C), respectively. The Schrodinger

representatiopy of G2 acts on each complex-valugde S(R, C) C LZ(R, C) by

(13) px@+h@)(r)=2z-eP™ . e72 P y(z —q) VreR
forall z+ h € G& with h = (g, p) (cf. [11], [13] and [7]). Clearly,

—p-q-i =wd(©,p),(@O)-i and z=& T
for somes € R. By the Stone-von Neumann theoresnis irreducible (cf. [13] and [7]). Setting
g = |vx|, for any p € R, equation (13) turns into

px(2+ (lvx], PH) <f + %) _z.ePTy (f - %) VreR.
Operators of this form generapg (G2), of course. In cases2 with the frequency (justified
by (12)) is different from one, for eagh € R equation (13) turns into

(14) pv(et'%+(|vx|,p))<¢)(r 'X'> ez””“’p”'*p( |U_2X|)

for everyz,t € R.

This shows that 2v(t — p - s) in the exponent of the fact@®™ V=P for s = 7 is
characteristic for the circular polarized wave describe@lid) and determines the Schrodinger
representation. Thus the geometry on the coIIec‘IRﬁ‘rhﬂ of all internal variables alon@ is
directly transfered to the Hilbert spat&(R, C) via the Schrodinger representation. Differently
formulated, the Schrodinger representation has a geaneetunterpart, namelyP? together
with its geometry, which is, for example, used for holognaphhe counterpart df in quantum
mechanics is the imaginary uq% e H.

a
On the other hand the2(1)-valued functionr — V=Pl entirely describes the

periodic lift y, rotating with frequency and passing throughy, as expressed in (13) Thus
the circular polarized wave is characterized by the unitary linear transformat,ume Tl +
(Jvx|, p)) on LZ(R, C). Due to the Stone-von Neumann theorem, the equivalencs afas is
uniquely determined by and vice versa. Therefore, we state:

THEOREM 1. Let a be a non-vanishing constant. Any periodic Jifof 8 on Palﬁ with
initial conditionsy (0) = vx and momentum p is uniquely characterized by the unitaratine
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transformationpyx (1 + (Jux|, p)) of L2(R, C) with (1 + (lvx], p)) € G2 and vice versa. Thus
vx € P2 determines a unitary representatipron L2(R, C) characterizing the collection g; of

a
all periodic lifts of 8 passing throughyy. The unitary linear transformatiopv(et'@ +(vx|, p)
of L2(R, C) characterizes the circular polarized wave on P2|in, g With frequencyv # 0
generated by and vice versa. The frequency determines the equivaleass afp,, .

As a consequence we have

COROLLARY 1. The Schrodinger representatign of GS describes the transport of any
piece of information(|vx|, p) € T(Ux,o)Palﬂ along the field lines, with R - % as information
transmission channel.

The mechanism by which each geodesic is associated withradober representation as
expressed in theorem 1 is generalized for the solar fieldlebsv® (cf. [12]): Let O = E\{0}.
a
Givenim B of an integral curve8, we consider the Heisenberg algema%l @ FTal equipped
with the symplectic structure determined l@f Now let y be a geodesic 02|y, g and

¥ € S(R,C). Then the Schrddinger representatjayy of the solar field on the Heisenberg
groupG# is given by

Psol(Z. XS (W)(1)(S) 1= 2 MO TT . g2 U VST .y (7 _ ()

for all sin the domain ofy and anyr € R.

8. Periodic lifts of 8 on Palﬂ, the metaplectic groupMp(F2) and quantization

Let px be given as in (13), meaning that Planck’s constant is seté¢o Borvx € PZ andyy, (0)
of a periodic lifty,, of g,

. . a 5

Yux (0) = 1y (O FX + BhOT(0)
is an orthogonal splitting of the velocity gf,, at 0. Clearly, theF&-component ofy,, (0) is
Yo (0) R = p - Px, wherep is the momentum. Thus the momenta of periodic liftggfassing
throughvy are in a one-to-one correspondence with elements, i®g.

Therefore, the collectiog of all periodic lifts of 8 on P2 is in a one-to-one corre-
spondence witlr P (being diffeomorphic to a cylinder) via a map : C& — TPZ, say.
Let

j i TPRlp — F
be given byj := T | wherej : P& — P2 is the antipodal map. Thus
Jwx, &) = j(w—x, 2) = 1

for every (wy, A) € Ty, Pg with wx € PZ andi € R. Clearly, j is two-to-one. Setting
F2 = F2\{0}, the map

jof:C8— F2
is two-to-one, turning=g into a two-fold covering oﬂf)?. j o f describes the correspondence
between periodic lifts if€2 and their momenta. The symplectic groBp(F2) acts transitively
on F2 equipped withw? as symplectic structure. Therefore, the metaplectic gidygiF2),
which is the two-fold covering o8 p(F), acts transitively ol PZ.
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Thus giveru € F2, there is a smooth map
®:SpFY) — FL

given by®(A) := A(u) for all A € Sp(F)?). Sincej o f(Uyy) = j o f(u_y,) forall uy, €
TP?|4(0), the mapd lifts smoothly to

®: Mp(F3) — C2

such that
(jof)od =prod

wherepr : Mp(F&) — Sp(F2) is the covering map. Clearly, the orbit Mp(F2) on C2 is
all of C&, andMp(F&) acts onF with a one-dimensional stabilizing group (cf. [14]). Novt le
us sketch the link between this observation and the qudinizcan R. Sp(F&) operates as an
automorphism group on the Heisenberg gr@gh(leaving the centre fixed) via

Az+hy=z4+AMh) Vz+heGa
Any A € Sp(F2) determines the irreducible unitary representatigndefined by
pPA(Z+h) = px(z+ A(h)  V(z+h) eG§.

Due to the Stone-von Neumann theorem it must be equivalepy ttself, meaning that
there is an intertwining unitary operatdm on L2(R, C), determined up to a complex number of
absolute value one i6&, such thajpp = Upopo U;l andUp; oUpa, = COO(A1, Az)-Uponp,
for all Az, Ay € SPF®). Herecocis a cocycle with valueodAy, Ap) € C\{0}. Thus
U is a projective representation &fp(FZ) and hence lifts to a representatigv of Mp(F2).
Since the Lie algebra d¥lp(F) is isomorphic to the Poisson algebra of homogenous quadrati
polynomials,d W provides the quantization procedure of quadratic homaggpolynomials on
R and moreover describes the transport of informatioR$nalong the field lings, as described
in [4].
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MEDIA WITH MICROSTRUCTURES AND
THERMODYNAMICS FROM A MATHEMATICAL
POINT OF VIEW

Abstract. Based on the notion of continua with microstructures weoithiice the
notion of microstructures on discrete bodies. Using théogyawith of differential
forms on discrete media we develop the discrete virtual veortt the thermody-
namics in the sense of Caratheodory.

1. Continua with microstructures

Let B be a medium, i.e. a three dimensional compact, differeletiatanifold with boundary. In
the case of classical continuum mechanics this medium iggthtdo be moving and deforming in
R3. A configuration is then a smooth embedditg B — R3. The configuration space is then
either&(B, R3), the collection of all smooth embeddings frdgninto R3, a Fréchet manifold,
or, for physical reasons, a subsetB, ]R3) which we denote bgonf (B, R3). This classical
setting can be generalized to media with microstructures.

A mediumB with microstructure is thought as a medium whose points raeenal degrees

of freedom. Such a medium was recently modelled by a spedgifiadipal bundleP % B with
structure grougH, a compact Lie group ([3])

Accordingly the mediumB with microstructure is thought to be moving and deforming
in the ambient spacE3 with microstructure, which is modelled by another specifieidcipal

bundleQ £ R3, with structure groufs, a Lie group containingd. A configuration is then a
smooth,H-equivariant, fibre preserving embeddi®dg P — Q, i.e.

&(p,h)y=d(p)-h, VpeP, VheH.
The configuration space is then eit&(P, Q), i.e. the collection of all these~ configurations,
or again for physical reasorGonf(P, Q), a subset o€ (P, Q). Clearly any® e £(P, Q)
determines somé € £(B, R3) by

() = (®(p), VpeP.
The mapr, : £(P, Q) — £(B,R3) given by
Te(P)((P) = w(P(P), ¥ pe P, VO e E(P,Q),

is not surjective in general. For the sake of simplicity weumse in the following thatr; is
surjective. Given two configurations,, ®, in n;l(CD) c E(P,Q) for ® € £(B, R3), there
exists a smooth ma§: P — G, called gauge transformation, such that

d1(p) = D2(p) - G(P), Y pe P.

17
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Moreover,§ satisfies
gp-hy=h"1.§(p)-h, Vpe P, VheH.

The colIectionG'l;| of all gauge transformatior§form a group, the so-called gauge group.

The gauge grouﬁ;E is a smooth Fréchet manifold. In fa€(P, Q) is a principal bundle
over&(B, R3) with GH as structure group.

2. Discrete systems with microstructures

In the following we show how the notion of media with micrastture dealed with above in the
continuum case can be introduced in the discrete case. Jerthiwe replace the body manifold,
i.e. the mediunB, by a connected, two-dimensional polyhedifdriWe denote the collection of
all verticesq of P by PP, the collection of all bounded edge®f P by SP, and the collection
of all bounded faced$ of P by S?P. We assume that:

i) every edgee € SIP is directed, having™ as initial ande™ as final vertex, and therefore
oriented,

ii) every facef € SPPis plane starshaped with respect to a given baryce®feand ori-
ented. Moreverf is regarded as the plane cone over its bound#ryormed with respect
to B¢ . This cone inherits frorik2 a smooth linear parametrization along each ray joining
B+ with the vertices off and with distinguished points of the edges belonging o
and joining these vertices, as well as a picewise smootkatiparametrization along the
boundaryaf of f, i.e. along the edges.

A configuration ofP is amap® : P — R3 with the following defining properties:

) j: PP — R3is an embedding;
i) if any two verticesq; andgp in PP are joined by some edgein S'P, then the image
®(e) is the edge joiningb(q1) and® (gp);

iii) the image®(f) of every facef in 2P, regarded as the plane cone over its boundary
af formed with respect t@+, is a cone ifR3 over the corresponding boundaiy(af)
formed with respect t@® (B+);

iv) @ preserves the orientation of every fate S2P and of every edge € S!P.

We denote by (P, ]R3) the collection of all configuration® of P, and bycon f (]P’,R3) the

configuration space, which is eith&¢P, R3) or eventually a subset of it.

As in the continuum case we model the plyhedi®mvith microstructure by a principal
bundleP 5 P with structure grouH, a compact Lie group, while the ambient sp&%with
microstructure is modelled by another principal bun@ea—i R3 with structure grous, a Lie
group containingH.

We note that we implement the interaction of internal vdealby fixing a connection on
P % P, and this can be done by using an argument similar to thatrof.i Clearly not every
closed, piecewise linear curvelihcan be lifted to a closed, piecewise linear curvéin

The configuration spacgonf(P, Q) is a subset of the collectiafi(P, Q) of smooth,H-
equivariant, fibre preserving embeddings P — Q.

Again Conf(P, Q) is a principal bundle overon f(P, R3) or over some open subset of it
with GE as structure group.
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3. The interaction form and its virtual work

Let us denote by (S°P, R3) the collection of allR3-valued functions ors’P, by A(S'P, R3)
the collection of allR3-valued one-forms of?, i.e. of all mapsy : S'P — RS, and by

A2 (SZIF’, R3) the collection of allR3-valued two-forms ofP, i.e. of all mapsw : S?P — RS.
We note thaf (SOP, R3), ALlSIP, R3) andAZ(S?P, R3) are finite dimensionak-vector spaces
due to the fact thaP has finitely many vertices, edges and faces. In all thesewvepaces we

can present natural bases. Indeed, givenaryR3 and a fixed vertex; € S°P, we define
h§ € F(SPP, R®) as follows:

z,.n_ |z, ifa=d
hg(a) _{ 0, otherwise .
On the other hand, for a fixed edgee S!P respectively a fixed facd € S?P, y& €
AL(S'P, R3) andw? € A?(SP, R3) are given in the following way:

z,ife=¢,
0, otherwise,

z,if f=1*",
0, otherwise .

V2(e) = { (1) = {

If now {z1, 25, z3} is a base iRk3, then
{hg 1ge PP, i =1,23) c F(P,R3)

& lee SP,i = 1,2 3} c AL(SIP, R3)
and .

{og | T e SPi =1,23) c A%S?P,RY)
are the natural bases mentioned above.

Given now a scalar product, -) on R3, we define the scalar produe®, G! and G2 on
F(SP, R3), AL(S'P, R3) and respectivelya?(S?P, R3) by

GOh1.hp) == > (ha(@.ha@). V¥ hy hy e F(SP.R?).,
qesP

Glyry == Y. (10, 72(0). Y y1. 72 € ALSIP.RY)
ecSlP
and
Glwr.w) == Y (w1(F), w2()). ¥ w1, wp € AX(S?P,R3).
feS2P

The differentialdh of anyh € F(S°P, R3) is a one-form orP given by
dhe) = het) —he™), Vee SP,

wheree™ ande™ are the initial and the final vertex ef
The exterior differentiadi : AL(SIP, R3) — A2(S?P, R3) appliedtoany € AL(SIP, R3)
is given by
dy(f):= Y y(@ .V fesP.

ecof
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The exterior differentiatlw for any two-formw on P vanishes. Associated withand the
above scalar products are the divergence operators

5 A2(PP, R3) - Al(Slp, RS

and
s AL(SIP, R3) - F(SPP, R3)

respectively defined by the following equations

Glw, @) = G2(w,da) , Y we A%(SPP,R3)and
Vo e AL(SP, R3) |

and
GO%sa, h) = Gl(@,dh) , Vae ALSIP,R3) and
v he F(P, R3) .

dod = 0impliess o § = 0. Elements of the forndh in AL(SIP, R3) for anyh € F(S°P, R3)
are called exact, while elements of the fosm in AL(S!P, R3) for anyw € AZ(S?P, R3) are
called coexact.
The Laplacians\g, A; andA, on F(SPP, R3), AL(SIP, R3) and A2(S?P, R3) are respec-
tively defined by

Aj:=680d+dod,i=012.

Due to dimP = 2 these Laplacians, selfadjoint with respecGﬂo i =0,1,2, simplify to
Ag = §od on functions, A1 = §od 4 d o § on one-forms and\, = d o § on two-forms. Hence
there are the foIIowingSO, G- and respectivelﬁz-orthogonal splittings, the so called Hodge
splittings [1]:

AP, R3) = sALSIP,R3) @ HarmO(SPP, R3) ,
ALSIP R3) = dF(SPP, R3) @ 5 A2(S?P, R3) @ Harml(SlP, R3) ,
A%(SP,R3 = dALSIP, R3) @ Harm?(S2P, R3) .

Here Harm' (SP,R3) := Ker dn Ker § , i = 0,1, 2 Reformulated, this says that e

Harm (SP,R3) if Ajf =0, i =0,1,2; we note thaid € Harm%(S°P, R3) is a constant
function.
Letting Hi (P, R3) be thei-th cohomology group oP with coefficients inR3, we hence
have:
Hi (P, R3 = Harm' (SP,R%) , i =1,2.
Next we introduce the stress or interaction forms, whichcarestitutive ingredients of the

polyhedronP. To this end we consider the interaction forces, i.e. vedtoR 3, which act up on
any vertexg, along any edge and any facef of P.

The collection of all these forces acting up on the vertiafges a configuration dependent
function «9(®) € F(PP, R3), whered e conf (]P, R3). Analogously the collection of all
the interaction forces acting up along the edges or alongpites defines a one foruiL(d>) €
AL(SIP, R®) or a two-forma?(®) e A%(S?P, R3) respectively. The virtual workd! (@) caused
respectively by any distortiopn' € AI(SP,R3),i =0, 1, 2, is given by

Al@) =3¢ @ @),y i=012.
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However, it is important to point out that the total virtuabrk .A(®) caused by a deforma-
tion of the polyhedrof® is given only by AL(d)(y1) + A2(d) (,02), wherep? is the harmonic
part ofy2 e A2(S2P, R3). In order to justify it we give the virtual workgll (®)(y'), i = 1, 2,

in accordance with the Hodge splitting fot(®) andy', i = 0, 1, 2, and with the definition of
the divergence operatods the equivalent forms

Ow@@), 8y = GLdaO@), yh,

Glet(@), yh GL(dBO + 80?2 + x1, y1)

GO(8Y, sy 1) + G2(w?, dyh) + GL0et, ph
G2(dBL + %2, y?) = GL(BL, 52 + G2(x?, p?),

G2@O(®), 51

Here the two terms
grocdt, vyl = gred, dhl + dh? + phy = godt, ph,
and
G202, v?) = G202, dnt + p?) = G2, p?)
depend only on the topology of the polyhedi®n
Comparing now the different expressions for the virtualkgave get

AL@) (1) + G262 07 = GO@O(@). 5y 1) + G2(@2(®). dyL)+
+ g:l.(%:l.’pl)_{_g2()f27 102)7
O@) = sal(@),
ol(@) = daO(®) + 8a?(d) + pl,
o2(@) = dal(@)+ p2
Moreover
Ag?@) = 2@,
Apd?(®) + 12 = oA(®D).

Accordingly, the total virtual work of? associated, as discussed above, witha® anda?
is given by

A@) (L y? = AN@) Y + A2(@)(pD)
= GLaX(@), Aty + Goct, pb) + G2, p?)

However, due to translational invariance
o (@) =d dP), i =0,1,2.

For this reason we let® vary in a smooth, compact and bounded manitld: dcon f(P, R3)
with non-empty interior. The virtual work ofi has then the form

A@)(yL, y?) = Ado)(yL, v?)

for anyd® e K and anyy! e Al(SP, R3). Sincedconf(]P’, R3) c Al (SllP’, R3) ac-
cording to the Hodge splitting is not open, not all elementsAt (SllF’, R3) are tangent to
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dconf (P, RS . Therefore,A is not a one-form oiC C dconf(]P’, R3) , in general. To use the
formalism of differential forms, we need to extend the \aftwork .4 to some compact bounded
submanifoldc! ¢ Al (slp, R3) with K c K1- See [2] for details -

The one-formA(d®) needs not to be exact, in general. We decompose accordihiito

Ad®) = dIF + .
This decomposition is the so called Neumann one, given by
divA = AF, A®$) (v(§)) =DE) ()

for all £ in the boundan®X® of K1. D is the Fréchet derivative oAl (SllP’, R3) , while v

is the outward directed unit normal field oK 1. The differential opeatordiv and A are the
divergence and respectively the LaplaciaWn(SlP, ]R3) .

4. Thermodynamical setting

This Neumann decomposition, combined with the idea of natiqgg factor of the heat, as pre-
sented in [1], [6] and [7], yields a thermodynamical setting

In order to do this let us remember first that (Sl]P’, R3) has according to the Hodge
splitting the decomposition

al (slp, R3) —dF (SOIF’, RS) @ 5 A2 (szp, R3) ® Harmt (slp, R3) .

This fact implies the necessity of one additional coordirfanction for the construction of
the therodynamical setting. Accordingly we extefid to Kr = K1 x R and pull A back to
KRr. The pull back is again denoted b4

We follow now the argument in [2] and denote bythe additional coordinate function on
KR : we set for the heat
H:=dU-A4
where by dI we denote here the differential & .
Let now% be an integrating factor dfl; i.e.

H=TdS on Kg,

whereS : Kg — R is a smooth function ([2]). Next we introduce the free enefgy, by
setting
FIC]R = U - T . S )
yielding
A= dlF, —SdIT.
Both Fy., and T depend on the tupl¢t,U) € Kg. The one-formA on Kr depends

trivially on U. We think of some dependenceldfon, i.e. we think of a mags : K1 — R and
restrict the above decomposition dfto the graph os. s is determined by the equation

Ficy (€.5(6) = F(§) + FO,
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V£ in some submanifolds’ of K'1. We call F the free energy, too. Then
A= dIF+¥ on K1,
whereW onV has the form

W(E)(y) = S(56)) - dIT(s(6)) Ve e V c KL andvy e Al (SllP’, R3)

dl is here the differential oiC?.
We have considered here the thermodynamical setting ortlyeircase of the virtual work

done onP. This can be easily generalized to the virtual work on the asitucture. To do this
we define first the virtual work on the microstructure [4] ahdrt we repeat the above argument.
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L. Bortoloni - P. Cermelli *

STATISTICALLY STORED DISLOCATIONS IN
RATE-INDEPENDENT PLASTICITY

Abstract. Work hardening in crystalline materials is related to theuamaulation of
statistically stored dislocations in low-energy struesirWe present here a model
which includes dislocation dynamics in the rate-indepehdetting for plasticity.
Three basic physical features are taken into account: €iytte of dislocation
densities in hardening; (i) the relations between thex@ipcities and the mobility
of gliding dislocations; (iii)the energetics of self and twal interactions between
dislocations. The model unifies a number of different apginea to the problem
presented in literature. Reaction-diffusion equatiorhwitobility depending on
the slip velocities are obtained for the evolution of thdatiations responsible of
hardening.

1. Introduction

Slip lines and slip bands on the surface of a plastically aeéal crystal are due to complicated
phenomena which occur inside the crystal. When plasticrdeftion occurs, dislocations are
generated : some of them move towards the crystal surfacgrfgrslip lines, others may be
stored to harden the material and form more or less regutterpa ([1]-[16]). As reported in
Fleck et al. [1], “dislocations become stored for two reasons : they amdate by trapping
each other in a random way or they are required for compatiefermation of various parts
of the crystal. The dislocation which trap each other rarigicame referred to astatistically
stored dislocations.gradients of plastic shear result in the storaggedmetrically necessary
dislocations.

Taking into account both statistically stored dislocat{8%D) and geometrically necessary
dislocations (GND), our purpose in this paper is to constaunodel which is able, at least in the
simple case of single slip, to describe dislocations pasteThe basic idea here is to introduce
dislocation densities as independent variables in thedwark of Gurtin’s theory of gradient
plasticity [17].

Total dislocation densities have been introduced fredyénthe literature, both to describe
hardening and the formation of patterns during plastic cheédions ([18]-[26]).

In fact, materials scientists often describe hardening tdudislocation accumulation by
means of the so-called Kocks’ model (see [22]): the resigtam slips is assumed to depend on
the total dislocation density through a relation of the form

¢ =1¢()),

*This paper has been completed with the support of the ItAfiahR.S.T. 1998-2000 research project
“Modelli matematici per la scienza dei materiali”. We alseswto thank M.E. Gurtin, for his stimulating
comments and suggestions.

25



26 L. Bortoloni - P. Cermelli

and the accumulation of dislocations during plastic sliple¥s according to an ordinary differ-
ential equation which can be rewritten in the form

d
@) 4t = k2 ~ ko).

wherev is the resolved (plastic) shear strain rate &ndks are positive constants. In the right
hand side of equation (1), the tek, /o represents dislocation storage and the tegrasrepre-
sents dynamic recovery. An important consequence of tiigoagph is immediately recognizable
by equation (1): the dislocation ragedepends on the strain rate. Roughly, this means that dis-
locations are less mobile when the material hardens.

The above approach does not take into account dislocatimsitggradients and thus, while
very efficient for small strain rates, it does not allow todstispatial variations of the density.
One of the first approaches twn-local models, which should take into account both spatial
and temporal variations of the dislocation density, is duélolt [18], which obtains a Cahn-
Hilliard equation for the total dislocation densities tasdgbe patterning in a manner analogous
to spinoidal decomposition in alloys. His model is based drea energy density which takes
into account dislocation interactions through higher grat$ of the dislocation density, in con-
junction with a gradient-flow derivation of a balance eqomfior such densities.

Other authors, for instance Aifantis (see for example [2B}) co-workers, model the com-
plex phenomena due to dislocation interaction and anmibildy means of a reaction-diffusion
system: in this approach two or more dislocation speciegwanéved (e.g., mobile and immobile
dislocations) and an evolution equation for each specieg 64, t), is postulated

@ % = DAo +9(0)

whereg(p) is a source term describing creation and annihilation dbdaions (e.g.g(e) =

ao — b2, with a andb phenomenological coefficientd is a diffusive-like coefficient anch

is the laplacian. Models like (2) may be used to describeouarphenomena related to pattern
formation, but they do not include (plastic) strain rateef§ of the type described by (1).

The main goal of our work is a unified model which includes bé# basic features of the
models described above, i.e., the dependence of (plabte) sate on dislocation density rate,
the non-locality, and finally a term describing work and d@dtdening.

Using consistently the assumption of rate-independenee @Gurtin [17]), we obtain an
equation for the total edge dislocation density of the form

do Ay
© S =i (eae-3%)

wheree may be interpreted as a diffusive coefficient an@) is a dislocation energy including
work and soft-hardening behavior. Notice that equilibrisotutions satisfy

(4) eAo— — =0.

Those solutions may correspond to low energy dislocatitmgtsires (LEDS, see Kuhlmann-
Wilsdorf [2]), or patterns forming during fatigue, wheresldications arrange themselves in such
a way that their self and interaction energy are minimized| their average density does not
change with time, even if plastic flow does occur ang 0.
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If  and¢(p) denote the resolved shear stress and the slip resistaretigsly, then by
regularization of the classical yield equatios= (sgn v)¢ (o), by lettingr = (sgn v)|v|¥ "¢ (o)
for a large positive integer, we obtain

hl)”

5 vj=——) .

©) i (C(Q)

By substitution ofv, as given by (5), into (3), we obtain the non linear parabdifterential
equation

do ( 7| )” ( 8¢)
6 — =— ehNo— — |,
© dt ~ \z( ¢ 9
which can be solved if the resolved shear stress (X, t) is known as a function of position
and time.

