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Preface

In 1997 Gerard Maugin organized the first International Seminar on “Geometry, Continua
and Microstructures” at the P. and M. Curie University in Paris. The success of the Seminar
induced the organizers to repeat it in Madrid (1998) and in Bad Herrenalb (1999). Hence, when
Gerard Maugin asked me to organize the fourth edition of the Seminar in Turin, I accepted with
pleasure and I am now honoured to present the proceedings of the 4th International Seminar ,
which was held at the Department of Mathematics of the University of Turin from October 26th
-28th, 2000.
The proceedings of the meeting appear as a special issue of the Rendiconti del Seminario Matem-
atico (Università e Politecnico di Torino) and I am indebted to the Editor, Andrea Bacciotti, who
gave me the opportunity to publish the papers in this journal.
The meeting, as the previous ones, was successful and dense with scientific results, as demon-
strated by the contents, the number of lectures, the 23 papers which fill two volumes of the
proceedings as well as the high scientific level of participants (about 50 scientists and young
researchers from many different countries of Europe, Israel, Canada, U.S.A, and Russia).
The focus of the Seminar was the modelling of new phenomena incontinuum mechanics which
require the introduction of non-standard descriptors. Theframework is Rational Continuum Me-
chanics which encompasses all descriptions of new phenomena from the macroscopic point of
view. Processes occurring at microscopic scales are then taken into account by suitable general-
ized parameters. The introduction of these new descriptorshas enriched the classical framework,
since they often take values in manifolds with non trivial topological and differential structure
(i.e. liquid crystals) and the purpose of the Seminar was just to discuss and point out the various
problems related to these topics.
The lectures appearing in this volume provide an up-to-dateinsight of the state of the art and of
the more recent evolution of research, with many new relevant results. Such evolution emerged
clearly from the proceedings of the previous meetings and this volume represents a step along
the way. In fact, a 5th International Seminar bearing the same title and focusing on the same
topics has been organized by Sanda Cleja-Tigoiu in Sinaia (Rumania) from Seprember 25th -
28th, 2001 and will surely constitute a new milestone for future developments in this field of
research.
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E. Binz - S. Pods - W. Schempp

NATURAL MICROSTRUCTURES ASSOCIATED WITH

SINGULARITY FREE GRADIENT FIELDS IN THREE-SPACE

AND QUANTIZATION

Abstract.
Any singularity free vector fieldX defined on an open set in a three-dimen-

sional Euclidean space with curlX = 0 admits a complex line bundleFa with a
fibre-wise defined symplectic structure, a principal bundlePa and a Heisenberg
group bundleGa. For the non-vanishing constant vector fieldX the geometry of
Pa defines for each frequency a Schrödinger representation ofany fibre of the
Heisenberg group bundle and in turn a quantization procedure for homogeneous
quadratic polynomials on the real line.

1. Introduction

In [2] we described microstructures on a deformable medium by a principal bundle on the body
manifold. The microstructure at a point of the body manifoldis encoded by the fibre over it,
i.e. the collection of all internal variables at the point. The structure group expresses the internal
symmetries.

In these notes we will show that each singularity free gradient field defined on an open set
of the Euclidean space hides a natural microstructure. The structure group isU(1).

If the vector fieldX is a gradient field with a nowhere vanishing principal parta, say, then
there are natural bundles overO such as a complex line bundleFa with a fibre-wise defined
symplectic formωa, a Heisenberg group bundleGa and a four-dimensional principal bundlePa

with structure groupU(1). (Fibres overO are indicated by a lower indexx.) For anyx ∈ O the
fibre Fa

x is the orthogonal complement ofa(x) formed inE and encodes internal variables atx.
It is, moreover, identified as a coadjoint orbit ofGa

x . The principal bundlePa, a subbundle of
the fibre bundleFa, is equipped