2. Kinematics

Consider a body identified with its reference configuratifyy, a regular region irk3, and let
X € Bgr denote an arbitrary material point of the body. A motion &fltody is a time-dependent
one-to-one smooth mapping= y(X, t). At each fixed timet, the deformation gradient is a
tensor field defined by

(7) F=Gady

and consistent witdet F(X,t) > 0 for anyX in Br. A superposed dot denotes material time
derivative so that, for instancg,is the velocity of the motion.

We assume that the classic elastic-plastic decomposititishi.e.,
®) F = FeFp.

with Fe andFp the elastic and plastic gradients, consistent Wigh= det Fe > 0 andJp =
det Fp > 0. The usual interpretation of these tensors is thatepresents stretching and
rotation of the atomic lattice embedded in the body, whilerepresents disarrangements due to
slip of atomic planes.

We restrict attention tplastic slip shear deformatign.e., deformations such that the de-
composition (8) holds, witkre arbitrary and withF , of the form

9) Fp=1l4+as®m, s-m=0,

with | the identity inR3, s andm constant unit vectors and = «(X,t). In (9), @ may be
interpreted as slip rate on the slip plane, defined by theglicections and the slip-plane normal
m. This plane is understood to be the only one active amongealfhvailable slip systems.

2.1. The geometrically necessary dislocation tensor

The presence of geometrically necessary dislocationstiysaat is usually described in terms of
Burgers vector, a notion strictly related to the incompltybof the elastic deformation.
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DEFINITION 1. Let S be a surface in the deformed configuration, whose bayréda is a
smooth closed curve. The Burgers vectod 8fis defined as

b(39) =/ Fg tdx
39S
where & is the line element of the circuitS. Stokes’ theorem implies that
T
b(BS):/ (curl Fg1> nda,
S

wheren is the unit normal to the surface S andr| and da are, respectively, the curl operator
with respect to the point and the area element in the deformed configuration.

Sincecur | Fgl # 0 is necessary to have non null Burgers vectors, the tensor Fe_1
seems to be a candidate to measure geometrically necessiagations. As such, however, it
suffers some drawbacks: for exampdeyr | Fgl is not invariant under superposed compatible
elastic deformations; moreover, in view of applicationgrtadient theories of plasticity, it should
be desirable to work in terms of a dislocation measure whigchlie expressed in terms of the
plastic strain gradient also. In [27], Cermelli and Gurtioye the existence of a dislocation
tensor which satisfies both requirements above. We canasegltheir result as follows:

DEFINITION 2. Lety be a deformation an# = Vy its deformation gradient. IIFe andFp
are smooth fields satisfying (8), then the idenﬁg}f pCurl Fp = Jnglcur | Fgl holds: we
define therefore the geometrically necessary dislocagosdr (GND tensor) as

1
(10) D := 5-FpQurl Fp= JeFgleur! Fgl.
p

By (10), we have an alternative plastic and elastic reptatien ofDg. As pointed out in
[27], in developing a constitutive theory “it would seem adtageous to use the representation
of Dg in terms ofF p, which characterizes defects, leaviRgto describe stretching and rotation
of the lattice”. See [27] for an exhaustive discussion ofgeemetrical dislocation tensor defined
by (10).

For single slip plastic deformations (9), the GND tensor thasform

(12) Dg=(Vaxm ®S=5g5®S+6egt®s
wheret = s x m and
(12) €g=Va-s, Sy =—Va -t.

The quantitiessy andsy can be interpreted as densities associated to geometriwatessary
edgeandscrewdislocations, respectively, with Burgers vector pardthes.

2.2. The total dislocation tensor

Individual dislocations can be visualized by electron msoopy and their direction and Burgers
vector can be determined experimentally. We thus assuné¢hiaanicroscopic arrangement of
dislocations at each point is characterized by scalar tiessif edge end screw dislocations, for
any given Burgers vector. More precisely, assuming that dislocations with Burgers vectar
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are present, and their line direction is contained in thenem-., we introduce nonnegative
functions

(13) er =er (X, 1), e-=e-(Xt), sp=s51(X,t), s =s(X,1),

with the following interpretation e ande_ are the densities of dislocations with Burgers vector
s and line directiont and —t respectively (edge dislocations); ands_ are the densities of
dislocations with Burgers vectarand line directiors and—s respectively (screw dislocations).

Noting that all the information on a given system of dislomas may be summarized in one
of the tensorial quantities (recall that, s+ > 0)

ert®s, —et®s  $S®S  —S-S®S

we assume that the edge and screw densities above are reldtexigeometrically necessary
dislocation tensor by a compatibility relation of the form

(14) Dg=(er —e)t®s+(sy —S-)s®s
from which it follows that
e —e_ = eg, Sy —s = g.
DEerINITION 3. Introducing the total edge and screw dislocation densities
e=e;+e_, S:=s; +5s_,
we define the total dislocation tensor by

(15) Ds:=et®s+ss®s.

3. Dynamics

3.1. Standard forces and microforces

To describe the force systems associated to the motion dfattg plastic deformation and the
evolution of the total dislocation densities, we introdadensor field, vector fieldshe*t &, «e
andxs, and scalar fieldsl, 18!, Me, MEX!, Ms andM&*!, all functions of(X, t).

These fields correspond to three physically distinct setsrogs acting on the body.

The first force system is standard, and is given by the uswédKirchhoff stress tensd
and the body force®X,

The second force system has been introduced by Gurtin imédy of gradient plasticity
of single crystals (see [17]), to describe forces that perfaork associated to plastic slip. This
system consists in a vector microstréssa scalar internal microforcH, and a scalar external
microforceI1€Xt,

The last set of forces is introduced to account for the dynarof the total screw and edge
dislocation densities. It consists of a vector fokge a scalar internal microforc®le, and a
scalar external microforch‘lgXt for edge dislocations, and corresponding quantitigdvis and
MEX! for screw dislocations.

A balance law is associated to each force system. We confsigethe standard system
(S, b®%Y, which is governed by the classical force balances, in lfarah given by

(16) Di v S+ b&t=0, SFT = Fs',
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where we have omitted the inertial terms. To the second feyseem(&, IT, exy), governing
plastic slip, a corresponding microforce balance is assedi(Gurtin, [17])

(17) Divé+ I+t =0.

Following Gurtin, [17] we shall see later that this relati@places the usual yield condition for
the single slip system under consideration.

In our theory two more balances must be introduced, in omebtain a complete integrable
set of equations once an adequate constitutive theory islafsd. These new balances are
associated to the force systeras, Ie, I1EXY and (xs, s, TIEXY), and are given in local form
by

Di V ke + Me + MEXt =0,
(18) Di v ks + Ms + MEXt = 0.

Each of the above force system is characterized by the waxpirels power on the rate of
change of the corresponding microstructural field : prégisee assume that the working of the
forces on an arbitrary portiogR of the body is

WP) = /8P(Sn-y+§ “N& + ke - N€+ ks - NS)da

(19) + [y ans et M.

Notice that the microstress and the corresponding external force, expend power on tpe sl
velocity ¢, while the total dislocation forces andxs expand power on the rate of change of the
corresponding dislocation densities.

We take the second law in the form of a dissipation inequatsting that the time-derivative
of the free energy relative to an arbitrary subregif the body may not exceed the working
of the external forces acting @, i.e.,

d

(20) - / Ydv < W(P)
dt Jp

where is the free energy, density per unit volume in the referermdiguration. Using the
balance equations, this inequality becomes, in local form,

(21) V <Te -Fe+& Vi+ke Vé+ks  Vé+ md — M — Ms$
where
(22) Te= SF,TJ T =1-1Tl, =S (FeS®@M).

Notice thatr is theresolved shear stregm the slip system under consideration.

3.2. Constitutive equations

Lettingo = (Fe, e,€e—,s+,5—, Ve, Ve_, Vs;, Vs_) andv = (&, &, $) we consider consti-
tutive equations of the form

(23) Y =4v(0), Te=Tel0), &=£E(0), ke=rke(0), «s==Rs(o)
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and
(24) 7 =#(0,v), Me=Me(o,v), Ms= Ms(o,v).

Requiring the consistency of the constitutive equationth wie dissipation inequality for any
process, we obtain by the classical Coleman-Noll proceth&eesult that the constitutive func-
tions above cannot depend 8, Ve_, Vs; andVs_, but only onVe andVs, i.e., we can
rewrite the constitutive relations (23) in terms of the list

o' = (Fe,er,e_,s1,5,Ve Vs)

or, equivalently,
0" = (Fe, €g.5g. & S, Ve, Vs).

Furthermore, the constitutive relations in (23) must gdtie requirements

BYY, EYY, 3
'|'e=_¢-7 ‘;;:z_ws+_wmxs’
(25) Fe deg  9sg
Ay v
Ke = —, Ks = ——,
€~ Hve ST 9Vs

while the internal microforceMe and Ms decompose as

_pdis 0¥

. 3@
(26) Me = —MZ 2’ —mdis _ °2

Ms = —Ms ds

wheremdis, Mdis andz must satisfy the residual dissipation inequality
(27) 5 =ma + MJSe+ MZ1Ss > 0

for all processeso, v).

3.3. Rate independence

Notice that, under a time scale transformation definetl by t/6, 6 > 0, the fieldsx, éand$
transform according t@ — 6da, € — 6é and$ — 6#S. Following Gurtin, we assume that the
constitutive equations favdis, MJiS andz are rate-independent, in the sense that they satisfy
dis _ pnpdis dis _ npdis _
Mg “(0,v) = Mg “(0,6v), Mg >(0,v) = Mg ~(0,60v), n(o,v)=mn(o,0v),

for any (o, v) and for allé > 0.

4. A nonlinear model

For the applications presented in this paper, we chooset&ylar form of the free energy
functiony,, namely

1 1
(28) ¥ = Ye(Fe) + ¢(€g, Sg. € S) + 561|Ve|2 + EestF

whereye andy are non-negative functions aag ande, are positive constants.
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Moreover, we shall assume that the dissipative fie)tﬂés, Mg“s andr are given by

Mgis(a,v) = a(e,s)i,

la]

(29) M3, v) = b@ﬁﬁ%,
o

m(o,v) = ¢(es)sgna,

wherea(e, s), b(e, s) and¢(e, s) are positive functions. This choice guarantees rate-ieaeép

ence, and yields a dissipation densityquadratic in the rates of change of the total dislocation

densities. Moreover, as we shall see, whes 0, equations (29)and (29) are well-defined.
Following Gurtin [17], the functiort may be interpreted as th#ip resistance In [17], ¢

is introduced as internal variable, whose evolution isgibg an ordinary differential equation,

called thehardening equationof the form

=t a),

where is a list possibly containing the fields, Fp, VFp and¢. As shown in [17], when
restricted by rate independence, the hardening equatimonies

(30) ¢ =KMmlal.

Our approach to hardening is substantially different frdwat tbased on internal variables: we
assume in fact that is given by a constitutive relation compatible with the gission inequality
and the hypothesis of rate independence. Therefore it isetassary to introduce the hardening
equationa priori, since, as shown below, it is a consequence of the constitatioices (29)
and (29) for M3is andmdis,

To write explicitly the evolution equations for our modekwssume that no external forces
are present, and choose a cartesian coordinate systel) Z) in the reference configuration
such that

(1,0,0) =sxm 0,1,0) =s 0,0,H) =m.

The balance equations are then
1) the balances of linear and angular momentum
(e 7 e 1 dye\"
31 Div | —F =0, and —F, =Fe| — ) .
1) (BFe P aFe ¢ °\0Fe
2) the yield equation
82(/) 320 82(/) 320 82g0 920

(32) T=(Sgna)f—%m+zaegasg XY 835 X2

Notice that the yield condition is modified by the presencg@bmetrically necessary
dislocations (we have used (12) to express the geomeyricatiessary dislocation den-
sities in terms of the derivatives of the plastic slip which can be thought as inducing
isotropic hardening-softening.

3) areaction-diffusion system for the total dislocation dées

A |ce| dp A |ce| dp
33 == Ae— —~ == As— —2 ).
(33) é (el e——2): $ €2AS
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Notice that the dislocation mobility is proportional to timedulus of the slip velocityt.
Henceforth, two characteristic features of dislocationaiyics are immediately recog-
nizable from (33):

(i) one can have equilibrium configurations for edge didliocss, i.e.,

d
€1Ae — % _ 0
Joe
such tha& = 0 and dislocations are "locked” in low energy structureg, fastic
flow does occur, and the slip velocity does not vanishk 0. A similar discussion

applies to screw densities.
(i) if the material behaves elastically, so tlat= 0, then dislocations cannot move.

Besides, by derivations with respect the time of the camsté relationz (e, s) for the
slip resistance, and using equations ¢3@)d (33}, we obtain a hardening equation

_[13¢ EIAWNEY]Y AV
(34) é“_[aae(elAe ae)+bas(62As as>]|°‘|

which is a generalization of the classical equation (30).

5. One dimensional model

In this section we describe some simplifying assumptionghvhllow to reduce the reaction-
diffusion system for the total dislocation densities, targgke one-dimensional equation for the
total edge density.

ASSUMPTIONS

(i) We assume that the geometrically necessary dislocdgosities vanish, i.e.,

&g =59 =0,
which implies thate; = e_, s; = s_ and thus, by (12)¢ only depends o1z, t) .
(i) Screw dislocations densities are assumed to vanigttichly, and the total edge disloca-

tion densitye is constant on each slip plane, so teatepends only ofiZ, t). Thuseis
the only non-vanishing dislocation density.

(iii) The resolved shear stresss assumed to be constant with respeatXot).
(iv) The constitutive relation for the slip resistance Haes form

t(e =¢o+cve

wheregg andc are positive constants. This relation is well known in theerials science

literature (cf. Livingston [4], Van Drunen and Saimoto [Staker and Holt [6]).
(V) We approximatesgn & for & # 0 by

1
lg|nsgna

with n large (viscoplastic regularization).

(vi) Assuming that the bodjg is an infinite layer between the plangs= 0 andZ = L, we

take natural boundary conditions for the microstress aatatto the total edge disloca-

tion density,
oe

7.0 9Z

ae

= =0
Y

Z=L
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5.1. A particular energy dislocation function

We further choose(e) in the form

1
(35) v(e) = e~ em)]?,

with e;y > 0 a constant. The functign(e) is non-convex and non-negative with a local minimum
ate = 0 ande = ey and a local maximum & = en/2.

5.2. The model

Assuming that the standard balance of momentum (31) isicglyt satisfied, the previous as-
sumptions reduce the general model to the following two gons

(36) t = (sgn@)la|Y (5o + cv/e),

and

37 é—g' & e(e 2)(e

(37) = Zlél | e155z —ee—em/DE—em) ).

Using (36), equation (37) becomes

S G LA Y S
(38) é= a(§0+cﬁ> (e azz—e(e—em/Z)(e—an)>,

supplemented by the natural boundary conditions discuabede. Equation (38), which is
the basic result of this work, is a non-linear partial diffietial equation which may be solved
numerically: a complete discussion of the behavior of tHatsms to (38) will be published

elsewhere.
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M. Braun

COMPATIBILITY CONDITIONS FOR DISCRETE
ELASTIC STRUCTURES

Abstract. The theory of plane, elastic trusses is reconsidered frenvigwpoint
of the continuum theory of elastic media. A main differeneé®en continuum
and discrete theories is the following: In the continuousecall quantities are
declared throughout the whole body, whereas in the discate each quantity
has its own “carrier”. In a truss, for instance, displaceta@md applied forces are
declared in the nodes while strain and stress live in the neesrdif the truss.

The paper deals with the proper formulation of compatipitionditions for a
truss. They are derived along the same lines as St.-Veramtipatibility condi-
tions of plane elasticity, i. e. by stipulating that Cessuintegrals are path inde-
pendent. Compatibility conditions can be formulated ahéacer node of a truss,
and they relate the strains of all members which constihgedsette surrounding
the inner node.

1. Continuous and discrete elastic systems

Continuum theories are usually developed from physicalatwthat are discrete in nature. A
continuous distribution of dislocations, for instance ulebhardly be conceivable, if we had not
a clear idea of aisolateddislocation. Even the notion of stress as a distributedeféoows
the example of a single force. Within the framework of a amntim theory, however, discrete
quantities appear as singularities and are formally lesgardent to handle than their continuous
counterparts.

By the process afiomogenizatioithe underlying discrete ideas are transformed into a con-
tinuum theory. The resulting partial differential equasodo not admit closed-form solutions,
in general. To solve them numericallydécretizationprocess is invoked, which approximates
the continuum by a discrete system. In this sense a contirthaory is squeezed between the
underlying discret@hysicalmodel and the discreteumericalapproximation.

The general structure of a physical theory should be pealtephdependently of the dis-
crete or continuum formulation. A balance equation, fotanse, has a genuine physical mean-
ing whether the model is continuous or discrete. The thebeydiscrete elastic structure, be it
a crystal lattice, a finite-element system or an elasticstraBould exhibit the same fundamen-
tal laws as continuum elasticity theory. The general fornthef fundamental equations can be
represented most suggestively by a so-calles T diagram [6, 7]. Figure 1 shows theoNTI
diagram of plane, linear elasticity theory. If we considegplane,discreteelastic system, we
should encounter the same physical laws, although in arrdiffierent formal garment.

This paper deals with the governing equations of planetielaasses with special empha-
size of the compatibility conditions, which are derivedrejadhe same lines asTSVENANT'’S
compatibility conditions of plane elasticity, i. e. by silpting that GSARO’s integrals are path

37



38 M. Braun

independent.

The theory of plane, elastic trusses is reconsidered fravigwpoint of the continuum
theory of elastic media. Mathematically a truss is congidesis an oriented 2-complex, on
which displacement, strain, etc. are defined. In contraitda@ontinuous body the mechanical
guantities in a truss are not available everywhere in the,begch quantity resides on its own
“carrier”: Displacements and applied forces are declangtié nodes while strain and stress live
in the members of the truss. It will be shown that the comjagitconditions are attached to
“rosettes”, 1. e. inner nodes that are completely surrodrmyetriangles of truss members.

To consider trusses from the point of view of elasticity tlyeis not at all new. KEIN
and WIEGHARDT [4] have presented such an exposition even in 1905, and &hgyn earlier
works of MAXWELL and GREMONA. Meanwhile, however, trusses have become more a subject
of structural mechanics and the more theoretical aspewts lteen banned from textbooks. As
an exception a manuscript bylbER [5] should be mentioned, in which the cross-relations
between electrical and mechanical frameworks are studigdsiat detail.

2. Trusses

Mechanically a truss is a system of elastiembergoint to each other in hinges aodeswithout
friction. The truss is loaded by forces acting on the noddsg on

The appropriate mathematical model of a truss is a 1-comgb@sisting of 0-simplexes
(nodes) and 1-simplexes (members), which are “properhyejdii [3]. The subsequent analysis
gives rise to two extensions of this model, namely (i) eachiyer is given an orientation, which

displacemen volume force
vector density
Eij = U, Tij,j+fi=0
¢
strain tensor —» Tij = AEkkdij + 2UEj] |<— stress tensor
i
U = €ikeji Eij ki Tij = €ikejlok

disclination
density

Airy’s stress
function

Figure 1: Tonti diagram of plane linear elasticity
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O-simplex: o 1-simplex: / 2-simplex: A
node member triangle

1-Complex Oriented 2-Complex

Figure 2: Plane truss as a geometric complex

may be prescribed arbitrarily, and (ii) the triangles oiirddexes formed by the members are
taken into account. Thus the mathematical model of a trusgténded to apriented 2-complex
(Figure 2). Only the non-oriented 1-complex is reproduaedardware while the imposed ori-
entation and the appended triangular patches are mere metibal constructs which facilitate
the formulation of the theory.

Subsequently nodes will be designated by Latin leitejs. . . while Greek letters, 8, ...
denote the members. The connectivity of the truss is destiy incidence numberfo, K],
which are defined as

—1 if membera starts at nodé,
[e, K] = +1 if memberae ends at nodé,
0 else.

The distinction between start and end point of a member gesvits orientation. The matrix of
all incidence numbers describes the topological struaifitbe truss.

The geometry may be specified by prescribing the positiomove&y of all nodes in the
unloaded, stress-free state of the truss. The edge vectomaimberx can then be represented
by

(€N ag =) o KXk,
k

where the summation index may run over all nodes, since ttidgnce numbers single out
the proper starting and terminating points, thus redudiggsum to a simple difference. The
decomposition

Ay = eozeoz
yields the lengttt, and the direction vecta, of a member.
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It has been tacitly assumed that there exists an unloadedsdtee state of the truss. In
continuum elasticity theory this corresponds to the assiompghat the unloaded elastic body
is free of initial stresses. In a more general setting onetdasart from the lengthg, of the
undeformed members rather than from a given initial placeérke— Xy of the nodes. This
approach within a nonlinear theory is indicated in [2].

3. Displacement and strain

When loads are applied to the truss, each rod displaced by a certain vectag from its
original position. Thestrain or relative elongatiors of a member due to displacements and
u» of its endpoints is
1
&= Ze' (U2 —uy),

if only linear terms are retained. Using again the incidemgmbers §, k] the straing,, of an
arbitrary membet can be represented by

2 fa = iea ) le Kug.
o K

As in (1) above, the incidence numbers single out the endsofiehe member and the sum
reduces to a simple difference.

Due to the nodal displacements each membandergoes also a rotatias,. Restriction
to linear approximation yields

1
o = € A > lo Klug .
“« k

where A denotes the outer product of two plane vectors. An approtatirgy from displace-
ments does not need these rotations explicitly, since tbayod enter the stress-strain relation.
However, if the displacements have to be reconstructed fymen strains, the rotations are
needed as well.

Figure 3: Elongation of a member Figure 4: Equilibrium
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4. Equilibrium condition

Once the strain of a memberis known, one obtains the transmitted force bgdke's law

(3 Fo = (EAwéq ,

where E A denotes the axial rigidity of the member, i. e. the producY ofuNG's modulus and
cross-sectional area.

At any nodei of the truss the applied external for& and the member forces acting on
that node must be in equilibrium (Figure 4). The force acteonuthe node by the memberis
—[a, 1]Fy€y. Thus the equilibrium condition can be formulated as

4 D leilFuey = P

o

The sum may be taken over all members of the truss, sincedtdeince numbers single out only
those which start or end at notde

Combining the equilibrium condition (4), the constituti¥guation (3), and the definition of
strain (2) yields the linear system of equations

33 [ailfa. K (%em) Uk = P
k « o

which is the discrete analogue ofaAMER’s equations. In structural analysis the matrix of this
system of equations would be called the global stiffnesgirmaft the truss. The three con-
stituents of MVIER’s equations can be arranged in aNTI diagram (Figure 5), which is still
incomplete, since the lower part with the compatibility didion and ARY's stress function is
missing.

nodal
' external
displacements ° nodal forces
1 .
sazz—ea'Z[Ohk]Uk > lo.i]Fa€ = P
o
k o

member member
strains e Fo = (EAa £a e forces

Figure 5: Tonti diagram (upper part) for an elastic truss
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5. Compatibility in plane elasticity

Before developing the compatibility conditions for a trugsshall first review the §-VENANT
compatibility condition of plane elasticity, which may bead as paradigm. Starting from a
positionxg with given displacement vector the whole displacement fielsito be reconstructed
from the strain fieldgj; = u, j). Integration along a curvé connectingxg with an arbitrary
positionx yields the displacement components in terms B6&R0’s integral,

(5) Ui (X) = U (X0)+/C(Eij + weij ) dx;j ,

whereejj denotes the two-dimensional permutation symbol. Theiostaé = %(uz,l —Up,2),
however, is still unknown and has to be reconstructed frasthain field too.

For the integral in (5) to be path independent the integraagdth satisfy the integrability
condition

(6) g = Ejj kekj —ki =0,

wherekj = wj denotes the rotation gradient structural curvature[1]. Geometrically this
means that the body is free of dislocations. On the other taadotation field itself can be
reconstructed by another integral,

(7) (X) = w(Xg) + /C ki dx; .
For this integral to be path-independent the integrabdagdition
(8) ¥ =Kkj jeji =0

has to be satisfied, which means that the body is free of daabins. Combining the two condi-
tions (6) and (8) yields the1S-VENANT compatibility condition

9) €ikejl Eij ki =0,

which stipulates that both the dislocation and the distilmedensities vanish.

The compatibility condition emerges from a two-stage pssand combines two indepen-
dent conditions. To unwrap this combination the geometit pf the TONTI diagram, Figure 1,
has to be extended to show all the details, see Figure 6.

6. Compatibility condition for a plane truss

The displacement differencgu between the terminating nodes of a single member can be re-
constructed from the strain and the rotationo of that member. According to Figure 7 one
obtains

(10) AU = ga + wd’,

where the vectoa is aligned with the member aral® denotes the vector obtained by rotation
through+s /2.

The role of the patiC in CESARO’s integrals is adopted by an oriented 1-chain of truss
members (Figure 9). A 1-chaithcan be specified by incidence numbers
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+1 if C containsx and has the same orientation,
[C,a] =1 —1 ifC containsx and has opposite orientation,
0 if C does not contain.

Extending (10) to an oriented 1-chairyields the rotation difference

(11) Aug =) [C. o](eq8q + wpa)).
o
This is the discrete analogue t&SARO's first integral (5).

displacement vector

u

()
N

1u E 1(u +Uuii)
W= U e Ty .
S Ui i€ ij = 5 Ui ji
rotation strain tensor

a = Eij kekj — ki

structural _0 dislocation
curvature a= density
o St. Venant’s
U= kl,] €ji S "
compatibility condition
i
% =0 disclination density

Figure 6: Geometry of continuous deformation
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The displacement difference (11) has to vanish for @ogedl-chain, or 1-cycleC. The
simplest nontrivial 1-cycle is a triangle formed by threembers. With the numbering and
orientation as provided in Figure 10 the closing conditionthis triangular 1-cycle reads

g1ag + wlaf + goay + wzaé\ + e3zaz + w33§ =0.

Scalar multiplication by one of the edge vectas,say, yields

1
w2 — W3 = (121 + epap +¢3a3) - @z,

where 2A = a; A ap = —aj A ag is twice the area of the triangle. From elementary geometric
considerations this can also be written as

(12) wy — w3 = (g1 — €2) COtag + (81 — €3) COtan,

where the angles of the undeformed triangle are denotedragune 10. Within each triangle the
rotation difference of two adjacent members can be compinted the strains in the members
of that triangle. This corresponds to the local integrébibndition (6) of the continuum theory,
which expresses the rotation gradient in terms of derigatof the local strain field.

The simplest 1-chain, for which a rotation difference candeéined, has length 2, it is
formed by two adjacent members (Figure 8). An extended Inaiay be decomposed into a
sequence of such elementary 1-chan$hus the rotation difference of an arbitrary 1-chain is

Awe = Z[C c]Awc
c

with appropriately defined incidence numbefs ¢]. Whereas the rotation differenc®wc is
defined for all paire of adjacent members, an explicit formula is available oifil{hese adja-
cent members are complemented by a third member to a clasedl&. Therefore, in order to
actually compute the rotation differeneavc between the first and the last member of a con-
nected 1-chai@, it has to be accompanied by an appropriate sequence dflegn. e. a 2-chain.
Also the original 1-chairf must be extended by certain detours along the edges of émglkeis
(Figure 11).

For any 1-cycleC the rotation differencé we has to vanish,

(13) dIC.dAwc =0 ifdC =4
C
Au
N’ — J—
o ] Aw = w2 — w1
g w1

w2

/ /

Figure 7: Single member Figure 8: Two members
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Figure 9: Oriented 1-chain Figure 10: Triangle

Figure 11: Chain of triangles Figure 12: Rosette

The shortest nontrivial 1-cycles are those surroundingnaeri node of the truss (Figure 12).
For each of these rosette-like substructures we can fotenala appropriate condition, which
corresponds to the integrability condition (8) in the contim case.

The closing condition for a rosette contains the differensec of successive members.
By use of (12) these can be expressed in the strains of the ererabthe corresponding trian-
gles. Using the numbering of members and angles indicatEdyure 12 one arrives at a single
condition of the form

n n

(14) ) (cotepi_p2i—1 + COtazi_12i)ezi—1 = »_(COtarzi_1,2i + COtergi 2i+1)e2i -
=1 mod 2h i=1 mod 2h
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2n—2

Figure 13: Regular rosette Figure 14: Quadratic rosette

This is the analogue of 1I5-VENANT’s compatibility condition for a truss. It is obtained by
combining the closing condition (13) for the rotations arda rosette with the closing condition
(12) for the displacements around a triangle. For the trug®tstress-free in its unloaded state
the condition (14) is necessary but not sufficient, in genéfdahe 2-complex does not contain
any holes, the condition is also sufficient. The compatibitonditions are closely connected
with the extended model of the truss as an oriented 2-comalthough the 2-simplexes are not
material parts of the truss.

In the special case of a regular rosette (Figure 13) all tigéeany; i1 are equal and cancel
out. Thus the compatibility condition reduces to

n n
Yoea1=) ¢
i=1 i=1

The sum of the circumferential strains must be equal to thedithe radial strains. The general
compatibility condition (14) has a similar structure, witie strains being affected by certain
geometrical weight factors. For a quadratic rosette thepadifility condition reads

e1tez3téegt+er=¢e2+¢e4+¢€p+¢€8.

This equation can be interpreted as a discretizationTof\BENANT’S compatibility condition

(9).
7. Conclusion

The general structure of elasticity theory is not confinetthéocontinuum version, but holds also
for discrete elastic systems such as trusses or finite-atameadels. A remarkable difference be-
tween the theories of plane trusses and of elastic contstieifact that in the continuous case
all quantities are declared throughout the whole body, ed®in the discrete case of the truss
each quantity has its own “carrier”: Displacements areated in the nodes, strain and rota-
tion are available in the members, rotation differenceslpeédrs of members, and compatibility
conditions can be formulated for “rosettes”, 1. e. innerewthat are completely surrounded by
triangles of truss members. In this sense the continuunryhemuld be regarded as “easier”,
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since all quantities are defined in each material point. Aeldook shows, however, that the
continuum theory can also provide different carriers féfiedent quantities. This becomes mani-
fest, if the mechanical quantities are described in terntiffefrential forms rather than ordinary
field functions®*

The compatibility condition for a truss have been developsidg the same ideas as in the
continuum. It rests upon the postulation that displacenaendtrotation can be represented by
path-independenintegrals or, in the discrete case, by path-independeeffitns. To generate
localizedintegrability conditions in a continuum the integral ardunclosed path is transformed
via STOKES’s theorem into a surface integral, which must vanish ideily. In the truss case
the local conditions are obtained by choosing the smallestrivial closed paths or 1-cycles,
namely triangles for the displacements and rosettes famtiagions.

The theory of trusses can be developed further and exterided these lines. The com-
patibility condition should be complemented by its duak tiepresentation of member forces
by AIRY’s stress function. This quantity has the same carrier asdhepatibility condition,
i.e., it resides in the rosettes surrounding inner nodesetruss. The generalization to three
dimensions is more intricate, especially with respect ® ¢losing condition for the rotation
vector.

Quite interesting is the appropriate treatment of framestes, with members rigidly clamped
to each other. A frame truss allows forcasd couplego be applied to the nodes, and its mem-
bers deform under extensiobending andtorsion In this case the corresponding continuum
theory has to include couple stresses. It might be intergsti compare the common features of
continuous and discrete couple-stress theories.

Also a nonlinear theory of trusses can be formulated fronptiradigm of nonlinear elas-
ticity theory. The concept of differemtlacementss easily transferred to a truss, and also the
ESHELBY stress tensor has its counterpart in the discrete case. tAafiesnpt in this direction
has been made by the author in [2].
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POLYCRYSTALLINE MICROSTRUCTURE

Abstract. Polycrystals are often modelled as Cosserat continua, rjrstatio-
graphic directions within single crystals being represdrtrough elements of
SO(3). To address the problem of an overall representation of ycpgaitalline
aggregate, following the example of nematics, one may ehansppropriate em-
bedding ofSO(3) in a linear space. Some possibilities are explored and aesugg
tion is made for such a choice.

1. Introduction

1.1. Orientation distribution in polycrystals

A polycrystal is a material body the elements of which cospeach a population of ‘specks’
having the structure of a single perfect crystal. In the $@stpinstance all such crystallites
are of the same kind, i.e., any two of them can be superpogedgh a rigid displacement.
Thus a reference crystallite can be chosen and a latticetatien function can be assigned to
describe the polycrystal’'s substructure. This approadieisdard in metallurgical analyses and
the problem of determining the orientation function is afustrial import.

The sketch above pertains to a particular range of observatiales. Actually no lattice
at all can be defined within dislocations cores, while, olisgrmetals at low temperature and
at a scale significantly larger than the average disloca@ting, a grain pattern appears. The
lattice orientation function is constant on regions of &niblume (the bulk of grains) and jumps
across their boundaries.

When observations at a scale much larger than the largastsijza are involved no account
is taken of grain shapes and the polycrystal is describeglgithrough an orientation distribu-
tion function on the basis of probabilistic assumptionse Tibed arises for a global description
through a distribution of lattice orientations.

Thus when computations at a scale much larger than the tayges size are involved, one
may wish to consider body elements which include many husdcé grains and are charac-
terised by a whole distribution of lattice orientations.eTduestion arises as to the constitutive
nature of the interactions between neighbouring body efésné seems reasonable to start by
assuming that these interactions depend on the first morh#re distribution and thus on some
‘average’ orientation of the crystals within the materignaeents, and that these averages evolve
according to general rules described by multifield theorggereas evolutions of the orientation
distribution function deep within the element be describedhe basis of a multivariable theory
(cf. [4,5,7, 8,18]).

*We thank our friend Fulvio Lazzeri for useful suggestionshisTresearch is part of the programme
“Modelli Matematici per la Scienza dei Materiali” of the lign Ministero dell’Universita e della Ricerca
Scientifica e Tecnologica.
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In the case of polycrystals the manifoltt of ‘deep’ states)'éspace profondof [7], is
a subset ofSO(3) (symmetry arguments may make! a proper subgroup df O(3)) and, at
each pointx € &£, M is endowed with the structure of a probability space, so ¢élaahu <
M is a random variable with probability density, sgy(the orientation distribution function).
Assuming that self-effects be weakly non-localin, in the sense of [14], evolution equations
of general type can be found for, whereas interactions among neighbourg iaccur through
some kind of average ove¥1 based ory.

To achieve that average a device, simple to use, could bd&edvoWhitney's theorem
affirms that a linear spac§, of dimension 2n + 1, exists within which the manifold\, of
dimensionm, can be embedded. The embedding is not unique and thereexreases where
the embedding is feasible in a linear space of dimensionrahan 2n + 1 (e.g.,SO(3), of
dimension 3, can be embedded in a 5-dimensional linear spogvever the essential point is
thatS exists and, in it, averages can be evaluated in a straigiafdrmanner; they fall, generally,
outside the imagé of M in S, and fill altogether the convex hult of that image. Withirf{
complete disorder is represented by the average of a unidetmibution onM.

1.2. General remarks on continuum models

The possible teaming up, for certain tasks, of a multifield amultivariable theory has led one
of us to advance the remarks which follow [16]; we recall theene because they are strictly
relevant and give to our present proposal a very generahgett

Multifield theories are based on the classical space-fimg . Fieldsv : Ex7 — N (N a
manifold of ‘substructures’) enrich the ‘natural’ clasdiescription which invokes only bijections
£ — & at each instant. Interactions between elements are suppo$@ve short range ié a
la Cauchy though the nature of these interactions depends now, hijtydaeguments, on the
greater kinematic richness of the model.

Multivariable theories start from a wider representatidnpbysical space, obtained by
adding to standard placementséna setM of ‘deep’ placementg.. Interactions range now
between neighbours ifi x M, but the duality is usually narrow. These theories take tm-c
ponentsu® of 1 as extra independent variables beside the place vanafaled time if the case
requires). They introduce a distribution functipn(i, X) such thaty (u, X) du measures the
fraction of fragments of the element athaving a value of the substructure falling within the
interval (i, u +dp).

In some current research contributions it is assumed thablution ofy is totally dictated
by the internal state of each element and related to gragiietihe variable in a sort of weakly
nonlocal (onM) mode. Within the element spatial distances do not coungéreds it is easy to
believe that two fragments with slightly different valueisioinfluence one another more than
two fragments whose values are, in some measure, disteggpéctive of the exact location
of the two fragments within the element. The assumption abartusively internal dependence
may be sometimes a limiting factor, but this is not so criticgome problems for polycrystalline
solids where interelement effects due to spatial grademetenodest, or occur mainly through the
agency of macrostress; contrariwise, when studying nemsatid hyperfluids [10], one perceives
easily the depth of influence of certain constraining boupndanditions.

One way to fix the loophole: find somehow an average valye ofer each element and
imagine such average influenced by the averages in neighigoelements in the same way as
happens in less deep theories where all fragments in an etdesal to the same value of the
substructural variable. Perhaps extract some ‘frame’ okdgpaund from the averages and, if ob-
jectivity commands, describe the internal distributipnand their internal evolution against that
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background. Judicious steps are always required to ara@per and significant definition of
average. Previous embedding of the maniféitiin a linear space of higher dimension is al-

ways possible (in dimensiom2t+1, by the already quoted theorem of Whitney); then calouati
of averages is straightforward.

Actually reference ton, as a hypersurface ifi, rather then to the intrinsic manifoldH, if
managed with care, makes many developments easier; congiagly S may take the place of
N, again if prudence is exercised to avoid breaches of objgctknown concepts and relations
may be imported with advantage from available multifielcbtfies.

Thus, for our present task, the matter of embed®@3) in a linear space is an essential
prerequisite and becomes the core of our developments. Vi® tha way and make it even
more evident, we pause to consider first the simpler, andrirar@ady well established, case of
nematic liquid crystals.

2. The example of nematics

In the theory of nematic liquid crystal$1 is the manifold of directions, hence of dimension 2.
Whitney’s embedding can be realised in a linear space ofmina 5. Each direction is put first
into one-to-one correspondence with the tems@rn — %I , Wheren is any one of the two unit
vectors having the required direction ahds the identity. All those tensors belong to the linear
space (with dimension 5) of the symmetric traceless tensors of them, sayN, will be the
average when the element contains molecules with varyiggedeof orientation. The principal
axes ofN provide the frame upon which details regarding the distidvuof orientations can be
assigned. Still, already the eigenvaluedNof %I , call thema; determine two parameters which
describe essential traits of the distribution: the degrfgeralation s (called also, by Ericksen,

degree of orientation) i[u—%, 1]:

3 1/3
1
i=1
and the degree of triaxiality in [d]
3 1/3
B = 31/21/3 l_[ (ki - ki+1)
i=1

Perfect ordering corresponds to the valses 1, 8 = 0; ‘melting’ of the liquid crystal occurs
when both parameters vanish.

Many problems have been solved satisfactorily usi@s a substructural variable and
writing for it an appropriate evolution equation which ihwes the gradient ol in physical
space (for a partial analysis in this direction see [2] arft];[& fuller study is in a forthcoming
paper by Biscari and Capriz).

However, if the details of the distribution of directiopgn) become relevant for specific
problems, then the following further steps must be takeneyaiution equation foy must be
proposed, expressing its ‘conservation’ (the totajafver ' must always equal to 1); here a
suggestion of Muschik [3, 17] may be accepted though modsfeas to admit also an influence
ony of N and of the gross displacement gradiént
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Ultimately one comes to the equation

0 . X . .
L+ divn () + (gradyy) - N + (grade ) - F =0,

where gradients enter along the manifolti$ and /. Actually if n ® n, rather tham, had
been chosen as a variable, thenpdwwould have been substituted by the appropriate surface
divergence alongv{ in S.

The balance equation above, exhaustive though it be in yegial cases, must be sup-
plemented in general by a ‘deep’ balance equation, whichtatics, may express a minimality
condition for the energy connected with a certain choice’@fl) and of its gradient on\.
Alternatively, there may be steady states of deformatiog. @ shearing) dominated by some
sort of viscous action which must be itself balanced (forahity developments in the theory of
polycrystals see [4, 6, 7, 9]).

3. Embedding of SO(3) in R®

The so called ‘easy Whitney embedding theorem’ (cfr. [19P)ves thatSO(3) can, as any
compact (Hausdorf€", 2 < r < o) three dimensional manifold, be embeddedrify though
embeddings into linear spaces of smaller dimension may &silge.

It has been proved th&O(3) cannot be embedded inf* (cfr. [11]), while an embedding
into R® is known. The latter result can be shown through a chain éémifitiable inclusions:
SO(3) can be included int&? x $? associating with each element of the orthogonal matrix any
two column vectors of it:

1 @D B3

[ e SRS
1

0(21) 0(22) cf) €SO3 — (P, c?@) e ?x ?
1) (@) ®)

GG G G

One of the two unit 2-sphere® can be included into J0+oco x R2:
@ e &c? +¢ £, £c?)) €]0, +oo[ xR2,
with 0 < £ < ¢; then
2 x (0, +oo[ xR?) = (S?x]0, +-00[) x RZ ~ (R3 — {0}) x RZ  RS.
Notice thatS?x]0, +o0[ is diffeomorphic toR3 — {0} as it can be shown, e.g., choosing coordi-
nates(?, ¢) on S? and taking the corresponding polar coordinaés = (sing cosv, sing sin®,
cosp) onRR3 — {0}:
@, ¢, p) € S?x]0, +00[— (p Sing cos?, p sing sind, p cosp) € RS — (0} .

We thus have the embedding:
[¢"] e so@)

P Ec? + 0, @ + o). P + o). 66 5¢P) e RS
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It can be shown that the conditiofis® || = 1 and||c® || = 1, and the conditios™.c(® =
0 correspond respectively to the equations (R>):

@) (X112 = £2 = ¢2)2 + 4:2(x2 + x2) = 46%¢2,
x1(IX[12 — &2 — £2) + 2¢ (XpX4 + X3X5) = 0.

4. Embedding a subgroup ofSO(3) into Syny

The embedding recalled in Sect. 3 from texts in differergmetry does not appear to have
intrinsic character required on principle for its use in gbal theory; the appropriate alter-
native is the introduction of a symmetric tensor of a spediass to denote a particular lattice
orientation.

We must emphasise, however, at the outset that applicatitre aheorem to our physical
context will be legitimate only when a set of three mutualfthogonal directions (no arrow!),
each endowed with a different characteristic length, ehésing an immediate physical signif-
icance in the description of crystallites (e.g. the edgethefelementary cell if the crystalline
system is orthorombic). Caim® |i e {1,2, 31}, ImP| < Im@ | < Im®|, the vectors rep-
resenting a crystallite, their sign being immaterial to piwysical description of the crystallite,

normalized to make
3

dm)2=1.
i=1
A polycrystal is a cluster of such crystallites, each unigugentified through the proper
orthogonal tenso@ giving the rotation from a set of reference unit vectw®d)} to the crystal-
lite’s unit vectors{m®@ /|m ||} modulus rotations ofr about anyc"; call M c SO(3) the
subgroup of such rotations.

Now let us define the following map from the same set of criistalto the linear space of
symmetric tensors

3
sqmp = mV em®;
i=1
forall (m}itis rS=1, r? = Y2, (m")*4 and des = [T>_;(m®)2.
There is a one to one differentiable map between the set sefalliyes and the elements of
Symwhich verify the conditions listed above; in particular aepsorS verifying these condi-

tions has three distinct eigenvalues(i))z, with the corresponding eigenvectors parallel to the
vectorsm{). The spectral decomposition of such a tenSis thus

s(m®) = QD?QT,
whereD is the diagonal matrix
Im®y 0 0
D:= 0 Im@ 0 .
0 o Im®y

Therefore

3 3
M =~ {Se Sym| rS=1, rs? = Z(m('))4, detS = H(m('))z} ,
i=1 i=1
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and one can suggest the embedding in the affine space:
M<— S§={SeSym| trS=1} .
REMARK 1. Chosen any reference the general elemestisfrepresented by

X1 Xg X4
S=| X5 X2 X3 ,
X4 X3 1l—X1—Xp

i.e., by a mappings — R°. The conditions &2 = >3 (m")* and dets = [T2_;(m1)2,
can be written in coordinates (cfr. equations (1)):

IXI12 4+ %2 — xq — Xp + 1= 33 (mD)4, |
(XX — X2) (1 — X1 — Xp) — X1 X3 — XpX3 + 2XgXaxg = [[2_1(m()2,

representing the imag#f of M in S.

5. Conclusion

A distribution of orthorhombic crystals can be represerkedugh the mean orientation defined
as:

é:=/ y(Q)S(Q) d(SO3)).
SO3)

If the distribution is one of perfect order, with all crystairiented as som@, thenS = S(@)
has three distinct eigenvalues and the corresponding\egens represent the axes of the crys-
tallite. Contrariwise, if the disorder is complete, th&is spherical and no preferred axis can be
assigned to the average representation of the distribafiorystals. Intermediate conditions are
clearly possible, with the axial optical properties of tlygi@egate corresponding to the number
of distinct eigenvalues d§.

We have thus taken the first essential step for a convenietrafi®f a polycrystal, a step
which opens the way for a rigourous connection between #arytof continua with microstruc-
ture as displayed in [13] and the theory of ‘deep’ space megdan [4] with direct metallurgical
applications in mind.
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A FRACTIONAL CALCULUS APPROACH TO THE
MECHANICS OF FRACTAL MEDIA

Abstract. Based on the experimental observation of the size effecte@struc-

tural behavior of heterogeneous material specimens, #lotalrfeatures of the mi-
crostructure of such materials is rationally described céime fractal geometry
of the microstructure is set, we can define the quantitiesacierizing the failure

process of a disordered material (i.e. a fractal medium)es€hguantities show
anomalous (non integer) physical dimensions. Our anabjtisvs a global ex-

planation of the size effects affecting the cohesive lagy, the constitutive law
describing the tensile failure of heterogeneous materidisreover, a fractal co-
hesive law which is a material property is put forward andvétkdity is checked

by some experimental data. Then we propose new mathemafieshtors from

fractional calculus to handle the fractal quantities prasly introduced. In this
way, the static and kinematic (fractional) differentiauations of the model are
pointed out. These equations form the basis of the mechahfcactal media. In

this framework, the principle of virtual work is also obtath

1. Introduction

In solid mechanics, with the tersize effectve mean the dependence of one or more material
parameters on the size of the structure made by that matdriabther words, we speak of
size effect when geometrically similar structures showffent structural behavior. The first
observations about size effect in solid mechanics date backalileo. For instance, in his
“Discorsi e dimostrazioni matematiche intorno a due nu@ierze attenenti alla meccanica e i
movimenti locali” (1638), he observed that the bones of $ar@mals are more slender than the
bones of big animals. In fact, increasing the size, the gi@fithe load prevails on the growth of
the strength, since the first increases with the bulk, therlatith the area of the fracture surface.
In the last century, fracture mechanics allowed a deepéhh the size effect phenomenon.
Nowadays, the most used model to describe damage locatiziatimaterials with disordered
microstructure (also called quasi-brittle materials)hs ¢ohesive crack modeintroduced by
Hillerborg et al. [1].

According to Hillerborg’s model, the material is charated by a stress-strain relationship
(o-¢), valid for the undamaged zones, and by a stress-crack rgpelisplacement relationship
(o-w, the cohesive law), describing how the stress decreasestsanaximum value, to zero
as the distance between the crack lips increases from z¢he twitical displacementc. The
area below the cohesive law represents the enggggpent to create the unit crack surface. The
cohesive crack model is able to simulate tests where higlsstradients are present, e.g. tests

*Support by the EC-TMR contractNERBFMRXCT 960062 is gratefully acknowledged by the authors
Thanks are also due to the Italian Ministry of University d&ekearch (MURST).
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on pre-notched specimens; in particular, it captures thatildebrittle transition occurring by
increasing the structural size. On the other hand, releseaie effects are encountered also
in uniaxial tensile tests on dog-bone shaped specimens|,[2&re smaller stress gradients
are present. In this case size effects, which should beb@stto the material rather than to the
stress-intensification, can not be predicted by the cobesack model. In the following section,
a scale-independent damage model is proposed which ovesctiva drawbacks of the original
cohesive model, assuming that damage occurs within a baadkvitiis spread in a fractal way.
The fractal nature of the damage process allows us to exiilaisize effects on tensile strength,
fracture energy and critical displacement and, partitylahe rising of the cohesive law tail
observed in [3].

2. Damage mechanics of materials with heterogeneous mictascture

Let us start our investigation about materials with discedemicrostructures analyzing the size
effect on their tensile strength. Recent experimentali®about porous concrete microstructure
[4] led us to believe that a consistent modelling of damagmircrete can be achieved by assum-
ing that the rarefied resisting sections in correspondehteeccritical load can be represented
by stochastic lacunar fractal sets with dimension 8, (d, > 0). From fractal geometry, we
know that the area of lacunar sets is scale-dependent agsltienero as the resolution increases.
Finite measures can be obtained only with non-integertdfadimensions. For the sake of sim-
plicity, let us represent the specimen cross-section agmi8ski carpet built on the square of
sideb (fig. 1a). The fractal dimension of this planar domain is 3.8 = 0.107). The assump-
tion of Euclidean domain characterizing the classical iooitm theory states that the maximum
load F is given by the product of the strengtfy times the nominal areAg = b2, whereas, in
our model,F equals the product of the Hausdorff measAie= b2~ of the Sierpinski carpet
times thefractal tensile strengtlo} [5]:

1) F =ouAg = o A*

whereo;* presents the anomalous physical dimensidrigl[] —(2—%).
The fractal tensile strength is the true material consiamt, it is scale-invariant. From egn (1)
we obtain the scaling law for tensile strength:

2) ou=o} b0

i.e. a power law with negative exponert,. Egn (2) represents the negative size effect on
tensile strength, experimentally revealed by severalasattfExperimental and theoretical results
allow us to affirm thatl, can vary between the lower limit 0 - canonical dimensionssfpand
absence of size effect on tensile strength - and the upp#rllja - o} with the dimensions of a
stress-intensity factor and maximum size effect on terssikngth (as in the case of LEFM).
Turning now our attention from a single cross-section tovthele damage zone, it can be
noticed that damage is not localized onto a single sectidistapread over a finite band where
the damage distribution often presents fractal patterrigs iE quite common in material sci-
ence. For instance, in some metals, the so-called slig-tlegelop with typical fractal patterns.
Also fractal crack networks develop in dry clay or in old gaigs under tensile stresses due to
shrinkage. Thus, as representative of the damaged bansideomow the simplest structure, a
bar subjected to tension, where, at the maximum load, diiatrain tends to concentrate into
different softening regions, while the rest of the body ugdes elastic unloading. If, for the
sake of simplicity, we assume that strain is localized omgs®-sections whose projections on
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y Jf (a)

Figure 1: Fractal localization: of the stress (a), of thaist(b), of the energy dissipa-
tion (c).

the longitudinal axis are provided by a Cantor set, the disgrhent function at rupture can be
represented (fig. 1b) by a Cantor staircase graph (sometiaties! devil's staircase). The strain
defined in the classical manner is meaningless in the singuolats, as it tends to diverge. This
drawback can be overcome introducing a fractal strain. Letll = 0.6391 be, for instance, the
fractal dimension of the lacunar projection of the damagetdiens (I > 0). According to the
fractal measure of the damage line projection, the totalgdtion of the band at rupture must be
given by the product of the Hausdorff meashft—d) of the Cantor set times tHeactal critical
strain ¢, while in the classical continuum theory it equals the pataif the lengthb times the
critical strainec:

3) we = ech = b1~

whereed has the anomalous physical dimensidfi%. The fractal critical strain is the true
material constant, i.e., it is the only scale-invariantgpageter governing the kinematics of the
fractal band. On the other hand, equation (3) states thattlang of the critical displacement is
described by a power law with positive exponertd,. The fractional exponemt; is intimately
related to the degree of disorder in the mesoscopic damagess. Wher, varies from 0
to 1, the kinematical control parametef moves from the canonical critical straig — [L]9
— to the critical crack opening displacemang — [L]1. Therefore, wherd, = 0 (diffused
damage, ductile behavior), one obtains the classical rsgpa.e. collapse governed by the strain
ec, independently of the bar length. In this case, continuumalge mechanics holds, and the
critical displacementuc is subjected to the maximum size effeatc(~ b). On the other hand,
whend; = 1 (localization of damage onto a single section, brittleawédr) fracture mechanics
holds and the collapse is governed by the critical displasgmc, which is size-independent as
in the cohesive model.

For what concerns the size effect upon the third parametmacterizing the cohesive law,
i.e. the fracture energgg, several experimental investigations have shown ¢aincreases
with the size of the specimen. This behavior can be explayeaissuming that, after the peak
load, the energy is dissipated inside the damage band,viee.tbe infinite lacunar sections
where softening takes place (fig. 1a,b). Generalizing éops(2) and (3) to the whole softening
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regime, we getr = o*b~% andw = ¢*b1-%). These relationships can be considered as
changes of variables and applied to the integral definitidhefracture energy:

W ¥
Q) OF = /0 ot = bt~ /0 " o*de* = ggbl-d—d

Equation (4) highlights the effect of the structural sizelmfracture energy. On the other hand,
since (fig. 1c) the damage process takes place over an ieviaaotal domainA* (different from
the lacunar one of equation (1)) with a dimens{@n+ dg) larger than 2dg > 0), we can also
affirm that the total energy expendit/é is equal to [4]:

W = Gp Ag = GEA*

whereGg is called thefractal fracture energyand presents the anomalous physical dimensions

[FL][L]~@+99) and, as well as;* ande, it is scale-independent. Sindg = b? and A* =
b2*+dg | the value ofg is linked to the values af; andd,:

®) da+da+dg=1

where all the exponents are positive. Whilecan get all the values inside the interval 10, d,
anddg tend to be comprised between 0 and 1/2 (brownian disordenation (5) states a strict
restriction to the maximum degree of disorder, confirmirgf the sum ofl, anddg is always
lower than 1, as previously asserted by Carpinteri througtedsional analysis arguments [5].

o o*
(a) (b)
Oyl-—-ooo_ oy

8(;*

Figure 2: Fractal cohesive model.

It is interesting to note how, from equation (4), the fradtatture energyyf can be ob-
tained as the area below the softening fractal stressagtiagram (fig. 2b). During the softening
regime, i.e. when dissipation occutst decreases from the maximum vale§ to O, while&*
grows from O tae{. In the meantime, the non-damaged parts of the bar undeagticelinloading
(fig. 2a). We call ther*-¢* diagram the scale-independentfractal cohesive law Contrarily
to the classical cohesive law, which is experimentally gmesto the structural size, this curve
should be an exclusive property of the material since it is tbcapture the fractal nature of the
damage process.

Recently, van Mier et al. [3] accurately performed tenséists on dog-bone shaped con-
crete specimens over a wide scale range (1:32). They pltiteedohesive law for specimens
of different sizes and found that, increasing the specinen the peak of the curve decreases
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whereas the tail rises. More in detail¢ increases more rapidly thaiy decreases, since, in the
meantime, an increase of the area below the cohesive lawf tlee fracture energy, is observed.
Thus, the fractal model consistently confirms the expertaiérends oy, G, we.

The model has been applied to the data obtained by Carpgnteziro [2, 6] for tensile tests
on dog-bone shaped concrete specimens (fig. 3a) of varires snder fixed boundary condi-
tions. They interpreted the size effects on the tensilengtreand the fracture energy by fractal
geometry. Fitting the experimental results, they foundvhleesd, = 0.14 anddg = 0.38.
Some of thes-¢ and theo-w diagrams are reported in fig. 3b,c, whesds the displacement
localized in the damage band, obtained by subtracting, freotal one, the displacement due
to elastic and anelastic pre-peak deformation. Equatipgi€sdsd, = 0.48, so that the fractal
cohesive laws can be represented in fig. 3d. As expectetigatiirves related to the single sizes
tend to merge in a unique, scale-independent cohesive laavoiferlapping of the cohesive laws
for the different sizes proves the soundness of the frapialaach in the interpretation of the
size effects in concrete.
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Figure 3: Tensile tests over dog-bone shaped concretenseesi(a): stress versus
strain plots (b), cohesive laws (c), fractal cohesive lay (d

3. Fractional calculus, local fractional calculus and frat¢al functions

The main characteristic of fractals is their irregularitiepall the length scales. This irregularity
is the reason of the non-integer dimensions of fractal setsunfortunately, it makes them very
difficult to handle analytically since the usual calculusniadequate to describe such structures
and processes. Fractals are too irregular to have any srddfettentiable function defined on
them. Fractal functions do not possess first order der@ativany point. Therefore it is argued
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that a new calculus should be developed which includessitidlly a fractal structure [7]. Re-
cently, Kolwankar [8], based on fractional calculus, dedimew mathematical operators - the
local fractional derivative and the fractal integral - thapear to be useful in the description of
fractal processes. It is important to emphasize that, wémms to be really interesting in study-
ing fractals via fractional calculus, are the non-integkysical dimensions that arise dealing
with both fractional operators and fractal sets. Physic#iiis means to find the same scaling
laws both from an analytic and a geometric point of view.

Let’s start our analysis from the classical fractional ahls. While classical calculus treats
integrals and derivatives of integer order, fractionatuohls is the branch of mathematics that
deals with the generalization of integrals and derivatizeall real (and even complex) orders.
There are various definitions of fractional differintegoglerators not necessarily equivalent to
each other. A complete list of these definitions can be fourttié fractional calculus treatises
[9, 10, 11, 12]. These definitions have different origin. Thest frequently used definition of a
fractional integral of ordeq (q > 0) is the Riemann-Liouville definition, which is a straigttf
ward generalization to non-integer values of Cauchy foenfiol repeated integration:
®) d f(x)ﬁ _ 1 f(y)l_ dy

[dx—a)]=9 T'(@ Ja (x—yl-d
From this formula, it appears logical to define the fractlaeivative of ordem —1 < q < n
(ninteger) as tha-th integer derivative of thén — g)-th fractional integral:

dd f (x) 1 dan /‘X f(y)

0 [dx—a]d  Th-qd" Ja (x—ydti-n

Once these definitions are given, it is natural to write défeial equations in terms of such
quantities. In the last decade, many fractional diffeareguations have been proposed. They
include relaxation equations, wave equations, diffusignagions, etc [13]. In these general-
izations, one replaces the usual integer order time derdsaby fractional ones. In such way,
by varying the order of derivation, it is possible to obtaioamtinuous transition between com-
pletely different models of the mathematical physics. Qfrse, wher is not a positive integer,
the fractional derivative (7) is a non-local operator siitc®pends on the lower integration limit
a. The chain rule, Leibniz rule, composition law and otherpgemies have been studied for
the fractional derivatives [9]. Looking for a link betweemdtional calculus and fractals, it is
worthwhile to cite the following scaling property (far= 0):

d9f(bx) b dd  (bx)
[dx9 7 [d(bx)]d

It means that the fractional differintegral operators antgjected to the same scaling power laws
the quantities defined on fractal domains are subjected tweing the fractal dimension). For
the scaling property in the case# 0, see [9].

More recently, another important result has been achiesaderning the maximum order
of fractional differentiability for non-classical diffentiable functions. Let us explain this prop-
erty for two kinds of functions: the Weierstrass functioml &me Cantor staircase. The first one is
continuous but nowhere differentiable. The singularifiesslocally characterized by the Holder
exponent, which is everywhere constant and equal to a nerdédile 0< s < 1. It is possible
to prove that the graph of this function is fractal with a lmunting dimension equal to2 s
and hence greater than 1. Although fractal, the Weierstuassion admits continuous fractional
derivatives of order lower thasm Hence, there is a direct relationship between the fraatatd-
sion of the graph and the maximum order of differentiahilitye greater the fractal dimension,
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the lower the differentiability. We have already encouaten Cantor staircase in Section 2.
This kind of functions (fig. 1b) can be obtained [14] as thegnal of a constant mass density
upon a lacunar fractal set belonging to the intervall]0 The result is a monotonic function that
grows on a fractal support; elsewhere it is constant. Thé'sletaircases are not fractal since
they present a finite length; on the other hand, they have fanitthnumber of singular points
characterized by a Holder exponent equal to the fractaédsion of the support. Schellnhuber
& Seyler [15] proved that the Cantor staircases admit cootiis fractional derivatives of order
lower than the fractal dimension of the set where they grow.

From a physical point of view, some efforts have been speapply space fractional dif-
ferential equations to the study of phenomena involvingtétadistributions in space. Here we
can quote Giona & Roman [16], who proposed a fractional éguab describe diffusion on
fractals, and Nonnenmacher [17], who showed that a clas®wf kype processes satisfies an
integral equation of fractional order. This order is alse fitactal dimension of the set visited by
a random walker whose jump size distribution follows theegiv.évy distribution.

Recently, a new notion callddcal fractional derivative(LFD) has been introduced with
the motivation of studying the local properties of fractalistures and processes [18]. The LFD
definition is obtained from (7) introducing two “correct&lnin order to avoid some physically
undesirable features of the classical definition. In fécme wishes to analyze the local behavior
of a function, both the dependence on the lower lianénd the fact that adding a constant to
a function yields to a different fractional derivative shibbe avoided. This can be obtained
subtracting from the function the value of the function a goint where we want to study the
local scaling property and choosing as the lower limit tr@npitself. Therefore, restricting our
discussion to an order comprised between 0 and 1, the LFD is defined as the following |
(if it exists and is finite):

q —
qu(y)zx"m M 0<g<1

-y [dx-y]d

In [18] it has been shown that the Weierstrass function iallpdractionally differentiable
up to a critical orderr between 0 and 1. More precisely, the LFD is zero if the ordéovier
thana, does not exist if greater, while exists and is finite onlygéial toe. Thus the LFD shows
a behavior analogous to the Hausdorff measure of a fradtaFsghermore, the critical order is
strictly linked to the fractal properties of the functiosetf. In fact, Kolwankar & Gangal [18]
showed that the critical order is equivalent to the localddd exponent (which depends, as we
have seen, on the fractal dimension), by proving the folhgntocal fractional Taylor expansion
of the functionf (x) of orderq < 1 (forq > 1, see [19, 20]) fox — y:

DYf (y) q
® f(X)—f(y)+r(q+1)(x YT+ Rg(x —y)
where Ry(x — y) is a remainder, negligible if compared with the other teriost us observe
that the terms in the right hand side of equations (8) areriviadtand finite only ifq is equal
to the critical orderx. Moreover, forq = «, the fractional Taylor expansion (8) gives us the
geometrical interpretation of the LFD. Whepis set equal to unity, one obtains from (8) the
equation of a tangent. All the curves passing through theespoint y with the same first
derivative have the same tangent. Analogously, all theezuwith the same critical orderand
the sameD® form an equivalence class modeled>$Yy. This is how it is possible to generalize
the geometric interpretation of derivatives in terms ohtjants”.

The solution of the simple differential equatiorf @lix = 1jo x] gives the length of the
interval [0, x]. The solution is nothing but the integral of the unit fulcti Wishing to extend
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this idea to the computation of the measure of fractal setan be seen immediately that the
fractional integral (6) does not work as it fails to be additbecause of its non-trivial kernel. On
the other hand, Kolwankar [21] proved that a fractional rmeasf a fractal set can be obtained
through the inverse of the LFD defined as:

a—« Ly, (X)

N—1
9 D “f(x) = lim f(x)———
© aPp 100 N— o0 g) % )[d(xi+l_xi)]_a
where ki, xj11],i =0, ..., N—1,Xg = aandxy = b, provide a partition of the intervaa( b]
andxi* is some suitable point chosen in the subinterx@lX; 1], while 1gy, is the unit function
defined on the same subinterval. Kolwankar cajJBg’ % f (x) thefractal integral of ordera of
f (x) over the interval §, b]. The simple local fractional differential equatidf f (x) = g(x)
has not a finite solution wheg(x) is constant and & « < 1. Interestingly, the solution exists
if g(x) has a fractal support whose Hausdorff dimengiois equal to the fractional order of
derivatione. Consider, for instance, the triadic Cantor €etbuilt on the interval [01], whose
dimension il = In2/1n 3. Let 1 (x) be the function whose value is one in the points belonging
to the Cantor set upon [Q], zero elsewhere. Therefore, the solutiorDéf f (x) = 1¢(x) when
a=dis f(x) = aDE”‘ 1c(x). Applying (9) withxg = 0 andxy = x and choosing* to be
such that g (x*) is maximum in the intervaly , xj 1], one gets [17]:

10 f(x) = D71 — Iim N71|:i Kig1 =x)% _ S
(10) (x) = oDy C(X)_NLOOEE) C rd+e) Td+a)

where F(': is a flag function that takes value 1 if the intervaj [x; 1] contains a point of the
setC and 0 otherwise; hencg(x) is the Cantor (devil's) staircase (fig. 1b). Moreover, egpmat
(10) introduces the fractional measure of a fractal set weel@king for: for the Cantor set
C it is defined asF*(C) = 0Dl""lc(x). In fact #*(C) is infinite if « < d, and 0 ifa > d.
Fora = d, we find F*(C) = ﬁ This measure definition yields the same value of the
dimension predicted by the Hausdorff one, the differendadoeepresented only by a different
value of the normalization constant.

Eventually, consider two continuous functioigx) and g(x) defined upon4, b] with a
zero first derivative except at the points belonging to threestacunar fractal se where they
present an Holder exponemtequal to the dimension of the fractal support (if€x) andg(x)
are Cantor staircase type functions). Based on equatioit (&n be proved that, in the singular
pointsx € C, (i) the product functiom(x) = f (x)g(x) has the same Holder exponentinless
both the factor functions have zero valui¢) the LFD of orderr of h(x) can be computed using
the classical rule for the differentiation of the product:

(11) D“h(x) = f(x)D*g(x) + g(x) D f (x)

Performing now, for both the sides of equation (11), a fidotagration of ordew upon [, b]
yields to the followingfractal integration by parts

12) aDp “[ T 0D*g(0)] = [h(b) — h(@)] — ,Dy“[g(x) D f (x)]

which will be useful in the next section.
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4. Kinematic and static equations for fractal media

As shown in the Sections 1 and 2, fractality plays a very irtgprrole in the mechanics of mate-
rials with an heterogeneous microstructure. The aim of3kigtion is to develop a model that, by
the local fractional operators introduced in Section 3bis # capture intrinsically the fractality
of the material and, consequently, the size effects uponetlh&ed physical quantities. Thus, let
us start with a uniaxial model [22], hereafter calfeattal Cantor baraccording to Feder’s ter-
minology [14]. Hence, consider a specimen of disorderedratof lengthb. Suppose now to
apply a tensile load in the (axial) direction. As pointed out in Section 2, because efftactal
localization of strain, the plot of the axial displacementersusz is a Cantor staircase (fig. 1b).
This plot corresponds to a strain field which is zero almostrgwvhere (corresponding to the
integer portions) except in an infinite number of points vehers singular (corresponding to the
localized cracks). The displacement singularities carhlagacterized by the LFD of order equal
to the fractal dimensioa = 1—d, of the domain of the singularities, the unique value for iahic
the LFD is finite and different from zero (the critical valudjhis computation is equivalent to
equation (3), passing from the global level to the local drfeerefore, we can define analytically
the fractal strair* as the LFD of the displacement:

(13) £*(2) = D*w(2)

Let us observe that, in equation (13), the non-integer ghyslimensions L[]dé‘ of ¢* are in-
troduced by the LFD, whilst in equation (3) they are a geoite@ticonsequence of the fractal
dimension of the localization domain.

Now let’s turn our attention to the differential equilibniuequation, when the fractal bar is
subjected to an axial load. Consider again a fiber of the spatand suppose that the body is in
equilibrium,z = 0 andz = b being its extreme cross sections. We indicate witliz) the axial
load per unit of fractal length acting upon the fractal badt aiith N(z) the axial force acting on
the generic cross section orthogonal tozkexis. Take therefore into consideration a kinematical
field (w, ¢*) satisfying equation (13) and a static fieM,(p*). The fractal integration by parts
(12) can be interpreted as the principle of virtual work foe fractal bar. In fact, according to
the fractal nature of the material microstructure, therimaévirtual work can be computed as the
fractal a-integral of the product of the axial fordé times the fractal straia® performed over
the interval [Q b], which, according to equations (13) and (12), is in its tequal to:

(14) oD, *IN@e*(2)] = Dy *[N(@)D*w(2)] = [N(Z)w(Z)]ZB — oDp “[w(@D*N(2)]

Since the body is in equilibrium, the virtual work princigtelds. Hence the right hand side of
equation (14) must be equal to the external virtual worksTétrue if and only if:

(15) D*N(2) + p*(2) =0

which is the (fractional) static axial equation of the fddtar. Observe the anomalous dimension
of the loadp™*, [F][ L]*(lfds), since it considers forces acting on a fractal medium.

What has been done in the one-dimensional case can be fgrexadinded in the three-
dimensional case for a generic fractal medium [23]. As indlassical continuum mechanics,
one needs the introduction of the fractal strgss} and fractal strairje*} vectors to replace the
corresponding scalar quantities in equations (13) and [@8hoting with{n} the displacement
vector, the kinematic equations for a fractal medium candpeessed as:

(16) {e"} = [0"1{n}
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where p%] is the kinematic fractional differential operator comiaig local fractional deriva-
tives of ordera = 1 — d;. Equation (16) is the three-dimensional extension of eqndtL3).
Analogously, equation (15) becomes:

17) [0%17 {o*) = —{F*)

where p?]T is the static fractional differential operator, transgbsé the kinematic one and
{F*} is the vector of the forces per unit of fractal volume. From ginysical dimension of the
matrices at the first hand side of equation (17) and from thddmental relationship (5) among
the fractal exponents, it can be easily shown {f&t} owns the following physical dimension:
[FI[L]~@*99) where(2 + dg), comprised between 2 and 3, should now be seen as the fractal
dimension of the fractal medium.

In order to get the expression of the principle of the virtwalrk for a fractal medium,
we need the extension to fractal domain of the Green theofds. extension can be obtained
performing a fractal integration of ordgr— « of both sides of equation(12):

(18) D/ [FD%g] = DR~ fgny] — Df[gD* ]

where nowD¥ is the LFD in thex-direction, ny is the x-component of the outward normal
vector to the fractal bounday* of the fractal body2*. Other two scalar expressions can be
obtained analogously to equation (18), just consideriedffDs in they andz-directions. Thus
we are now able to derive the expression of the principle méi& work for fractal media. It is
sufficient to apply the extension of the Green theorem — équét 8) — substituting appropriately
to the functionsf, g the components of the fractal strefgs*} and displacement} vectors.
Furthermoreq andg are equal respectively td—d;) and(2+dg). Thus for vector field$o *},
{F*} satisfying equation (17) (i.e. statically admissible) aedtors fields{¢*}, {5} satisfying
equation (16) (i.e. kinematically admissible), it is padsito prove the validity of the following
equation:

(19) [ Tmeer+ [ o1 Tmar = [ @7 1der

which represents the principle of virtual work for a gendractal medium and is the natural
extension of the classical continuum mechanics formutatibthe principle. For the sake of
clarity, in equation (19) we used the classical symbol ferititegrals; anyway they are fractal
integrals over fractal domaingp*} is the vector of the contact forces acting upon the (fractal)
boundary of the fractal medium; it has the same physical dgioa of the fractal stress, to which
it is related by the relation:

[MT{o*} = (p*)

as naturally comes out in the proof of equation (19Y]] is defined at any dense point of the
boundary as the cosine matrix of the outward normal vecttrgdoundary of the initiator (see
[14]) of the fractal set occupied by the body.

5. Conclusions

In this paper, the topologic framework for the mechanicsefbdmable fractal media has been
outlined. Based on the experimental observations of the eifects on the parameters char-
acterizing the cohesive law of materials with a disorderéctostructure, the fractal quantities
characterizing the process of deformation have been gbmté In the second part of the pa-
per, new mathematical operators from fractional calculagelbeen applied to write the field
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equations for solids with a fractal microstructure. It hagib shown that the classical fractional
calculus cannot be used to describe properly the deformatibfractal media. Instead, the local
fractional operators, recently introduced by Kolwankdr f&n be successfully applied for our
purposes. The static and kinematic equations for fractdiarteave been obtained. Moreover, the
extension of the Green Theorem to fractal quantities andaittsrhas been proposed, naturally
yielding the Principle of Virtual Work for fractal media. €mext step should be the definition of
proper constitutive laws (e.qg. elasticity) for fractal rieedAt this stage, only the formal structure
of the static and kinematic equations has been outlined.eMar, further analytical research
about local fractional operators has to be carried out. Téngineering calculations may only

be at an early stage. However, once these goals were achleveddary value problems on

fractal sets could be solved, not only in principle, by meafrthie Local Fractional Calculus.
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ANISOTROPIC AND DISSIPATIVE FINITE
ELASTO-PLASTIC COMPOSITE

Abstract. Here we propose a macroscopic model for elasto-plastic oeitgp
characterized by an initial anisotropy, that can evolvarduthe large plastic de-
formation. Application to transversely isotropic and ettiopic composites will
be also developed. The paper deals with anisotropic firas@lplastic-models,
which accounts for the dissipative nature of the plastic,flgithin the constructive
framework of materials with relaxed configurations in intrvariables. Her&
stands for Mandel’'s non-symmetric stress tensor,or theiegiatic Eshelby stress-
tensor. The appropriate variational inequalities arevé€lrirelated rate quasi-static
boundary value problem, in our approach to composite nadseri

1. Introduction

The continuum approach treats the composites as a singkrialatith different properties in
different directions. The macroscopic response will bedvarsely isotropic about the fiber
direction if there exists just one family of reinforced fibr@nd orthotropic if there are two fam-
ilies. Spencer in [23] formulated yield conditions, flowesaland hardening rules for material
reinforced by one and two families of fibres, in small defotioras plasticity theory. The yield
function is assumed to be not affected by a superposed teirsifibre direction. Spencer in
[22] proposed the term of proportional hardening for theegponding theory of isotropic hard-
ening, for anisotropic plasticity. Rogers in [21] genezall Spencer’s results concerning fibre
reinforced materials, assuming that the yield conditionriaffected by the superposition of an
arbitrary hydrostatic pressure.

Experimental results performed on axially reinforced tabspecimens of boron alumini-
um composite, under complex loading, reveal the large katenmardening effects, see [20]. In
[26] the effect of shear on the compressive response anddailas investigated experimentally
for an unidirectional composite. Here both axes of loadioglad be operated in either load or
displacement control.

Here we propose a macroscopic model for elasto-plastic ositg) characterized by an ini-
tial anisotropy, that can evolve during the large plastfodaation. Applications to transversely
isotropic and orthotropic composites will be developeddabon the papers [5, 6], which gener-
alized Spencer and Roger’s results.

The paper deals with anisotropic finite elasto-pla&ie models, which account for the
dissipative nature of the plastic flow, within the constitetframework of materials with relaxed
configurations and internal variables, [1, 2]. H&restands for Mandel’'s non-symmetric stress
tensor, see [15], or the quasi-static Eshelby stress tesser[17, 18]. We shown in [9], that

*This work was supported by ANSTI, Grant 5229, B1/1999.
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there exist classes &f—models with hyperelastic properties, for which the dissgrapostulate

[7] can be equivalently imposed through the normality anaveaity properties, despite of the
non-injectivity of the function which describés as dependent on elastic strain. Our dissipation
postulate extend to anisotropic materials the resultsmddeby [13, 14, 16, 24].

During the elasto-plastic deformation process, see exyetial evidences in [26], the chan-
ges in geometry and rotations of material elements cannalidgsegarded. Consequently, the
field equation and the boundary conditions at time t are phppermulated (see [11]) in terms
of the rate of thenominalstress. The second objective of the paper is to derive aroppate
variational inequality, related to the rate quasi-staticifdary value problem and associated
with a generic stage of the process in our approach to comepogiterials. Only when the
dissipative nature of the plastic flow is considered, théatimnal inequality is caracterized by
a bilinear form which becomes symmetric. In a forcomminggveg complete analysis of the
bifurcation of the homogeneous deformation will be perfednas in Cleja-Tigoiu [4], based
on the variational inequality, under axial compressivesdr In our analyse it is not necessary
to make the assumptions either the fibres are uniformlynediito the line of the loading by a
small angle, or the existence of a sinusoidal imperfectidrich is uniformly distributed, as we
remark here that the stability can be lost, during plastforeation.

Further we shall use the following notations:

Lin, LinT— the second order tensors and the elements with positivendietnt;

V— the three dimensional vector space;

Sym Skav, Symt — symmetric, skew-symmetric and symmetric and positive deftensors;
Ortt— all proper rotation of the orthogonal gro@rt;

A -B:=tr ABT — the scalar product ok, B € Lin;

AS = % (A+AT)andA? = % (A—AT)—the symmetrical and respectively skew- symmetrical

parts ofA € Lin; | is the identity tensor;

£T — the transpose of — fourth order tensor, defined for @, B € Lin by

ETA.-B:=A.-£B;

U— represents the derivative with respect to tindg; ¢ (G, «)— the partial derivative of the

function¢ (G, «) with respect tdG;

d 2(G)— the differential of the max atG;

A . B :=tr ABT — the scalar product ok, B € Lin; | A |= VA A = \/mthe modulus

of the second order tensor aig denote its Cartesian componen|i$ly = Z Sﬁkl denotes
ijkl

the modulus of fourth order tensor afigy are Cartesian components&f J

<z>=1/2(z+ | z|), Yz € R— the set of all real numbers;

00, P, p are mass densities in initial, relaxed and actual configurst

Qla] := QaQT fora € Lin, Q[a] = a fora € R.

2. ¥-models

We introduce now the constitutive framework of anisotragsto-plastic materialg; —models
being included, see [8].

We fix a material poinX in the body, considered in the reference configurakiofror an
arbitrary given motiory, defined in a certain neighborhood Xf let consider the deformation
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gradientF(t) , detF(t) > 0, F(0) = |. We assume thenultiplicative decompositionf the
deformation gradient into itslasticandplastic parts:

(1) F(t) = E)P(t) where E(t) = Vx(X, DKL, P(t) = KiKg?

based on the local, current configuratién.

We denote byG = ET E the elastic strain, and by = (P~1, &) the set of the irreversible
variables, wherex represent the set of internal variables, scalars and t®nBer symmetric
Piola-Kirchhoff stress tensdtt, T— Cauchy stress tensor, related by

0 _galgr
)2 2

Theelastic type constitutiviem term of ¥ is written under the form

¥ :=3%(G,a), 2(,a)=0,

) G 186G, 0) =T (G, )G, VG e Synt.

The value of the tensor function written in ¢2jives the current value olg taking into account
0
the relation between symmetric Piola-Kirchhoff and Margigtress tensors
I
2 = GT
0
Therate independent evolution eqrfer P, « are expressed by
PPl=puB. o). o=pm( w),
F(,a) :D]_: Cc Lin— R<g, and F(0,«) <0,
u=>0, M]:"=O, and Mj:=0.
Material symmetry requiremengsee [1, 3]). We assume that theeexisting material symmetry
is characterized bghe symmetry groupgc Ort™, that renders the material functions invariant

2(QGQT, Qla]) = QEG, QT ., FQTQT, Qlal) = F(T,a),

BQ=QT,Qla]) = QB(E, x)(QT, m@QTQT, Qa]) = QIM(G, a)]
for everyQ € gk.

THEOREM1. Any X~ — model leads to a strain formulation of the elasto- plastibd&our
of the material with respect to the relaxed configuration Also the material functions are.g-
invariant.

The appropriate material functions in strain formulatiosm® related to the basic functions
from ¥ —models through relationships of the type:

FG,a)=F(E(G.a).a), BG,a)=BEG,a),a), et
THEOREM2 (STRAIN FORMULATION IN THE INITIAL CONFIGURATION).
1. LetY := (P1, &) characterizes the irreversible behaviour of the body, atfiked material

point. The yield function in the reference configurationoassted with the yield function in
elastic strain is defined by

FCY)=FP TcP L o) = FG,a) withY =P 1 a)
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as a consequence of (1).
2. The evolution in time of is governed by the solutions of Cauchy problem (4¢e

Y =—<BtY)> YCW),Y)HFC®),Y))

B(t, C) = acF(C(),Y) - C(t)
®)
WF(EC,Y)-YC,Y)=1 on F(C,Y)=0

Y(0) = Yo
for a given strain history, denoted € Gs,

te[0,d] - Ct) e Sym, with C(t) =C(t) =F' ()F(t).

HereH denotes the Heaviside function.
Basic assumptions:
I. There exists an unique solution of the Cauchy problem (3).
1. The smooth yield functiorf is given in such way that
i) F:Dr c Symt x R" — Ris of the clas<C?, and F (I, «) < O for all a;
i) for all fixed « € pro D — the projection on the space of internal variables, the set

(G e Syni" | F(G,a) <0}

is the closure of a hon-empty, connected open set, i.e. #3saay we restrict the yield function
to the connected set that contalns pry D C Sym';

iii) for all @ € proDg the set{G € Sym' | F(G,a) = 0} defines aC! differential
manifold, called the current yield surface. Her&)@;ef(G, «a) # 0on the yield surface.

THEOREM 3. The dissipation postulate, introduced|if] is equivalent to the existence of
the stress potentigl), together with the dissipation inequaligh).

I.Forall C e Gs and for all t € [0, 1) there exist the smooth scalar valued functiansg,
related by

o (C, Y1) = P~ TMCPLt), a(t)) VCeU(Ct) with
UG = {B e Sym" | F(B, Y (t)) < 0}

the elastic range, at time t corresponding@oe Gs. Here Ct is the restriction o0, t] of the
given history.
The functionsy, o, are stress potentials
Tt T(t
4) % =20G¢(G, a(1)), O Fico (C(1). Y(D)F'
2 p
G =P T(mCHP L.

1. The following equivalent dissipation inequalities

[aya (A, Y () — dyo (C(t), Y(t)]- Y1) >0 and
(5
(Z(t) — =% - POP~L(1) + (at) — a*)a(t) > 0
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hold for all G, G* such that]f‘(G,a) = 0, f(G*,oe) < 0, when the conjugated forces to
internal variables (see [10]) are considered

alt) i= =9y (G(t), a(t)), a = —du9(G*, a(t))
HereX (t), =* are calculated from (2) for the elastic stradg) andG*.
PrRopPosITIONL. When the dissipation inequality ¢bls satisfied then modified flow rule
() (062G, a)T[PPY] = nig F(G, @) + 92 ¢ (G, )[d]
with u > 0, holds. The dissipation inequality (5mposes that
@ —dy[dco (C.V][Y] = adc F(C.Y) >0,

for all C = C(t) on yield surfaceF(C, Y) = 0, for the fixedY = Y (1), with iz > 0.

To end the discussion about the consequences of the diesifaistulate we recall the basic
result, similar to [13]:

THEOREM4. 1. Atany regular point of the yield function in stress spadg s, o) =0,
but with® = X (G), the appropriate flow rule, i.e. the modified flow rule, takesfibrm

@® LP = PP 1= (oA (S, a) +LP%
LP*: dEG)T(LPH=0

3. Rate boundary value problem and variational inequalities

We derive the variational inequalities with respect to tbiual and respectively initial config-
urations, related to the rate quasi-static boundary vatablem and associated with a generic
stage of the process, at the timaAe use an appropriate procedure as in [19, 4] and different
motion descriptions that can be found in [25].

Thenominal stressvith respect to the actual configuration at titper thenon-symmetric
relative Piola- Kirchhoff, is defined by

St(x. 1) = (deFy(x, T)T(Y. D(Ft(X, 1),
with
Ft(x, ) = F(X, ) (F(X, t))_1
the relative deformation gradient.

Herex = x(X,t),y = x(X,t),0ry = xt (X, t) = X(Xfl(x, t), )— the motion in the relative
description. At timg we have

S(x,t) = T t) and
. 0
©) Si(x,t) = ESt(X, T) |r=t
_ 9 Ty T
= P(X,t)at(p(y,t)ﬂr:t T DL (X, t).

HereL (x,t) = Vv(x, t) represents the velocity gradient, in spatial represemtati
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Let us consider a body, identified wifh C R3in the initial configuration, which undergoes
the finite elasto-plastic deformation and occupies the dongs = x (2, t) C RS, attimer.

Theequilibrium equatiorat timez, in terms of Cauchy stress tensbfy, ) € Sym
divT(y,7) + oy, 0)b(y,7) =0, in Q¢

whereb are the body forces, can be equivalently expressed, wigeotso the configuration at
time t— taken as the reference configuration

divSt(X, 7) + p(X, )bt (X, ) =0, with bi(x, 7) = b(xt(X, 1), 7)
(10)
St (%, T)F] (X, 1) = Fr(x, 1)} (%, 7)

When the reference configuration is considered to be a nateawe add the initial conditions
SX,00=0, FX,0 =1, PX,0=I, «aX,0 =0,

for everyX e Qg and the following boundary conditions @St :

(11) S DN Iry= S 1) (X, 1) =) |y = Or(x, 7)

Here 9@t = I'y; | J ot denotes the boundary of the thredimensional donsainn(t) is the

unit external normal af'1;, while xt(x, 7) — x is the displacement vector with respect to the
configuration at time. S and U, the surface loading and the displacement vector are time
dependentz, prescribed functions, with respect to the fixed at tineenfiguration.

The rate quasi-static boundary value problem at tinievolves the time differentiation, i.e.
with respect tor, of the equilibrium equations, (10¥,x € Qt, and of the boundary condition
(11), whenr =t

div S (x. ) + p(x. Hbr(x. 1) = 0.
(12) SO ey = S b,
VX, 1) Iry= Ut(x, 1)

. L 0
using the notatiot; (x, t) for a_bt X, T |z=t -
T

At a generic stage of the process the current values, i.eeairhet, of F, T, Y, and the set
of all material particles, in which the stress reached threectt yield surface

QP = x@P,1), with QP ={XeQ|FCX,1t),Y(X,1) =0

are known for allk € Qt, with the current deformed domai®; also determined.
The set of kinematically admissible (at tirtlevelocity fields is denoted by

Vad(®) = {v: @ — R3| viry=Uy).
and the set of all admissible plastic multiplier
M) ={5:9Q — Rog| sx0)=0, if xe\QP,

s, 1) =0, if xeQf).
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THEOREMDS. Atevery time t the velocity field, and the equivalent plastic fact@r satisfy
the following relationships

/ p{VvI (YW — VV) + 4F82.0 (C, V)[FT (VWISFIFT - ((Vw)S —
Qt 1Y

(13) (Vv}®))dx — 2/ 5 phﬁ FIcF(C,Y)ET - ((Vw}S — {VV}S)dx =
of hr

/ ob - (w—v)dx + ét-(w—v)da
Q o

and
(14) —2/ ﬁ(a — B) FacF(C, Y)FT . ({Vv}s)dx+/ ﬁ(S — B)Bdx >0,
QP hr of hr

which hold for every admissible vector fielde Vaq(t), and for all§ € M(t).
Proof. In the theorem of virtual power, derived from the rate qusatic equilibrium equation
(12):

S - vwdx = &n -Wda+/ bt -wdx,  Yw e Vaq(t)
Qt 92t Qt

we substitute the rate of the nominal stress, at tinealculated from (9), taking into account the
potentiality condition (4). First of all we calculate the differential with respectrtof the right
hand side in (4, in which we replacé-F~1 = L andC = 2FDFT, with D = LS. Thus

d

T T T
1-(=) = 2LF3co (C,Y)FT + 2Fico (C.Y)FTLT+
Tp

(15)
2F92 .0 (C, Y)[2FDFT]FT + 2F(32. 0 (C. Y)[YDFT

in which we introduce the modified flow rule, (7), written undee form (see Remark 2)
(16) 0§co (€. Y)[Y] = —pdc F(C, Y),

Hence the equality (13) follows at once from (9), (15)and)(16
In order to prove (14) we note that> 0 can be express either by the inequality

17) (i—m) F<0, V>0, togetherwith uF =0,
or under its explicit dependence on the rate of strain:

“Zhﬁ’ with g =205 F(T.a) - d5(G, «)[ET DE],
r

hr = 205 (2, a) - d2(G, o)[{GB}S] — 0. F (T, &) - W,

where the hardening parametgr> 0. The time derivative off(Z, a) with (2) is introduced in
(17). Consequently, for akl € Qtp we get

(18) (it — W(—phr + 205 F (S, a) - dE(G, )[ETDE]) < 0.
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hr > 0. We can substitute. and i by g/hy ands/hy. By integrating othp from (18) the
inequality (14) holds, when the equality

IcF -A=05nF(S,a)-dSG,0)[P"TAP1]) VA € Sym

is also used foA = FT DF.
Let us define the convex sktin the appropriate functional space of the solutitgy, by

K :={W,8) | weVaq(t), §:Q2— Rxo},

andthe bilinear formsin the appropriate spadép:

(19) K[v,w] = /p(Vv%~VW+4F8(2:C0(C,Y)[FT{VV}SF]FT~{Vw}s)dx
Q
_ v
NB5] = /QtphrﬁSdX
B[S,v] = —2/ L s FacF(C, YFT - (vv)Sdx
of hr

are defined/ v, w € Vaq(1), V4, B: Qt — Rxo.

As a consequence of (19) , (13) and (14) the below statemédafg:ho
THEOREMG6. Find U = (v, B) € K , solution of the variational inequality.l.:
(20) alu,V—U]>f[V-U] VYVek
a[-, -] is the bilinear and symmetric forgiefined on Hy
a[Vv, W] := K[v,w] + B[B,w] + B[5, v] + A[B, ]

definedvVV = (v, 8), W = (w, §) and

(21) f[V] = §t -vda+/ pbt -vdx, T3 C 9%x.
It Qt

REMARK 1. Under hypotheses: there existgq— a Hilbert space, with the scalar product
denoted by, the continuity of the bilinear form oklag, | a[V,U]l I<co IV IIH I UllH,
and of the linear functional from (21) then the existencedf linear operator associated to the
bilinear form:

a[lu,V]=QU -V VU,V € Hgg.

The variational problentan be equivalently formulated (see for instance Glowiriskins,
Trémoliéres [1976]): Find) € Hag such that

alUU—-U0]-f U-0)+ @z U)— e (0) >0 VU e Hag.

Here(bK - the indicator function ofK, is zero onK, and infinity outside.
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By using the subdifferentiab®; of the function @ ¢ the variational inequality becomes
—(QU-f e a0
We recall that theubdifferentialof @ is defined as the mapping oHag such that
1P X)={neH|Pg(Y)—Pp(X)=n-(Yy—%) V yeH}

n € 3@ (x) are called subgradients df; ( see [18]). The domain 0b®; coincides with
K. and 9@ (x) = {0} when x belongs to the interior oK.

PROPOSITION2. For linear elastic type constitutive equation, in the pleally deformed
configuration, the following formula

4320 (C,V)[A] = P[P TAP7YP~T, VA e Sym

follows.

In the case of small elastic strains

1
A= E(G — 1) ~e® E=REU®, where

U =14+¢® G=I1+2° with |e®|<1,

R®— elastic rotation, the following estimations

T
| VW— - VW [<]| YW 2] € [4] €2 |
0

4| Fodco (CVIFTH{VWFIFT - (Vw)S | < | Vw 2| € |4

hold.

In conclusion: in the case of small elastic strains the fasns in the bilinear fornkK[-, -]
can be neglected in the presence of the second one. Moréaberbehavior of the body, with
small elastic strain only, is elastic, which means tBat 0 in the solution of the variational
inequality, (20),then the bilinear forafV, V] for V = (v, 0) is symmetric and positive definite.

In a similar manner, but starting from tleguilibrium equatiorand thebalance equation of
momentunwith respect to the initial configuration, expressed as

DivS+by=0 and SF' =FST, in Q with

I
S:= (detF)TE~T, S:=poFP1—p~T
o)
S— non-symmetric Piola- Kirchhoff stress tensor, whiegeare the body forces, we can prove:

THEOREM 7. The formulation of the rate quasi- static boundary valuebpem, in the
initial configuration leads to the variational inequality:
Find (U, u) € V x M ,suchthav(v,v) € V x M
KolU,v —u] + Bo[p, v —U] = R[v—1U],
(22)
BolU, v — u] + Ao[p, v —u] 2 0
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where Ky, Bg, Ag denote the bilinear forms:

Il _
Kolv.w] = / oot VWP =P~ T . vw + ZP[{FT vv}%] - {FT vw}S}dX
Q 1Y
Boliw] = -2 [ 0upid 3 (95 A1P T - (FT Vwpax
QP Nr
Aolm,v] = / @vudx
QP hr

The linear functional
R[v]:/ l':0~vda+/ pobg - vd X,
r Q

represents the virtual power produced by the variatiomir tof the of the mass ford®, and of
the forces acting on the pary of the boundary domaibg, i.e. SN |r, = Fo.

Here we have introduced the elastic tensor with respecetoetference configuratio?]p
EPIAl: = 4P 193gelP TAP P
9(G, ) o(C,Y), G=P TcPl yv=pP1a).

Here we denoted by = {v | v=U%0nT» c 39}, the set of admissible displacement rate
for a given functionu® ), and by M, the set of admissible plastic factors

REMARK 2. Note that = | + Vyxu, whereu(X, t) = x (X, t) — X represents the displace-

ment vector field ané = Vx U, and the spatial representations of the bilinear form (18)wst
represented in (22).

The plastic factopr = hﬁ which enter variational inequality is just the plastic faoivhich

'
characterizes the evolution of plastic deformation, via thodified flow rule (7). In order to
justify the above statement we recall the formula

IcF =P Lo FP T =P ST [as F(=, )]P T,
and from the modified flow rule (6) we found
dST[PPL - pos F(Z, )] = 0.
On the other hand when we pass to the actual configuration tve ge
Bolu, U] = B[u, V]

for

. 0x dx
u= ﬁ(x,t) and v= ﬁ(x,t) |X=X’1(X,t)

the rate of the displacement vectoandv represent the velocity at the material paitin the
material and the spatial representation.
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4. Composite materials

We describe the composite materials within the framework ahodels, with the potentiality
condition and the modified flow rule

The macroscopic response will be orthotropic if there aefamilies reinforced fibres. In
our model othotropic symmetry, characterized ( see [12Fheygroupge € Ort defined by

O6:={QeOrt| Qny=nj, or Qnj=-nj, i=123}

where{n4, no, n3} is the orthonormal basis of the symmetry directions.

For transverse isotropy we distinguish gebgroups ¢, 94, equivalently described in Liu
[1983] by:

01 {QeOrt| Qni=n;, QNiQT =Ny}
g = {Qeort| QM®enpQ' =n;®ng}

whereN1 = ny ® hg — N3 ® ny, for {n1, Ny, N3} an orthonormal basis, with; — the symmetry
direction The general representation theorems of Liu [1983] and W&8d0] for anisotropic
and isotropic functions were consequently employed byt{blescribe the complete set of the
constitutive equations under the hypotheses formulatedeabHere we give such kind of the
model.

The linear g—transversely isotropic elastizonstitutive equation with five material param-
eters, in tensorial representation is written with respeqtlastically deformed configuration,
Kt,

=&(A) = [aAni-ni+ctrAl(ng ® ny) + (CAng-n1 +dtrA)l +

bxlﬂ

+ egmenpA+AMNI@np]+ fA

The last representation is written in terms of the attachettopic fourth order elastic tensar,
such thaty Q € Ort. Here€& is symmetric and positive definite.

The yield condition is generated via the formula (24) by the functibrorthotropig, i.e.
dependent on fourteen material constant (or scalar fumefiozariant relative tgg ), such that

f(2) = (=528 M en) (Maeny) =

M((n1®np), (N ®@N)E - X =

C1(ZS- 12+ CoEs. B85+ C3(3H2. 1 +

C4(Z3-1)(Z%- (N1 ®Ny)) + Cs(Z5- 1)(E5- (N2 ® NR)) +
Ce=® - (%N @ NS+ C7% - {(Z%(n, ®@ o)) +

CgT%- {(N; ® NP T3S+ Co=- {(ny ® np) 3)°

C1ol=% - (N1 ® Np)]% + C1a[TS - (N2 @ np)]% +

C1a[=8- (N ®@ NPI[ES - (N2 ® N2)] + C13(EH? - (g @ ny) +
C14(¥H? - (2@ np)

(23)

+ o+ o+ + 4+ o+

REMARK 3. When we consider the symmetrical case, that correspandmall elastic
strains i.e. whenXxS = I, 2 = 0 then the yield condition is given from (23) in which
C3=C8=C9=C13=C14=0_
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The rate evolution equation for plastic deformation expeesby Mandel’s nine- dimen-
sional flow rulg i.e. there is a particular representation of the modified fide given in (8),

PP L= os F(, o, k)

is associated to the orthotropic yield function, generate(P3), which describe the proportional
and kinematic hardening given by

FE an)=fZ,k)—1=

(24) M1 ®N7),(N2®N2), KT - T —-1=0, T=3 —oa.

Here we put into evidence the possible dependenceafrthe yield function through the fourth
order tensoM.

We provide the constitutive relations for the plastic straite,DP, as well as for the plastic
spinW P, defined by

DP=1/2LP+LPT), WP =1/2LP - LPT), where LP=pp!
For orthotropic material the plastic strain rate is given by
DP = uNP(2, o, k, (N1 ® Ny), (N2 ® N2))

with

2C1(Z° - DI +2C,T° + C4[(T° - H(n @ np) +
(=°-np@npI] +Cs[(Z°- H(nz @ np) + (X° - na @ no)l] +
2C6{T (N1 ® N)}* +2C7{Z° (N2 @ np)}° +

Cal(ng ® N TS + Col(ny @ ) TS +

2C19(Z° - (N ® N) (N1 ® Np) +

2C11(E°- (N2 ®np) (N2 @ np) +

+ 2C12[(T - (N1 ®N1)(N2® N2) + (T - (N2 ® N2)) (N1 ® Ny)]

(25) NP

+ 4+ + + +

and the plastic spin is expressed under the form

WP =4 QP(S,a,6,n1®N1,No®Ny)  with
(26) QP = —2C3E% + Ca{(n1 ® N T )2 + Col(np ® N =°)2—
—2C13(Z% (N1 ® N1)}2 — 2C14(Z%(Ny @ )2

REMARK 4. WP involves the terms generated by the symmetric pai pivhile DP con-
tains terms generated by the skew- symmetric pak ofvith two coupling coefficient€g, Cqg.

REMARK 5. In the case ok € Sym i.e. for small elastic strain@nde € Sym directly
from (26) we derive the following expression forthotropic plastic spin

(27) WP = 1 QP = 11 {Cgl(n1 ® NPT} 4 Col(nz ® N T°)3)

But in this case, the yield condition (23) does not dependhenparameters which enter the
expression (27) of the plastic spin.
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PrRopPoOsSITION3. From the orthotropic Mandel's flow rule (26) the flow rule chaterizing
the g— transversely isotropic material is derived wheg € C7 = Cg = C11=C12 =0, i.e.
dependent on six material constants. The plastic spin isngby (25), in whichg@= Cq4 =0,
i.e. dependent on three constant only.

Evolution equation for internal variablean be described, see [6], by some new generaliza-
tion to finite deformation of Armstrong- Frederick hardemile.

From the orthotrop representatian— transversely isotropic case only can be obtained.
Thus for plasticallyincompressiblematerial, i.e. 5 = pg, the representatio from [21] can be
obtained by taking into account small deformation theorye Tibre-inextensible case given in
[22] can be also derived from our general representatioeywvthe appropriate yield constant is
much grater then the others.
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J. Engelbrecht - M. Vendelin*

MICROSTRUCTURE DESCRIBED BY HIERARCHICAL
INTERNAL VARIABLES

Abstract. In this paper a clear distinction is made between the diffeseales and
the different processes in the microstructure which infbeetne dynamics at the
macrolevel. In the first case the governing equation for wae@agation is repre-
sented by a hierarchy of waves. In the second case it has heamshow useful
the concept of internal variables is. The different proess=n be best described
by a hierarchy of internal variables. An example of cardiacsahe contraction is
briefly described, demonstrating the dependence of theeasitiess on sliding the
molecules and ion concentration involving the correspagditernal variables.

1. Introduction

Continuum mechanics is usually based on macroscopic ctsiaad quantities, such as energy
density, stress, strain, etc. However, materials (whatthr origin is) have usually a mi-
crostructure because of inhomogeneities, pores, embdaged, reinforcements, etc.. This list
can be prolonged but one is clear - the description of thewetiaof many materials should take
into account both the macroscopic and microscopic praggenticcuring at different length scales
and involving different physical effects. Within the frawmark of continuum mechanics, such a
behaviour is best described by distinguishing macro steeand microstresses with interactive
microforces ([1], [2]). We feel however, that for materialth complicated properties indicated
above, one should start distinguishing clearly the obd#evand internal variables ([10], [13]).
Although the formalism of internal variables is well knowd @], [13]), for the clarity sake we
repeat here some basic concepts.

The observable variables are the usual macroscopic fieltitjga such as elastic strain, for
example. These variables are governed by conservationdad/possess inertia. The internal
structure of the material (body, tissue, composite, eggupposed to be described by internal
variables which are not observable and do not possessaneftiey should compensate our
lack of knowledge of the precise description of the micnastire. The formalism of internal
variables involves constructing of a dissipation potérifidn parallel to the Lagrangiag for the
observable variable. However, the governing equationstefmal variables are kinetic equations
(not hyperbolic) — see [10], [13].

The idea of using internal variables for describing dynainprocesses in microstructured
materials has earlier been presented in [12], [4]. The prablbecome more complicated when
either the scales or possible processes in materials &eesdif and form a certain hierarchy. This
brings us directly to the idea of hierarchical internal ates that certainly need generalization

*This study is supported by the Estonian Science Foundafidh.would like to thank Department of
Mathematics, University of Turin, for the financial supptrattend the 4 th International seminar "Geome-
try, Continua & Microstructure” where the ideas of this papere discussed.
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of the existing formalism. An example and main concepts efdrichical internal variables are
given in [6], here a certain systematic approach is predeptwing by an example.

In Section 2 basic ideas of modelling are briefly describdte description involves contin-
uum mechanics, internal variables and evolution equati@tisneeded for further presentation.
More detailed description can, for example, be found in Bction 3 presents the central ide-
ology of this paper. It makes clear distinction betweenedéht scales and different processes in
the microstructure. In the first case the result is a wavaltéy, in the second case - a hierarchy
of internal variables. In Section 4 an example is preserlledirating the hierarchical internal
variables. The case study is based on the contraction ofitliéac muscle depending on the cell
energetics. Last Section 5 includes conclusions and opsigms.

2. Basic modelling

2.1. Continuum mechanics

To be brief, we refer to [1], [2] for basic concepts for midrostured solids. For a bod§ C 03
with microstructure, an added fiedddescribes the mechanical characteristics of the microstru
ture. The stress fields can be introduced after the definitidhe expended power in arbitrary
processes [9], including a macroscopic (gross structureys and force, a microscopic (fine
structure) stress and force, and an interaction force legtwhee macro- and microstructures. In
[2], this approach has been extended to include differentastructures at their characteristic
scales. Then for arbitrary regidry in 93 with outward unit normaim we have for the actual
powerIlg(WV):

I‘IO(W)=/ Tgm-vda—f—/ fg - vdv + Mmicro,1OV).
oW w

Herev is the velocity,Tq is the macroscopic stress, afyis the macroscopic body force.
Note that indexing has here and below been changed compitref2jy The fieldTmjcro,1 V)
is the power expended by the microstructure. Further, tiierdhce from the general theory [9]
involves a sequence of microscopic procesiigk = 2, 3, .... Now, we can magnify a small
region of W iteratively by magnificationzk. At the first stage

Mmicro,a W) = ./d Tim-vida+ /W f1-v1dv + Mmicro,2(W).

1 1

wherev, = Av + dq andT1 is the microscopic stress at this level. Further on,
Mmicro2W) = / Tom-vpda+ / f2 - v2dv + Mmicro,3(W),
AWy Wo

etc. (for details, see [2]. The general balance laws can rE@ilyebe rewritten in the referential
form.

2.2. Internal variables

The formalism of internal variables is presented in [L0B][1Here we need point out just
essentials for further analysis in Section 3. The behavwidar system, i.e. dynamic state of a
body involves description of observable state variaklés.g. elastic strain and particle velocity)
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and a certain number of internal variablesThe dependent variable(s) (e.g. the stress) must be
simultaneously a function of both

o=o0(x,a)

which must be complemented by a governing equatiom for
1) a=f(x,o)+9x. o).
It is assumed that the strairis split up in an elastic paet® and an "anelastic” pagtP:
€ = Ee + € p.
The free energy functiotf is assumed to be
v =9 T;a Va)

whereT is temperature. The equations of motion are then easilyetbriln addition, we need
to concretize Eq (1). For that, a dissipation poteriftas postulated

D ="D(o,é&, e T, o, Vo) > 0
possessing certain properties [10]. Then the governindlEfp( « is derived as

1) oD
by , 0D

— =0.
Sa o

As a rule, this equation is not hyperbolic.

2.3. Mathematical models

It is clear that mathematical models involving both obsklwand internal variables are of the
mixed (e.g. inertial-diffusive [10]) type. The general édefor asymptotic analysis of such
systems are presented in [4], [5]. To get an idea, the simp@<ase could be described. Let
an n-vectorU be the vector of the observable variables, a scalarthe internal variable and

X1 = X. Then the governing system is of the following form

au au 32U
2 | — 4+ Aj— +eBy3—— +h.ot = H(U,
) ot T Mgx TP T U, w)
w Bzw
3 4 di;— +hot = pU,
3 ot Thuss t p(U, w)

wherel is a unit matrix, A1 (U, X), B11(U, X) are the matrices of parametet$(U, w) and
p(U, w) are the coupling vector and function, respectively, is a constant and a small pa-
rameter while h.o.t stands for higher order terms (dexiea)i.

It is proposed [4], [5] to use conventional asymptotic apgtofor deriving the evolution
equation(s) for system (2), (3) (see [3]).
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3. Types of models

Depending on the different length and time scales, the agtiogoverning equations derived
along the ideas of Section 2, may have different characteveitheless, it is possible to distin-
guish between the two types of governing equations.

Thefirst typeis based on structural hierarchy of a material (body) arahgtdependence on
length scales within the material and of the excitation Wwlsice the leading factors. The simplest
example is just a material where macro- and microstructte@ascribed by their own balance
laws [1], [9]. It means that the dynamic behaviour of the ¢ibmsnts is basically similar and
differs in parameters.

Thesecond typés based on process hierarchy in a material (body) wherer@miugalevels
various dynamical processes are of importance, all infimgnthe macrobehaviour. This is
an example of the cardiac muscle [6] and characterized lyesttérnal variables that form a
hierarchy.

Below both types are briefly characterized.

3.1. Structural hierarchy and hierarchy of waves.

Many materials possess microstructure at various scalesh®other hand, it is widely known
that dissipation and dispersion is different for variowejfrency scales. Hence, given the initial
excitation with a fixed frequency (wavelength), the respookthe material depends actually
on a certain underlying microstructure which is respomsfbl the governing physical effects.
Actually, this could be just a case of macro- and microstmgtor then a case of several mi-
crostructures. The outcome, i.e. the governing equationldhcertainly reflect this possible
choice emphasized by certain input-dependent paramegms. could intuitively address the
problem asking a question, which material properties anermoportant: those characteristic to
the macrostructure or those characteristic to the miarotire of a certain level. It is clear that
a single governing equation should have a certain hierazoifyedded into it.

Wave hierarchies are analysed by Whitham [15], showingigratchy of just two orders. A
case, demonstrating the wave hierarchy in dissipativelsadk analysed in [4]. For a dissipative
microstructured solids where dissipation rates are diffefor macro- and microstructure, the
final linearized governing equation in the dimensionlesmfis the following:

3 (au 92U of, du au 9%u
4 Sk |+ 22 (LS +ME — K< | = 0.
@) 9E (81 352) * ( ot TV gE T 23g2

whereu stands for the displacement gradiengndé are the moving coordinatek,;, Ko, L, N
are the constants aridis the input-depending scale parameter. Equation (4) isetefrom
the conventional equations of motion in the reference foynudéing the asymptotic (reductive
perturbative) method (see, for example [3]). Rosmall, the influence of the microstructure
may be neglected and dissipation is governed by the conktgrfor A large, the dissipation is
governed by microstructural properties, i.e. Ky, while K; # Ko.

Waves in dispersive solids (granular materials) wherdghsi®n is neglected are analysed
in [7]. In this case for scaled density fluctuatiarthe governing equation is

32 faw  aw 33w w  aw 33w
5 [ = 4+w— + N — — fw—+N,— ) =0
© asz(af+ o 1853>+“<3f+ % " 2353)
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whereN1, Ny, u are the coefficients. Contrary to the case (3.1), here digpeis important and
(5) represents actually a hierarchy of the Korteweg-de s/giguations. Intuitively, denoting by
7t an operator for the Burger’'s-type (dissipative) mateyidsrteweg-de Vries-type (dispersive)
materials, or both, the hierarchy of waves could be reptesdy

Y
EMmM—=7Tm = 0
m &7

wherem denotes the operator fon-th scale andy — a corresponding small parameter, if
any. Hencesg denotes the wave operator in the highest, i.e. in the maaio(e.f. Section
2.1). The order of derivatives(m) represents the order of coupling between various effects.
As a conjecture, one could propose that dispersive effeetslearacterized by = 2,4,... and
dissipative effects — by = 1,3,... (c.f. Egs (4) and (5)).

3.2. Process hierarchy and hierarchical internal variabls.

Beside the different scales, the embedded microstrucaweesometimes characterized by com-
pletely different physical processes going on simultasgouAs said before, such processes
are internal and governed by internal variables [10], [1Bhow these processes are linked to
the macrobehaviour by a certain hierarchy then the correlipg internal variables form also a
hierarchy. We use then notion of hierarchical internalalaigs [6].

In general terms, the idea of building up the mathematicalehis the following [6]:
1) a constitutive equation for a dependent variable,csdiye. stress, for example), depends on
observable variablg and thefirst-levelinternal variablex

o =o(x,a);
2) the evolution law for is

(6) a=fx ap),

whereg is the next,second-leveinternal variable influencing only through dynamics of the
first-level internal variable;
3) the evolution law foB is

(7) B=9(x.a B,y

wherey is again the next, now ththird-level internal variable, influencing only through
dynamics of the second level internal variate
4) the evolution law foy is

(8) )./ =h(X’a7ﬂ5 y’ "')7

etc.

Internal variablesy, B, v, ... form a hierarchy reflecting the hierarchical processes én th
material.

Consequently, the mathematical model of the macrobehaisagoverned by a system in-
cluding several equations that can be of the various typeste,Mowever, that Egs. (6), (7),
(8) could also include gradients and then at least the gowvgisystem is composed by partial
differential equation.
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4. Example: cardiac muscle contraction

Here we refer to the fundamental treatises on cardiac pedioce [8], [16]. In terms of contin-
uum mechanics, ventricles are thick-walled shells madenisioéropic fibres. These fibres have
complicated microstructure and act as following. The maifibires are made up by the bunches
of smaller elements called myofibrils with a surroundingcetubular system. The main task of
myofibrils is to convert metabolic energy into mechanicargy while the surrounding sarco-
tubular system governs the behaviouz2+ ions needed for activation. In sense of continuum
mechanics, these processes include the internal variedaegared to the observable macrovari-
ables like strain. The stress in the muscle is the dependeigble and its constitutive law is
linked to the observable variable and then the hierarchntefial variables. Leaving aside the
details of this extremely fascinating mechanism (the readesferred to [6], [14]), we concen-
trate here on the description of the mathematical model.

We assume, that the total (Cauchy) stress in the muscle csplibap into two parts
0 =0p+0a,

whereo p ando 5 denote passive and active stress, respectively. The pastsass results from
the elastic deformation of the tissue and can be calculatgitipnally like

oy

TP e

wherey is the free energy anef is the strain. Givenys, the passive stress is easily calculated.
The active stressy is generated in myofibrils by activation and is directed lbalréo the fibre
orientation. Hence

Oga = 0a€1€],

wheree is the unit vector showing the orientation. Now the comp#damechanism producing
active stress needs the more detailed description of theeseq of internal variables, which are
the main actors. At this structural level, myofibrils are #tarting point. A myofibril is com-
posed of repeating units of myosin and actin filaments, dagcomeres. The actin filament is
made of a double helix of actin molecules with troponin males localized in certain intervals.
The myosin filament consists of myosin proteins with certgpatially localized meromyosin
molecules with heads resembling "golf-clubs”. These headsalled cross-bridges. The excita-
tion of a muscle is triggered by an action potential from theducting system. This potential in
its turn release€ a?* ions in the sarcotubular system which then activate theotrmpmolecules
so that they will be able to attach the heads of myosin moéscuThis attaching means swiv-
elling of myosin molecules that cause sliding the actin aydsin filaments against each other.
As aresult, active stress is created.

The mechanism briefly described above (for details see18],4nd the references therein)
needs to be cast into a mathematical model.

We start here from the macrolevel down. The force on actinemdes (along the actin
filament) depends on the distarebetween an attached cross-bridge and the nearest actin site
There are two states through the cycle, producing force.ofbemthem byA and B, we may
calculate the corresponding forces by

Fa=Kaz Fg =Kpz

whereK 5, Kpg are elastic constants. Further we takg = Kg = K. The total force over a
sarcomere of the lengtg depends on the number of crossbridges betveesamdz — dzin both
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states. We take the uniform distribution of crossbridgesadmer an internatl. The active stress

is then found by
<K d/2 d/2
oa = m's / nA(z)dz+/ ng(zdz
2d —d/2 —d/2

wherem is the number of cross-bridges per unit volume apdz), ng(z) are relative amounts
of cross-bridges producing force (i.e. being in stadesnd B). These variables)p andng are
nothing else than thérst-level internal variables They (c.f. Section 3.2) are governed by the
following kinetic equations

anp

na finc + gon (g1 + f2)n
w—— = - s
ot 9z 1Nc + gz2ng — (Q1 2)NA

a;—tB wag—zB = fina — (g2 + f3)ng,
whereuw is the velocity of lengtheningfy, fo, f3, 91, g2 are kinetic constants between the states
andnc is the amount of cross-bridges that does not produce forlearlg, the summation of all
activated cross-bridges gives
A=na+ng+nc.

Now, A is the next, i.e. thesecond-level internal variablgehe changes of which affects the
variableog only overna, ng. The internal variableA (the activation parameter) has its own
kinetic equation

A
©) — =c(l9)[CaT](1 = A) — ca(l9) A,

dt
with c1(Is), co(ls) as certain parameters. Equation (9) involvesttti-level internal variable
[Ca2t] which must be governed by its own kinetic equation

d[Ca?t]

_ 2+
g = racaT].

In practice, the last equation is usually replaced by the@@mation of experimental curves.
So, in this case the variabtg is influenced by three levels of internal variables that farm
hierarchy.
The calculations of contraction are performed by usingrtioslel and FEM for the idealized
spheroidal left ventricle and will be published elsewhere.

5. Discussion

As explained in Section 3 and demonstrated in Section 4atdkies of the internal structure of
a material (body, tissue) lead to certain hierarchies irheragtical models. These hierarchies
can be either the hierarchy of waves in the Whitham’s senSgdt.the hierarchy of internal
variables. Both cases need actually more detailed analff$ie models are complicated that
is why in order to get practical results, numerical simalatmust be used. However, there are
many open questions also from the theoretical viewpoint.

For example, the question on dispersive properties embeitie the hierarchy of waves
must be analysed. Itis known that higher-order dispersgaoms are the same in the wave hierar-
chy ((3.2) in [7]) and in the governing equation obtained kiract asymptotic derivation [11].
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This certainly shows the correctness in leading terms leuptbperties of the wave hierarchy are
not clear.

For hierarchical internal variables the line of questicgsnss to be longer. The extra entropy
flux k in the formalism of internal variables [10], [13] dependsritalso on internal variables
in a certain sequence that must be analysed. Open is theaqudsiw to construct dissipative
potentialsDy, Dg, Dy, ... corresponding to the each level of internal variables. étsg that a
more detailed formalism of internal variables might caghtiover the formation of dissipative
structures.
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ARE CONTINUOUS DISTRIBUTIONS OF
INHOMOGENEITIES IN LIQUID CRYSTALS POSSIBLE?

Abstract. Within a theory of liquid-crystals-like materials basedageneralized
Cosserat-type formulation, it is shown that continuougrithistions of inhomo-
geneities may exist at the microstructural level.

1. Introduction

In the conventional theories of liquid crystals, the freemgy density is assumed to be a function
of a spatial vector field and its spatial gradient. Starting from the piening work of Frank
[6], various improvements were proposed by Leslie [9] andEbigksen [4] [5]. A different
point of view was advocated by Lee and Eringen [7] [8], asyeasl 1972, when considering a
liquid criystal within the framework of the theory of matals with internal structure. The main
difference between these points of view is that the secoptbaph emphasizes the dependence
of the constitutive equations on tmeappingsbetween vectors or tensor fields, rather than on
their values alone. This mapping-dependence is essemtiabnly for sustaining continuous
distributions of inhomogeneities, but also, as shown by ditaand Trimarco [10], for the proper
setting of a definition of Eshelby stresses. The generalaxion between these two aspects of
material behaviour is described in [3].

2. The generalized Cosserat medium

A generalized Cosserat bo@CB) consists of the frame bundle of an ordinary b&tdyn other
words, a GCB is a body plus the collection of all its local femat each point. Denoting by
(I = 1,2 3)andx' (i = 1,2, 3) Cartesian coordinate systems for the bétignd for physical
space, respectively, a configuration of a GCB consists difitieése independent functions:

HY =H (X))
whereHIi represents the mapping of the frames attached at pointlt is important to stress

that the ordinary deformation gradieﬁ# = 5’% and the mapping-l,i are of the same nature,
but represent two independent vector-dragging mechanisms

A GCB is hyperelastioof the first grade if its material response can be complete#yaxc-
terized by a single scalar (“strain-energy”) function:

W =W, HY L H g XK

*Partially supported by the Natural Sciences and EngingeRigsearch Council of Canada, and DGI-
CYT (Spain) (Project PB97-1257).
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where comma subscripts denote partial derivatives. Unddiaage of reference configuration
of the form

YA = YAXY)
HA = HA (X?)
where the indice#\, B, C are used for the new reference, the energy function changes t
W = W(F'a Hia, HiA,B;YC)
W(F AFA H AHA HiA,BFBJ HA + HiAHA|,J; xKrCy)

@)

Notice the special form of the composition law for the detiixes of HIi .

Generalizing Noll's idea of uniformity [11], by taking inaccount the composition laws in
Equation (1), one can show [1] [2] that in terms of an archeltymergy function

We = We(Flo, Hig, H' 4p)

where Greek indices are used for the archetype, a GQmBifsrm (namely, it is made of “the
same material” at all points) if there exist three unifosniields of tensorg! , (X7), Q' , (X7)
andR! ;5(X7) such that the equation

WL HT L HY 3 X = WeFY Pl QUG HY 3PIgQ1, + HY R gp)

is satisfied identically for all non-singul&ri | and Hi | and for all Hi 1,J- Homogeneityglobal
or local) follows if, and only if, there exists a (global orckl) reference configuration such that
these fields become trivial.

3. The liquid-crystal-like model

We call aliquid-crystal-like mode(LCM) a material whose internal structure can be represiente
by the deformation of one or more vector or tensor fields. Mpecifically, we say that a GCB
is of the LCM type if a nowhere-zero material vector field= D' E; and a material tensor field
A=Al JEI® EJ exist such that the energy density function depends ongtsnaents in the
following way:

@ W=WFE | H L HY 5 X = f(F R D' HY D! 4+ HE Al xK)

where we have used the lettérto denote the new functional dependence.

To clarify the rationale behind this definition, we consiéiest the particular case of a ref-
erence configuration in whicB(X) constitutes a parallel unit vector field aAdX) vanishes
identically. We can then write (for that particular refecerconfiguration, if it exists) that

W= f(F |, H D' (H D" 5;xK)

This constitutive equation is unable to detect any diffeeeshetween different deformations of
triads that happen to map the director into the same vectepate. In other words, all that
matters is the resulting vector and its gradient, just ashin“tonventional” theory of liquid
crystals, and it is in this sense that Equation (2) constitat generalization. More importantly,
when seen under this light, the tengomno longer appears as an artificial construct, but as the
natural outcome of describing the manner in which the camveal archetype has been inserted
in the body in a pointwise fashion.
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It is apparent that the particular form of the constitutieg ladopted for an LCM must
entail certairminimal symmetrigsamely, certain local changes of reference configuratian t
are indistinguishable as far as the material response tcoed. In addition, an LCM may have
other non-generic symmetries, but here we are interestddrining those symmetries that are
already inherent in the definition. Now, any symmetry of a G&Bsists of a tripldG, K, L}
satisfying:

f(F'5,H 3D, H'\ nDM + HIy AM ;s XK) =
f(F1G' 5, H K 3D, (HY 3GINK ' m + H L) DM + HE K AM ;s XK

for all non-singularFi | and Hi 1 and for all Hi 1,J- Since we are looking for minimal symme-
tries, namely, those stemming from the particular depetel@ssumed oRl and its gradient,
we setG equal to the identity. It then follows that the energy fuantivill have the same values
for all K andL satisfying the following identities:

H ;DY =H' K';D’
and
HiM,NDM—l—HiMAMN=Hi|,NKIMDM+Hi|LIMNDM+Hi|KIMAMN

for all non-singularFi | and Hi| and for allH! 1,3- It follows immediately that the minimal
symmetries are those satisfying the following conditions:

(3) K';p) =D
and
(4) L'mnDM = @' — K'm)AMy

The first condition is the obvious one: the energy functiom @bint remains invariant under
any change of reference configuration which leaves the tdirext that point unchanged. In
other words, the matriX has the director as an eigenvector corresponding to a gahealue.
The second condition, on the other hand, is far from obviausauld not have been predicted
except by means of the kinematically based method we hawk udete that in the particular
case in which the tensor fiel is zero, the right-hand side of the second condition vasishe
is not difficult to show by a direct calculation that the cotien of all the symmetries satisfying
the above two conditions forms a groGgin, Which we will call theminimal symmetry group
of any LCM, under the multiplication law given by Equation.(1

Although not strictly necessary, we will adopt as theéM archetypea point whose consti-
tutive law is of the form

We = We(F' o, Hla, Higp) = fe(Flo. H o D, Higp)
namely, we adopA® g, = 0 at the archetype. According to the general prescriptiomififor-
mity, then, fieldsP' o (XX), Q' ,(XK) andR! ;5 (XK) must exist such that:
W(F' | H L HT 5 xE)
=We(F' | P'o, H' Q1o HYy 3P Q1 + HI R up)
= fe(F' | P'a. H' Q"o D% (H'| 3PY4Q"y + H' | R 5)D%)
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It is a straightforward matter to verify that the resultinmétion W has the requisite form:
W, H, Hil,.]? XKy = f(F'|, H| D',(HiLJDI +H A )
where
D| =Q|aDa
and
Aly =R (P~ HP ;D
Indeed

fe(F'1 P'e, H' Q' DY, (H') 3P4Q" o + H' R 4p)D%)

= fe(F | P!, H' D! PIg(HT| 3D + HI Al )

= f(F'y,H D' H| ;D' + HI Al 5; xK)

Under a change of reference configuration we know that treoteffeld A ; transforms to
Afg = (HA ;D' + HA Al ) (F)'g

and we ask the question: does there exist a change of reéecamdiguration leading to an
identically vanishingA” g in an open neighbourhood of a point? It is not difficult to stbat a
sufficient condition for this local homogeneity requirernentake place is that:

Aly=0';
identically in that neighbourhood. Indeed, if that is thegave can write:
Afg = (HA DY ;FH7g
Therefore, any change of reference configuration of the form
YA = YAxK)
HA = @Q7H* 5%

will do the job. We conclude then that the local homogeneftgroLCM body is guaranteed, in
addition to the ordinary condition of homogeneity of the neaeedium, by the equation

(5) Al;=D',

describing the compatibility of the liquid crystal supeusture. If, however, the underlying
macromedium is homogeneous but condition (5) is violatezlhave a genuine distribution of
inhomogeneities at the microstructural level. On the otieerd, it can be shown that the two
conditions taken together are not only sufficient, but alsoessary, for local homogeneity of
an LCM uniform body whose symmetry group is minimal. Thistfaclds true even though the
minimal symmetry group is continuous. More surprisinglgrimps, the same conclusion holds
even when the macromedium is a genuine liquid, namely, wisesymmetry group is the whole
unimodular group.

Assume that we have a reference configuration that is honeogesnas far as the underly-
ing macromedium is concerned and in which the director figldriit and parallel. The only
source of inhomogeneity left is, therefore, a smooth seaoddr tensor field\ (X). By the po-
lar decomposition theorem, this field can be seen geomiiyrizs a field of ellipsoids, whose
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axes and eccentricities vary smoothly from point to pointpdinciple, then, we have a situation
equivalent to that of a standard liquid crystal, except thatstandard ellipsoids of orientational
distribution are now replaced by the ellipsoids arisingrfdhe inhomogeneity of the microstruc-
ture. These last ellipsoids are manifest, as already netesh if the director field is perfectly
unitary and parallel! The typical optical patterns, whosautiful curvy shapes have become
associated in popular imagination with liquid crystalsd aisually explained as a manifestation
of the variation of the mean orientational order of the moles, could therefore be explained
equivalently by the presence of continuous distributidrisltomogeneities.

4. Concluding remarks

We have shown that, at least in principle, it is possible tonfdate a theory of liquid-crystal-like
uniform bodies that admit continuous distributions of infameneities. The main ingredient of
this theory is the inclusion of maps, and derivatives thiereetween whole fibres of the princi-
pal frame bundle of the underlying body. This stands in @sttwith the conventional theory,
which recognizes only the transformation of a single veéigld and its derivative. Although
the treatment of a liquid crystal as some kind of generaliZedserat body is not new, the way
in which a particular director field is made to enter the folation is different from previous
formulations. Instead of imposing a constitutive symmetppn a standard Cosserat medium,
we emphasize a kinematic motivation as a rationale for caiméhg the constitutive functional
to a particular form, and only then derive a-posteriori hssfor the minimal symmetry group.
These results differ form the a-priori counterparts in [[@§148] in the rather complicated sym-
metry requirement for the microstructural component, airegnent that is absent in the a-priori
statement. But itis precisely this condition that allowstfee existence of legitimate microstruc-
tural inhomogeneities. Further mathematical details efttieory are now under investigation,
including differential-geometric implications.
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MATERIAL CRYSTAL PLASTICITY AND DEFORMATION
TWINNING

Abstract. In classical crystal plasticity, the lattice orientatianunchanged from
the reference configuration to the local to the local intetiae is plastically de-
formed configuration. Material plasticity corresponds tdifferent irreversible
process by which the lattice rotates together with matéries between reference
and intermediate configurations. Deformation twinning nisexample of mate-
rial plasticity. A continuum model for mechanical twinnig single crystals is
presented in this work. Twin formation is regarded as analistlocalization
phenomenon, followed by twin front propagation. Finitenedmt simulations are
provided showing the twinning and untwinning of a singlestay under cyclic
loading, the development of twins at a crack tip, and laste/formation of twin
networks in a coating on an elastic substrate.

1. Material vs. dislocation-based crystal plasticity

The constitutive framework of anisotropic elastoplasfitias been settled by Mandel in [11]:
it requires the definition of a tryad of directors attacheeg&sh material point. In the case of
single crystal plasticity, the relative rotation rate dfitze directors with respect to material lines
is derived in a unique way from the kinematics of plastic glatcording taN slip systems. A
unique intermediate configuration can be defined for whiehdktice orientation is the same as
the initial one. This results in a multiplicative decompimsi of the deformation gradierit into
elastic and plastic parts, as shown on figure la:

N
F=EP, PPt=3 "y m*@n°
s=1

where slip systens is described by the slip directian® and the normal to the slip plam&,
andy S denotes the amount of associated slip. It follows that froenreference configuration to
the intermediate one, the lattice directions are left ungked whereas the material lines rotate
according to the rotation part in the polar decompositioR.of

One can also imagine an irreversible deformation procesghigh the lattice directions of
the crystal would simply follow the material lines. This ib&t we calimaterial crystal plasticity
It leads to the picture of figure 1b where the individual atamdergo a uniform simple glide in
a cooperative way. However this process is not so simplenagyittook since during the shearing
the lattice structure is changed usually going from a higiyinmetric class to a less symmetric
one. Some critical shear amounf may exist for which the crystal structure is retrieved with
possibly an orientation different from the initial one ([L4Such a deformation process exists

*The authors want to thank Prof. André Pineau for many dsoas on twinning phenomena in zinc.
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in some crystals. It is referred to deformation twinnind[2, 16]). The sequel of the paper is
devoted to the continuum modelling of this particular modsemial crystal plasticity.

Parent

(b)

Figure 1: Kinematics of crystal plasticity based on distamaglide (a); homogeneous
shearing of a lattice as an example of material crystaligias(b).

Figure 2: Twin network and four cleavage cracks in a largezilat grain coated on a
steel sheet (grain size : 50f).
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2. Continuum modelling of deformation twinning

2.1. Elements of deformation twinning

Deformation twinning now is a well-known deformation mewisan in cubic and hexagonal
crystals. A modern and exhaustive account of the currenvlauge from the crystallographic,
metallurgical and mechanical point of view can be found ih [BVe will simply retain the
following features:

o the deformation of the twinned part of the crystal can be rilesd by a homogeneous
shearingyg in directionnq and in the plans;

e the crystal structure of the twin usually is the mirror imagfehe parent crystal in the
crystallographic twin plan&q; K1 very often coincides with the plane of contact between the
two crystals called composition plane which is neither tedanor distorted; the direction i8
undergoing only a rotation is calleg andK» denotes the plane containing and normal tcS;

e in fact, a simple shear applied to atom positions, as disfioen lattice points, is not
always capable of producing all the atom movements whichegeed to form a twin: additional
reshuffleof some atoms of the unit cell is necessary, in particular ittipie lattices.

For simplicity, the present work is actually restricted tmrgpound twins for which all el-
ementsK;, n; are rational ([10]). More specifically, the provided exaagptleal with pure zinc
having hexagonal closed—packed symmetry. Using clagsidex notations for this type of sym-
metry ([2]), the twinning system of pure zinc is given by:

n =< 1011 >, Kq = {1012}, np =< 1011 >, K, = {1012, yp = 0.139

The lattice orientation relationship between the pareydtat and the twin in zinc are: a mirror
symmetry inK 1, or equivalently a rotation of angte aroundr4, a mirror symmetry in the plane
normal tonq or a rotation of angler around the normal t&4.

2.2. Elastoplastic model of twinning

Mechanical models for twinning are available from both rsmopic and macroscopic points of
view. At the level of the cooperative behaviour of atoms,-Himear elasticity with a non—convex
potential has proved to be an efficient method to describk aytzhase transition—like process
([4, 19]). Indeecklastic twinningexists if there are no lattice friction forces opposing thation

of the dislocations at irregular interfaces. In this cagéng will run back when the applied
stress is removed. In calcite for instance, small twins eatel by indentation and disappear
when the load is removed ([10]). However, more generallyihivig isnot reversibleand twins
remain in a crystal after it has been unloaded. The reas@m ddt that accommodation has
occurred by slip, relieving the stresses at the edge of the tunder these conditions, blunt twin
plates with quite irregular interfaces are possible (fi®reThat is why deformation twinning
is modelled here as an elastoplastic process associatediisdipation. Such an approach has
already been proposed to model at the macroscopic levebthene fraction of twins appearing
in a polycrystalline volume element of metal deforming bytbslip and twinning ([9, 18]). We
tackle here a different problem since the aim is to simulagenucleation and propagation of
twins at the grain level.

The classical framework of crystal plasticity is now exteddo incorporate the following
features of twinning (figure 3):

o twin formation is modelled as an unstable plastic slip psscaccording to classical
dislocation—based crystal plasticity;
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e as soon as a critical amount of shear= yg has been reached for the activated twin
system, the orientation of the isoclinic intermediate aunfation is changed switching from the
initial parent one to that of the associated twin.

The driving force for twinning is the resolved shear stress the twin plane in the twinning
direction and the slip rate is computed using:

L SN e =10+ Q(1L— e PY—E(/vo))

y =<

where the viscosity parameteks andn are chosen so that the resulting behaviour is as rate—
independent as necessaryy denotes the initial threshold for twinning and the hardgnpa-
rameterQ is taken negative. Such a softening behaviour makes twifeation an unstable
deformation mode associated with strain localization. flinetion floorE(.) taking the integer
part of . is introduced so that the initial threshold is recoveredeotie local twinning process

is finished. Contrary to the classical Schmid law in dislmrat based plasticity, the sign of
plays a role since twinning is possible only in one specifiection : compression in directian

in zinc triggers deformation twinning, but not tension. Tdimice ofm andn is such thatr, y
andy are positive when twinning occurs.

initial associated
orientation twin

F

8

Figure 3: Kinematics of twinning plasticity

_

.

2.3. Thermodynamic setting

The state variables of the system can be taken as the GregmarAge strain tensor with respect
to the intermediate configuratian

1
‘A=ZETE-D

and temperature. The free energy”A, o) may also be a function of an internal variabl¢o
be specified. In the sequel, it is referred to the pure isathecase. Only one twinning system
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is considered for simplicity. The local form of the energyae equations then reads:
pe =T FE!

whereT is the Cauchy stress tensor anthe internal energy. The free energy takes the form:

FAICFA+g@)

ﬁ 1
peY (CA, ) =5

14

The Clausius—Duhem inequality reads:
—pe +TFF 120
Noting that
T:FE = (ETE )PP T+ ETET): FA

it follows that

9 . . 9
o T A+ @TE ) Pt - p Vs s 0
afA & ~F == ~~ 9

from which the state laws are deduced:

The thermodynamic force associated with the internal béeiss:

y
A= B -q

The intrinsic dissipation rate then becomes:
D=%s:PP Lt Ad with fs="ETTE T =ETET
0
The positiveness of the intrinsic dissipation is then eediny the choice of a convex dissipation
potentialQ (*S, A):

1 —
Qs A= —— <1 Ml with =S men)

n+1 K
such that .
. _1___ T —Tc n
PP SyisTC Tk men
1Y . 0Tc
a:—:—y—
A A
(1) D=1ty +Ad

Only calorimetric measurements can lead to an estimatiathefdissipation associated with
twinning in a single crystal. It appears from (1) that the am®f dissipated power is determined
by the proper choice of the internal varialteand this will be dictated by the experimental
measurements. Let us distinguish three cases:
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« if no internal variable is introduced) = ty so that the entire plastic power is dissipated
into heat; it is positive for a proper choice wf andn (such that > 0 wheny > 0), even if a
softening behaviour is introduced,;

o if we takeg’ = ¢ = —A, thena = y andD = (t — tc)y which vanishes in the rate-
independent case; accordingly, the entire plastic poweorisidered as irreversibly stored, like
dislocation forest hardening in dislocation—glide pleisgi

eifwetakerc = 10— A ie. g = —A = QL —e ) thena = y andD =
(r — (tc — 19))y = 1oy in the quasi-rate—independent case; it is again positheeghe twin-
ning system orientation convention is such that 0. This choice is classical in conventional
elastoviscoplasticity ([1]).

A much more fine tuning of the internal variable will be neeggsn the case of twinning
([17]) and is not undertaken here.

3. Finite element simulations of twinning in single crystas

The ability of the model to reproduce several experimergatures of deformation twinning

in single crystals is illustrated for three different siioas. For that purpose, finite element
simulations are provided based on classical nonlinearrighgas for the resolution of global

equilibrium and the local integration of the evolution etjoias.

3.1. Twinning and untwinning under cyclic loading

The main justification for choosing a softening stresshstcanstitutive equation in the model

stems from the experimental results obtained by Price Y[@5zinc whiskers deformed in ten-

sion under a transmission electron microscope. He was alidbgerve and control the nucle-
ation of a single twin and its propagation in the sample erssstion. The twin then thickens

and invades the entire specimen. The load—displacemeve displays a sharp softening stage
associated with twin nucleation. The parameters of the inualee been adjusted according to
this curve.

The simulation of a single crystal zinc plate oriented far@ single twinning in tension
is now considered. A geometrical defect is introduced tgger strain localization that is in-
terpreted here as twin nucleation. Indeed a deformatiod bppears and its orientation corre-
sponds to that of a twin. Once the critical amount of shgds reached, the twin starts growing.
Twin growths is the result of the motion of the localizatioarft on one or both sides of the twin
in the spirit of ([12]). The twin thickens and spreads over ¢imtire specimen (figure 5a). When
the whole sample has twinned, the crystal behaves eldgticaénsion. The crystal can then be
entirely untwinned if it is subsequently subjected to coesgion (figure 5b). It must be noted
that at the last deformation stage, a virgin crystal is olgidithat can again twin in tension. This
results in the hysteresis loop shown in figure 4.

3.2. Twinning modes at a crack tip

Let us now consider a single crystalline Compact Tensiogispn classically used in fracture
mechanics. The-axis of the zinc crystal is normal to the crack plane andrhiml crack growth
direction coincides with [010]. It is recalled that twinning occurs in a specific direatij; and
not in the opposite direction. A positive resolved sheagsstiin this direction is necessary for
twinning to become possible. The distribution of resolvieelss stresses for the single considered
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Figure 4: Load-displacement curve of the twinning and unhirig of a single crystal
in tension-compression

twin system is shown on figure 6a. It appears that for the ¢hosentation the resolved shear
stress is negative ahead of the crack tip. Accordingly, a t&n form only behind the crack tip
where the stresses are compressive. This is indeed poasibl®wn on figure 6b. This situation
has been observed very often in the deformation of zincregstand is therefore justified by the
present computation ([13]).

3.3. Multiple twinning in a zinc coating

The last example deals with the simulation of the formatibtwin networks in a single crystal
coating on an isotropic hyperelastic substrate subjedédrtsion. Two twinning systems are
taken into account here: 701], (0112 and [0111], (0112). Thec-axis of the crystal is normal
to the coating and the tensile vertical direction isJO], parallel to the interface. The twinning
directions of the considered systems are contained in tngepbf the two—dimensional simu-
lation. A displacement is prescribed at the top of the saraptkthe specimen is fixed at the
bottom. Figure 7 shows that a first twin forms and is repeltati@interface, which corresponds
to the formation of a second twin. A second pair of twins fothen independently at the lower
part of the sample. Two of the twins intersect. The growttheftivins is limited by the fact that
the interface cannot accommodate the deformation sinceubstrate remains elastic. Instead
many twins form to build an actual network. This type of natkvis similar to that of figure
2. Sections of the coating are presented on figure 8 showagnim development in the thick-
ness of the coating. No direct experimental evidence of teflexion at the interface has been
detected but this may be due to the specific crystal oriemsti
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(b

Figure 5: Twin formation and propagation in a single crystaénsion (a) followed by
compression (b).

The twin systems activated in each strain localization bemedgiven on figure 9. In the
computation, the orientation of the sample is sligthlyetilvith respect to the previously given
orientation so that twin system 1 is significantly more attdd than twin system 2. It is however
quite surprising to see that the pair of almost perpendiddads at the top of the sample belongs
to the same twin system. This should in principle be impdsssince two twins having the
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Figure 6: Twin formation at a cleavage crack tip : resolveeaststress distribution
((@), in MPa) and equivalent plastic deformation field (b).



108 S. Forest - R. Parisot

i

TTTT]

T
I
I
I
|
i
H
I
NN
[TTTTT
T

I
T
T
T T

T TT

[

Figure 7: Multiple twinning in a zinc coating: the first twia fepelled at the interface
coating/substrate (left), multiple reflexion and formatlead to a network of twins in
the coating (right, only the coating is represented).

Figure 8: Section of the coating in the thickness showingstiepe and orientation of
the twins; the thickness of the coating isud.

same twin plane should be parallel. These bands must bgiieted in fact as shear bands in a
single crystal undergoing single slip. Simple glide in tvnhing direction has been artificially
introduced in the modelling to simulate twin formation. Twbrmation has been interpreted
as a strain localization phenomenon. In single slip, it isvin that two localization planes
are possible : slip bands lying in the slip plane but also kiekds that are normal to the slip
direction ([5]). The last picture gives the distributionlaftice rotation with respect to the initial
orientation before the twinned lattice has been reindeXéds information enables us in fact to
distinguish the different types of bands : slip bands areallsassociated with no lattice rotation
whereas kink banding induces lattice curvature. It appratsthe first twin at the top is link
twin and the second one a “slip twin”. A “kink twin” can be seen asaglsng of many parallel
twin lamellae. A severe limitation of the model is that suahkitwins are usually not observed
experimentally.
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Figure 9: Structure of the twins in the coating : (a) equinajgdastic deformation, (b)
twinning system 1, (c¢) twinning system 2, (d) lattice ratatbefore reindexing.

4. Discussion: The pros and the cons of the model

The proposed finite strain elastoplastic model of deforomativinning is able to account for

several experimental features : twin formation and propagan a single crystal, hysteresis
loop associated with a twinning—untwinning process, arsbape of twins at a cleavage crack
tip and build—up of twin networks in a coating on a substrate.

Several important limitations remain however. One may figtance discuss the fact that a
twinning criterion based on a critical resolved shear stress been chosen. It is often recalled
that twin initiation is a nucleation (in contrast to proptiga) controlled process. It can therefore
be affected for instance by prior dislocation glide so thabay be difficult to assign a critical
value tg to the twinning mechanism. Let us then admit thgtis the critical resolved shear
stress for twinning in a dislocation—free crystal like Riéczinc whiskers. The effective twin
nucleation stress can then decrease if dislocation glidealvaady taken place, according to a
softening law like:

T =10+ Qo(1 — e~ P2rslin)
whereQ is negative angrs|ip denotes the cumulative amount of prior dislocation glide.

Furthermore, deformation twinning is systematically atsted with dislocation glide be-

cause of the high local stresses arising for instance atinetip. This interaction has not been

taken into account yet, which leads to unrealistic locahlsgesses. Plastic slip can take place
before twinning and the question to be solved is then : whapéias to the obtained dislocation
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structure when it twins? How can prior slip activity affearther dislocation glide within the
newly formed twin? Mechanical metallurgy has already pledi some answers that must be
incorporated into continuum modelling.

Special attention should also be paid to the intersectiawinfs that has occured in some
simulations.

A strong limitation has already been pointed out, namelypifegliction of kink twins that
are not observed in practise. The elimination of such deétion modes is however possible
using for instance Cosserat crystal plasticity ([6, 7]).

An alternative approach to deformation twinning is propmbisg([8]) based on minimization
principles. This global approach enables one to predi¢teglilibrating structures that are
frequently observed. The difficulty then is the numericgbleration of all possible regions
and shapes where twinning can occur in order to finger out th& favourable configuration.
The authors themselves plead for a Landau—Ginzburg or Gétiard—type of modelling of
displacives phase transitions and deformation twinningatTs why an improvement of the
present model could be the introduction of an order paramaiteing at forbiding “interrupted
twins”, i.e. regions where crystal glide has begun but whieeevalueyg has not been reached
yet.
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J. F. Ganghoffer

NEW CONCEPTS IN NONLOCAL CONTINUUM MECHANICS

Abstract. A new theoretical framework in nonlocal mechanics is defibaded on
the concept of influence functions between material poiritisimvthe continuum.
The traditional idea of a fixed and isotropic representativieme is abandoned
and the non-locality is introduced via an influence functiwhich defines a non-
local interaction between material points. The generah&aork developed is
exemplified by the description of damage as a scalar intesaréble : the local
damage rate at a given point can be expressed as a path meghaing the in-
fluence functions and the values of the local rate of damagespiorted along each
path. The properties satisfied by the influence function esedvidenced and the
influence function is given an explicit expression, usingathgntegration tech-
nigue. The concept of a representative volume is furthenddfas an outcome of
the stationarity of the internal entropy production witepect to the path. Anim-
plicit equation which defines the representative volumerisitilated. The strength
of the nonlocal interaction is further incorporated inte #pace geometry, so that
a metric characteristic of a Riemanian space is couplecetonternal variable dis-
tribution. It appears that the curvature characterisestiength of the nonlocal
interaction.

1. Introduction

Traditional continuum models in nonlocal mechanics usuadly on the assumption that the
nonlocal variables are simply volume averages of the cporeding local variables over a fixed
and isotropic representative volume element around theidered material point, see e.g. [1,
2, 3, 4, 5]. Considerations based on micromechanical argtarfewever show that the size
of the representative volume, i.e. the extension of therdacteon shall depend on the local
variable distribution itself : in the work by Muihlhaus et §6]), a Cosserat theory for granular
materials is elaborated, starting from a particulate motleé model predicts that the shear band
thickness evolves with the shear strain. A micromechariggliment for nonlocal damage has
been advanced in [2]: the strain-softening damage due tohdited cracking is modelled by a
periodic array of cracks. The results of the model show tiaetastic part of the response shall
be local, whereas the damage recovered at the macro scilbeshanlocal. Furthermore, the
size of the averaging region is determined by the crack spaci

During loading of the cracked body, the increment of thesstedong one crack is the sum
of the average stress increment over the crack length armbtitebutions of all other cracks :

(1) S (0 = (a8 x0) + /V Ajj (% ©)AS! ©)AV(E).

The interactions of a set of microcracks cancel out over &t slistance, and this in turn deter-
mines the size of the representative volume. The kefrigl &) that determines the influence

113
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between two cracks located at poit&ndé depends on both the radial and angular variables,
and evolves with the current crack distribution patternu§;iihe form of the influence function
shall depend upon the distribution of the internal varialaleeach time / loading — step. The last
integral is in fact a path integral, depending on the spdiigttibution of the cracks. The path
that do effectively contribute to the local stress incretmamthe left-hand side of (1) change
according to the evolution of the spatial pattern of cracks.

In Ganghoffer et al., a path integral formulation of the mmall interactions has been formu-
lated, with damage as a focus. The scalar damage variabkergm@esents the internal variable.
The new concepts advanced therein can be considered agmpatd model in a phenomeno-
logical manner the nonlocal interactions between defecissiolid material. In this contribution,
we only give the main thrust of the ideas developed in [7].

2. Path integral formulation of nonlocal mechanics

The formulation of nonlocal damage relies upon the thermadyics of irreversi-ble processes;
accordingly, a damage potential function is set up, witluargnts the internal variables, namely
the local and the nonlocal damage. The consistency conditicthe damage potential function
and its dependence upon the local and nonlocal damage imghtegro-differential equation
for the rate of the local damage, that can be recast into thergeform

@) dx) = / G1(x, y)d(y)dy,

[ Gi(x, y)dy
Q Q

with G1(x, y) an influence function. Equality (2) is rewritten into the m@ompact form

3 d) = G(x, y) o d(y),

whereby the kerngb and the composition operatomre identified from the integral form in (2),
i.e. (3) defines an integral operator having the kernel

Gx.y) = G1(x. y).

1
[ G1(x, y)dy
Q

When the kerneG (X, y) only depends on the differen¢e — y) (e.g. in the form of the gaussian
(3)), equality (2) gives the rate of damage as the convolytimduct of the kernel with the rate
of damage. From now on, the starting point shall be the miaf?), in whichwe do not a
priori know the kernel @x, y). A path integration technique will then be used to deterntiirge
expression of this kernel.

Since the kerneGG determines the evolution of the internal variable, it shallcalled the
propagatoras well. Properties satisfied by the kerlare first evidenced. First note that
relation (3) embodies an implicit definition & : elaborating (3) yields

@) d(x) = G(X, y) 0 G(Y, 2) 0 d(2) = G(X, 2) 0 d(2)
and therefore, one has formally
(5) G(x,2) = G(x,y) 0o G(Y, 2)

in which the composition operator means that one first praggthe influence from to y,
and then fromy to z. Relation (5) is called thenclusion relationof an intermediate point. In
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its present form (4)G appears as a linear operator - acting on functiéns R3 - R -
and not depending on time (it only depends on the space lesjabrhis is consistent with the
fact that we shall only treat instantaneous quasi-stafisipiitive processes in this contribution
(consideration of time-dependent or dynamic phenomenddaiouolve a dependence of the
kernelG on time as well). As a consequence, the inversion propert@feads as

(6) G(X,X) =1d =G(y,X) o G(X, y) = G(X, y) = G(Y, x)~L.
According to the elementary property satisfied®y

) G(x,x) = Id,

we define the infinitesimal operat@, such that

(8) G(X, X +dx) = Id + dxB(x).

Note that (8) has been set up as an exact relation, which ntkeainB(x) includes virtually all
powers ofdx in the series expansion &f(x, X +dx). SinceG(x, X+ dx) connects two material
pointsx andy = x + dx which are in the same infinitesimal neighbourhoGdx, x + dx) is in
fact the infinitesimal propagator and it is seen that the kedge of the operatoB completely
determiness(x, x 4+ dx). In the sequel, we shall formally evaluate the propagattwéen two
points located at a finite distance from each other. This medo a two steps procedure : first,
the infinitesimal propagator is evaluated, and then a paégiation technique shall be used to
reconstruct the propagator for finitely distant points.

The operatomB is involved to derive a partial differential equation - gd- forG(., .).
SinceG(x + dx, y) = G(X +dx, X) o G(X, ¥) = (Id + B(x)dx) o G(X, y) , one has the limit

lim G(x+dx,y) — G(X,y)
dx—0 dx

= B(X) o G(X, y),
which implies
G
©) 5 % V) =BX) o GXx.y).
From (3), one then obtains the p.d.e. for the local damage
ad G . .
&(X) = W(X’ y) o d(y) = B(x).d(x)

with B(x) = G’(0). Equations (7) and (9) imply that the influence function igegi by the
integral

G(x,y)=1d + / B(2) 0 G(z, y)dz

S(y.x)
with S(x, y) a continuous path frong to x, while the inversion rule (6) can be rewritten as
(10) dG(x, y) 0 G™(x, y) = B(x).dx

and one cannot integrate directly the left-hand side ofehigation.
An iterative solution of equation (10) is constructed, whienders the limit functio® (x, y) :=
liMn— 0o Gn(X, y) :

(12) GXx,y)y=M lrexp / B(z)dz —‘
S(y, %)
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with M an operator, that orders the material points in space. imves by space translation -
which can be easily deduced from (11) - results in the moreiipéorm G(x, y) = G(X — y).

Assuming further that angular variations of the rate of dagenare much smaller compared
to the radial variations, at least infinitesimally, we get

X
(12) G(X,y=x+dx) = exp/ arx(X)(z—x)dz=
y
—x2]
- exp[az(x) (2= } _
X+dx
B y-x7?
- k[ 1(x) ]
introducing a quantity (x) as a function ofx, (such thatay(x) = —k/I(x)z), which can be

thought of as an internal length (it has the dimension of gtlenk is a constant which depends
on the dimension of space. Note that since expression (2)18bnly valid for pointsx andy
such thaty — x = dx, the internal length depends on the distance (not on thatatien of the
vectory — x if the isotropy assumption is kept) betweeandy as well, thus we use the notation
I (x, dist(x, y)) in the sequel.

In the second step of the procedure, the form (12) of the teiithal propagator is used to
evaluate the propagator for arbitrary poirtandy, now separated by a finite distance. Iterating
the integral equation in (2) yields :

. _i G(X,Y) . _i .
(13) dx) = C(X)S[ cw) dy!G(y, 2)d(z2)dz= C(X)S[G(x, 2)d(2)dz

with the coefficients

C(x) :=/G(x, y)dy.
Q
We next define the concept of path integral, and rewrite ($3) a

(14) d(x):/dy > / K (y, 2)d(2)ds(2)
Q SIX.Ylze S[x, y]

in which the functionK (y, z) is identified from (13) :

G(x, ¥).G(y, 2)

COOCy)
which means that one propagates the intermediate paiver all possible pathS[x, y] joining
the pointsx andy, fig.1. The summation done over all possible paths that fwrpbintsx andy
means that the variablecovers the whole space. A final summation is done so that theeirce
is evaluated at all pointg. Since a given path is in fact a line in space, the infinitekaligtance
elementdsin (14) is given by the expression

(15) ds? = gij dx dx]

K(y, 2 =

which involves the metric tensdu;j ) of the space. The co-ordinates of the generic point are

x} = x; x2 = y; x3 = z, when the space is sustained by a set of basis vetéprs The
coefficients of the metric in (15) are simply the inner prasiggj; = & .€;.
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Next, the concept of sum over all paths is given a more preuisaning, since we must
first characterise and label the paths in some systematickeayhat purpose, we make a space
slicing, so that a continuous path from the end poingsndz shall be decomposed mdiscrete
parts(z, zy, 2, ..., Zn—1, X) of straight lines, having all the same size= |z — z_1| /n, fig.2.
Iterating the inclusion rule so as to include the influencalbihtermediate points, we get

. G(X, Zn—1) G(Zn-1, Zn-2)
GX,2) = / CnD ———=ds(zp_1 )/ Cza) ———————=ds(zy_2)...
G(z2,21)
/ Ca /G(ZL z)ds(zy)dy

which means that the effect afon x is propagated through the discrete path defined by the set
of intermediate point$zy, 2o, ..., Zn_1), fig.2. In that way, a discretization of the propagator
G(X, y) is performed. Recall then the expression of the influencéicimant

(z —zi-1) }2'

G(z.7_1) = exp—k .
(i zi-1) = exp {|(zi,1,d|st(zi,zi71))

We further assume that the length can be written_1, dist(z, z_1)) = I(e.N), with N the
unit vector that joing; _1, zj, ande the length of the segmetﬂi 1, % ] supposed to be identical
for all segments. Restricting further to the isotropic asgtion, the lengtth does not depend on
the vectorN, which justifies the notatiol(e). Furthermore, we suppose that we can locally find
a system of co-ordinates such that the Riemannian spacesdandily considered as Euclidean;
as a consequence, since the infinitesimal lemigtlis an invariant, the infinitesimal segments
ds(zp) are all equal to the Euclidean distance, ids(zp) = ds = dz Vp < [0,n]. Since
now all the segments have the same length, the internaHé@gtremains constant. With these
assumptions, we evaluate the propagator feaimz,, which is the nearest point aftey:

/ G(22,21).G(z1,2)
Q C(zn)

exp—k [ (22— 202 + (21 — 2] /120)?

h / [ exp—k(z—21)2/1(e)2dz

Q Q

G(z2,2)

le

d 4\

in which the two length$(e) andl (2¢) are involved. We then use the following general equality,
valid for any non zero real numbeasandb

_ 1/2 b
/ exp[a(x — x1)2 + b(x — x2)2] dx = (ﬁ%) exp[ﬁ(xl — xz)z}

to derive the expression

replacing the volume occupied by the salkdby the infinite space}oo, +oo[. We thus obtain

G(z2,2) = lim |nf 12¢)

K 2
S Ble—o Xp[_2|(26)2(2_22)]
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which is nothing else than the influence coeffici€iiz;, z) whenz; is replaced by, ande by

2¢ (definingl (0) := 1). The integration over; has been performed over the whole space of
reels, i.e. over}oo, +o00[, whereas the solid occupies a finite volume in space : itasigit
however that this is a valid approximation when the lengtthefinteractions is much smaller
than the global dimension of the body. Repeating this pstiean leads to

1 .. |(n€) k 2]
16 G(X,2) = — liminf exp| — X—2°].
(16) *x.2) V2 =0 [((n=1)e) p[ 2I(ne)2( )
The continuous case in (16) is recovered when taking the bfrthe discrete influence coeffi-
cient in the following way : the length of the segments teralgdro, thusm — oo, € — 0,
ne — dist(x, 2), and the internal length becomb@e) — |(d(x, z)): we obtain the final
expression

1 k 2
17 G(X,2) = —exp|——— =X —2)“].
a7 (x.2) V2 p[ 2 (dist(x, z))2( ) ]
When a more complete expansion of the functi®gx, z) is retained, we believe that a closed
form of the kernelG(x, y) is much more difficult to derive. The nonlocal damage is ferth

defined as 1
d(x) := m! G(x, y)yd(y)dy
Q

using the kernel determined in (12).

The differences with the more traditional approaches, thg.nonlocal damage model in
[2] are: the internal length is a function of both the matepiaint considered, and on the dis-
tance between the pointsandy, whereas the traditional models assume it is a fixed, uniform
quantity. In (17))(x, y) is not defined, thus a complementary rule is still needed;riie will
be elaborated in the next section. Note furthermore that3j, the normalisation condition

vyeQ,diy)=1 = ¥xeQ,dx) =1

is satisfied.

The path integral formulation can further be interpretethim following way : consider a
path S joining x andz, and make a partition of the spagein all sets of possible such paths.
Then, for a fixed poiny, the integral (14) can be formally expressed as a sum oveoaliible
paths of the damage rate convected along each path with alitwdepequal to the influence
coefficientK (x, z). The set of paths that effectively contribute to the damadge at a given
point shall be selected from a thermodynamic criterion@iated in the next section.

3. Selection rule for the path

We first rewrite formally the dissipation as an integral iwg a product of - local - thermody-
namic forced; and associated fluxag in the more condensed form
(18) ¢ [ Fopvimsix vy

1
~ [ Gix, y)dy
Q Q

in which the summation is intended over the inde’ specific kernelG; (x, y) is associated to
each dissipative mechanism, and it has the form establisibé previous section. Considering
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nonlocal damage coupled to elasticity, the fluxes are tleeafdatreversible strain and the rate of
damage (with a minus sign), and the associated thermodgrfarces are the local stress and the
damage driving force, respectively : according to (17), ae identify the force and the kernel

associated to the irreversible strain as

Fo(y) == 0 (y); Go(X,y) '=38(X—Y)
and the force conjugated to the damage rate splits into &doo&ribution
Fi(y) = We(y): Gpy = 8(x~y),

and a nonlocal contribution
Fa(y) := B(1—d(y)),

in which the kernelG(x, y) has the form defined in the previous section. We then perfoen t
variation of the integral in (18), considering thats a fixed point in space :

(19) ¢ = jG,(x )y /S{H WVi(NGi(x, y)}dy —

8 {f Gi(x, y)dy}
3 [IROVimGix v dy

[f Gj (X, y)dy} @
Q

We first work out the termy" § {F; (y)Vi (Y)Gi (%, ¥)} dy , which is rewritten as the path integral
Q

/S{Fi YV (Y)Gi (x, )} dy =
Q

/Fi(Y)Vi(Y)5 3 Gi(x —2) '( y)ds<> dy
Q zeg[x,y] S[x, ]

where the summation (defined by the sympdlis performed over all pathS[x, y] that connect
pointsx andy. The variation in (18), (19) is performed with the quansta the extremal points
x andy considered as fixed. Furthermore, in a first step, we considemetric of space as a
given quantity, at each point along any path.

As a matter of simplification, we set Uf(z) := S[X, Y]; the stationarity condition of the
internal entropy condition}(%%) = 0, is finally expressed into the condensed form [7]

Gi(y,
/G(x y)dy/ F(yViydy ) Gi(x, ) 2LV g
Cl()’)
Q yean 8@y cis(z)
(20) - / Gi(x,y)dy/{Fi(y)Vi(y)Gi(x,y)}dy=0
yeaiQ Q
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which appears as a mixture of boundary and volume terms.eSgfam (20) is compacted as

PVl _ ¢l
[ Gx, ydy  [G(x, y)dy
Q2 Q

(1)

with self-explanatory notations. The left-hand side repres the average flux of internal en-
tropy through the boundary &% (due to the normalisation coefficienf Jj Gj (x, y)dy), and

the right-hand side is the average internal entropy pradlircéhe vqumeQ (according to the
normalisation coefficient/1f G (x, y)dy).
Q

The concept of representative volume at the material pqii (x), arises from the set of
all pointsz enclosed within the volume delimited by the boundag(z) in (4.9): equality (21)
then defines implicitly the representative volume as thegpbints interacting with the point
X, such that the internal entropy produced withr(x) is equilibrated by an equal and opposite
flux of internal entropy across the boundary; (x). Thus, we further rewrite (21) a

22) Ve V]
[ G y)ydy [ G ydy
yeaVr (X) yeVr (X)

Since only the contribution to the dissipation due to naraloariables intervene in (21), equality
(22) can be rewritten :

fyenoo IFatr Vel o] -3 [0 ] ar
f exp{——[k( y))] }d)’

y€IVr (X)

ferr(x){Fd(Y)Vd exp{_%[ ] }

[ ool -3 [1557)] }dv

yeVr (X)

(23)

with the non-local damage driving fordg (y) defined at the beginning of previous section.

The concept of &epresentative volumis then defined via the internal lenditx, dist(x, y))
which connects the point- centre of the representative volume - and the pgion its boundary,
as the following set of points :

Vr (%) == {y € Q/dist(x, y) < 1(x, y)}
which is not necessarily a sphere. The internal length isrekmawn that is determined from
equation (23).

The evaluation of the internal length at each time step is tftome in a two-step uncoupled
procedure : in the first step, equation (23) is solved, udiegvalue of the damage and rate of
damage at previous time step. In the second step, the lodai@mocal damage variables are
updated, according to the return mapping algorithm desdrib [6].

4. Geometrisation of the interaction

The path selection rule has been obtained under the assumtipait the metricgj ) of this space
is given; in fact, the influence functidB(x, y) is a function of the metric, via the internal length.
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We want to reflect the fact that the forces responsible fontitdocal interaction can be included
into the geometry of the interaction, thus we envisage atin in which the metric is coupled
to the internal variable distribution.

As a matter of simplification, define the coefficients

G(x,29G(zy)

Axy(2) == co ,

that intervene in equation (20). The coefficiehty depends on the metric, and possibly on
the first order spatial gradient of the metric, thus we usentitation Axy(gij (2), gij | (2)); the
differential element of lengtlls(z) involves the metric tensor according to the relation (15).
Latin indices take their values in the ddt 2, 3}. We now perform the variation in the path
integral (18) with respect to the metric, which gives thdation of the term

) / Axy(gij (2, 9ij,1 (2)ds(2) ¢ =
Six.y]
[ Axy(gij (), Gij.1(2) + Axydds(2)] ds(2).
Six.y]

We introduce the energy-momentum tenggr, see [8], defined as

A A
Tij 1= o =l (oY

agl a(dlgij)

)

and the Christoffel symbols
l—-_k_._}km(, S Gim =G )
ij = 29 9jm,I +9im,j — Gij.m

such that the covariant derivatiiul of the contravariant vectar := %’%ej , locally tangent to
the path, expresses as

Dul :=dul 4+ r)u"ulds

A set of elementary calculation [7] renders the variation

(24) s {/S[ ]Axy(gij @, 9ij,|(2))d5(2)} =

s

Duk
—/ Tik,l + il ——Axy giksX (2)ds(2).
syl | ds

Since the variationsx! () in (24) are arbitrary, we get the following condition, vahdl each
pointz € S[X, y]:

Duk
(25) (Tik,l + 8l D—SAxy> gj =0, V.

Equation (25) is the sum of one term that contains the energteat of the nonlocal interaction
(due to the energy-momentum tensor) and of a second terrat¢batints for the geometric part
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of the interaction (via the metric tensor and the covarianivdtive of the vector tangent to the
path).

The energy-momentum tensor reflects the strength of thevoahinteraction, and we see
from the structure of (25) that the induced curvature alsotha meaning of a field strength. The
Christoffel symbolﬂ“ﬁ that intervene in the covariant derivatia! are indeed directly related
to the - contracted twice - curvature tensor (Ricci tengiejined as

ol | | ~m my|
Rik == Tii1 = Ttk + TikCim = Tit Tkm-

The scalar obtained by the contractigp Rk represents the scalar measure of the curvature of
space. The higher the strength of the nonlocal interacti@nhigher the curvature; this idea is
supported by the well-known case of plasticity within satidterials, where a high density of
dislocations at a place curves the space around. Therdfierphysical meaning of relation (25)
is that the strength of the interaction is incorporated thevgeometry of the space. We follow
thereby a trend which is nowadays classical in physics, hviarted with general relativity (the
metric tensor plays there the role of the gravitation padént

The fact that the nonlocal interaction shall follow certgiaths in space can be under-
stood from qualitative micromechanical arguments : whessehdefects are not isotropically
distributed in space, but along certain lines insteady thneitual interaction will follow these
lines. As a perspective of development of the present woekcan mention the involvement
of such a formalism to treat the more general case of a taldiké internal variable, having
plasticity in mind.

di.)

5 [.r, y]

Figure 1: Splitting up of all spatial paths froxto y.
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d(h

Zn=X 7l oz 0=z

Figure 2: Space slicing. A continuous path fraltx) to d(z) can be approximated
by a sequence of value§z;), d(z2), ..., d(zn). This approximation becomes exact if
d(zi-1,z) — 0.
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GENERIC*, AN ALTERNATIVE FORMULATION OF
NONEQUILIBRIUM CONTINUUM MECHANICS?

Abstract.

During the last 15 years a bracket formalism of dissipatmatiouum physics
has been developed which resulted in a formulation whicthéstly denoted as
GENERIC. GENERIC has been applied to different problemsootiouum ther-
modynamics, often in this way, that a well-known problem weformulated in
GENERIC formalism. So in 1997 the GENERIC form of the equagiof motion
of a Navier-Stokes fluid was formulated. To learn some mooeiathe GENERIC
procedure we consider here a general 5-field theory of fllidsally GENERIC is
formulated for an isolated system, but here we will dischedacility to formulate
GENERIC for an open system.

1. Introduction

The phenomenological theories of thermodynamics are elividto continuumtheoretical ones
and into those of discrete systems. There is a variety of gthenological non-equilibrium
continuum theories which are similar, but differ in basimcepts [10]. These are the Linear
Irreversible Thermodynamics [2], Rational and Extendedritodynamics ([14] to [7]), Non-
Classical Thermodynamics [9], and theories using evalutidteria [11] and variational prin-
ciples [6]. These well-known thermodynamical theoriesrave added by a special dissipative
continuum procedure which was developped during the lagea$s starting out with a bracket
formalism originated by an extension of Hamiltonian medétsfi3]. One result of this bracket
approach is the GENERIC formalism [4, 5] which is totallyfeitnt from the theories men-
tioned above, but is claimed by its investigators to be gahevalid for all discrete systemsall
theories in field formulation. In GENERIC the balance equraiare generated by total energy
and total entropy both acting as potentials and being onpexdéent on the wanted fields and
not on the state space. The GENERIC balances are splittétivatjdinto a reversible and an
irreversible part. Beyond the balance equations therecacalded degeneracy conditions which
are unknown in conventional, rational, and extended thdymamics. Jacobi identities stem-
ming from the antisymmetric bracket of the reversible p&the balance equations and calling
to mind the Hamiltonian mechanics background of the GENERIMalism are also unknown
in the other approaches [1].

The distinctions between GENERIC and the usual approactadérfor a possibility to
compare them in a way as general as possible. Here a genéedd Sormulation for fluids
is considered in GENERIC treatment. First of all we reportgemeral the GENERIC setting
which is independent of special constitutive assumptidrtgen we will extend the GENERIC

*General Equation for the NonEquilibrium Reversible-lmsible Coupling
TFinacial support by the VISMAI Company, D-95085 Selb, Gemna
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formalism to open systems. The structure of GENERIC can bvated by a microscopic
foundation [12],[13].

2. GENERIC setting
The fundamental structure of GENERIC is determined by sildmg blocks [3] to [12].

. The set of the basic or wanted fieldof the system which is presupposed to be open,
. the total energf°t(Z) of the open system and
. its total entropyS(Z), as two global potentials which depend only of the basicgield

. two, in general operator-valued matric®&) and

g h W N P

. the dissipation operato¥1(Z) which depend on the state spa€eavhich is not identical
to the basic field¥,,

6. the supply of the wanted fields wich is vanishing for an isolated system.

Theequations of motioof the basic fieldZ have the special GENERIC form

SEtot 5S
1 Z=L — = 4 f
(1) *Z =1L 7 + M 57 +fe

which always can be split into its reversible, its irrevbisiand its supply part

SEtot - 5S
- 57 BtZ'” :=M'5—Z, Btzsup:Zfe.

2) HZ'® =L
Hered/é is the functional derivative which maps global quantitiesacal ones, as we will see
in the GENERIC treatment.

Beyond the equations of motion (1) the complementary degegpeonditions

8S(2) SEL(Z)
3 L — =0, ——=0
® 8z M YA
are satisfied byC and M. Therefore the degeneracy conditions (3) describe thesible-
irreversible coupling which is meant in the name of GENERIBe two contributions (3) to the
time evolution ofZ generated by the total ener@}°! and by the total entrop$ are called the
reversible and irreversible contributions to dynamicspeetively.

General properties of and. M are discussed easily in terms of two brackets, one is anti-
symmetric, the other one symmetric

[A, B] := <§—§ L- §—§> = —[B, Al + %(OVBU(A, B) + O"®V(B, A)),
(4) [A, Al = OV (A, A),
(5) {A, B} := <§—;\,M~ §—§> ={B, Al + %((9‘” (B, A) — O''T (A, B)),

(6) (A A+ O (A, A) > 0.
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Here(, ) denotes a scalar product, especially

SA . 8B\ _ [[3A . 6B7 3
@ <5—Z,£~8—Z>._/g[52~£-82]d X,

A andB are sufficiently regular and real-valued functionalZorO"®? is the reversible part, and
O'"" is the irreversible part of the flux through the surface ofWblimeG. From the setting (4)
follows, that£ is antisymmetric, whereas we have to demand the symmetiy @fhich cannot
be concluded from (5). Now we can express the degeneracytioorsd(3) with the brackets, we
find

(8) [S, EtOt] _ (/)I‘ev(EtOt7 S) =0, {EtOt7 S+ Oirr (EtOt’ S =0

The antisymmetric bracket is presupposed to satisfy thebiadentity for closed systems, i.e
all the surface terms vanish

©) [A.[B.C]l +[B.[C. Al +[C.[A, B]] =0.
According to (1), (4) and (5) we can write the time evolutidnfoas

SA_ oa

_ 3 oA _o0a
(10) A_/a(Z)d X, — ==

and because the system is an open one, we obtain
d 3 tot da 3
(12) aA: daZ) d°x =[A,E*™”' ]+ {A, S} + a—z-fed X.

According to (11), (8), (4) and (5) we obtain the time ratehaf total energy and that of the total
entropy of the isolated system

dgtor _ pptot gtoyy , (gtot S}+/ ad® o d3x
dt ’ ’ 8Z
. aetOt
(12) — Orev(gtot gtoty _ i (gtot g, +/ 37 -fe d3x,
9s = [sE°4(s S}+/@~f d*x
dt ’ ’ 0z °
dos
(13) _ Ore”(EtOt, 9 +{S, S}—I—/ 8% .fed3x.

with the entropy production
c={S.§+0(S 9 >0.

This inequality represents the second law of thermodynswfian open system in global formu-
lation, where the surface term represents the flux of thepythrough the surface of the system.
Itis also clear, that all the surface terms have to vaniskeifvant to describe an isolated system.

To go on with the GENERIC treatment we now have to introdugestitutive assumptions,
that means, we have to proceed beyond the general settingERIC.
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3. GENERIC treatment

We consider an one-component simple fluid which is decrilyefivb basic fields: Mass density
o, material velocityv, and specific internal energy Therefore is the set of the wanted field
given by

(14) Z(X, 1) = (0, p =0V, n:=08&)(X1).
Then we can introduce the global potentials, as the totabgraf the system
2
1)
(15) 2 20x.0) + (% t) | d°x,

and the global entropy of the system is by setting a function&

(16) s@) = / 0s(0. p. 1) d3x.

More over, we know about a five field theorie, that the fieldethtawsatisfy the following balance
equation for the wanted fields

reversible part irreversible part  supply
17) otp= —V-pv +0 +0
dtp= —-V-pv—VP +V.V +f
ogn= —-V.-pw—PV.v 4+Vv:V-V.q +r

whereP is the pressureV is the traceless viscous pressure tengds,the heat flux density,is

the supply of the momentum ands the supply of the internal energy. We have also performed
a split into a reversible and an irreversible part, respelti But this is an unsolved problem in
GENERIC, how to do the right split. Until now it is only posklto see that the split has been
found correct, if the resulting entropy production is thghtione. But for knowing the entropy
production you have to treat the five field theory by anotheotiy for example by Rational
Thermodynamics and by exploiting the Liu-procedure [9].

3.1. State space

In 5-field theory the wanted basic fields (14) are those of d fnd because we consider dissi-
pative fluids, we choose as a state space one includes thHemgadf the basic fields

(18) zZt = (0,n,V, Vo, Vi, V).

Taking into account, that state spaces are spanned by iobjgaantities we have to change (18)
into

(19 Z = (0,n, Vo, Vn, (VV)®).

Here ()S is the symmetric part of a tensor. Because of (14) the caortistt quantities in the
balances (17) are

(20) V =V(EZ(X1), ax,t = Q2 ).
(21)

The viscous pressure tensor is symmetric

(22) Vet = Ve,

because we only consider fluids without internal spin.
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3.2. Reversible part

Because in GENERIC the equations of motions for the basid<fi€l) can be split into their
reversible and irreversible part (2), we start out with teeersible part of (1) which is as rep-
resented in the first column in (17). The first step is that weeha calculate the functional
derivative from the global total energy (15). According 14 the functional derivative in (2)
generates from (15) the local fields

5Et0t T 1 9
(23) <7> = <_§V (x, 1), v(x,t), 1),

which inserted in (2) result in the reversible part of the equations of motion

do —3v2 —V - (Vo)
(24) otp =L- v = -V .(vp) — VP .
XN/ rew 1 -V.-(vp) —PV.v

These five equations are not sufficient to determine the 13o0ents of the antisymmetric.
Concerning the balances (17) this undetermination is npbitant, because all the differeft
result in the same balances. Concerning the degeneracitioosd3); it is not evident that all
these different have the same kernel. On the other h#nid also not determined by the kernel
8S/8Z. The consequences of this undeterminatiorf @ire not fully discussed up to now.

Now we can show, that one operator-valued matrix satisf{24g is the following one

0 Vo- 0
(25) L=—| ov [Vp+pV]T- VP+gv |.

0 (PV + Vn)- 0
The degeneracy conditions (3are now used to determine the kerd&/sZ of £. As already
remarked, it is not evident, that this kernel is unique. Tlobgl entropy of the system depending
only onZ is given by (16) and the functional derivative 8fyenerates local quantities

3S\" 4(0S) g a(0s) a(0S) 1
26 —) =[— = -2, — X t), — = =(x,1) .
(26) (52) ( do T %0 ap .0, an T )>

Here the usual abbreviatiospecific free enthalpy gndabsolute equilibrium temperature T

for the derivatives of the entropy are introduced. The deggy condition (3) results in the
following equations

00S

27 = 0,
(27) o

g P 1
28 —oV= V= V= =0.
(28) eVy + VT + Vs

As (27) shows, the GENERIC setting allows to derive that thieopy density does not depend
on the velocityv. From (28) follows immediately by use of (26) and (27) tha fbllowing
equation yields

1
(29) —0S = ?(Qg—P—n)+const—>
P
(30) — g = e+——Ts, const=0,
o

because (30) is the definition of the specific free enthglpy

The exploitation of the reversible part of the GENERIC egprag of motion (1) results in
(25), (27), and (28). Now we investigate its irreversiblet iathe next section.



130 S. Gumbel - W. Muschik

3.3. lIrreversible part

We now have to generate one by use of the irreversible part of the equations of motion (2)
and by the degeneracy condition £3)

9
-% 0
7
V. RV T S |
8 i Vv:V-V.q
2
SEtot(z —(1/2)v 0
1 0
From (6) and (31) we can immediately read off the entropy petidn without any knowl-
edge ofM
38(2) 88(2) q .3
=(— L V.=
7 <52’M az>+/ T
_ Liov:vo 9) 43
= /(T[Vv.v V.-q+V T)dx
1 1.3 s 43
(33) = /[?VV:V—f—q-V?]dx:/n d°x > 0

Because the last equal sign is valid for all domains of irstegn, we obtain for the local entropy
production density

s 1_ . 1
(34) 7 _?Vv.v+q~V?.
This is the same result as in the conventional procedurériikational thermodynamics [9] and
has the usual form of a product between fluxes and forces.
For the sake of simplicity, we set here the first column andequal to zero. Consequently
we are looking for a symmetric matrix of the form

0 0 0
(35) M=]0 M2 M2 |,
0 M32 M33

Now we can show, that one of the possible choice of the opevataed matrix elements of the
dissipation operataM have the following form due to the conditions (31) and (32)

(36) M2«] = —V~VT(V1'V)V*
(37 MZ[x] = V-VTx
(38) MEAx] = —(VT-)T %
MB] = V-a-V4(WV:V)Tx
with
=80T

The exploitation of the irrversible part results in (34) 488) - (39).More over, we see that the
generalized transport coefficients in (36) - (39) are no¢pahdent of each other. This is a result
what is analogue to the Casimir Onsager recriprocal reiatio TIP.
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3.4. Balance equation for the global potentials

The last point, we have to discuss are the dynamic equat@mnkath global potentials. The
supply vector of the wanted fields is according to the lagtrool in (15) is

(39) fl = (0.f.1),

and thus we get immediately from (13) using (29) and (33)

d _ tot /393. 3

(40) OltS(Z) = [SEY+(S S+ 7 fe d3x
— [ [-v. s_v. 3.4
(41) —/[ V-vos(Z) +n° -V T+T]d X.

Similiar we get from (12) using (4), (5) and g3he balance equation of the total energy

d aetOt
_EtOt(Z) — [EtOt’ EtOt] + {EtOt’ S} +/

feodd
dt 9z edX

/{—V~[(vet°t(Z)+vP)+(VT v —q)] +v.fe+r}d3x

(42) = W+Q

with the work

(43) W= / [—v (e'lZ) +vP) + V- (VT vy v e r] d3x
and the heat exchange

(44) Q= / v . qd3x.

4. Conclusion

An important statement of GENERIC is the fact, that the geliwrd transport coefficients of the
dissipation operator are not independent. In GENERIC omigala generalisation of Casimir-
Onsager recriprocal relations. The structure of GENERWides, that the dissipation operator
is positive definit and thus that a closed system decays tdilegum.

It is also possible to give a microscopic foundation of theNERIC formalism [12], [13]
which gives us a powerfull argument for the validity of thisusture. But nevertheless, we
have the unsolved problem in GENERIC, that is a correct §piiit a reversible and an irre-
versible part is not achieved up to now. Although it seemstpdssible to transform the whole
GENERIC structure to open systems which was demonstrated Aaother important statement
of GENERIC is, that we have to preassume local equilibriumthie global potentials depend
only on the wanted fields.
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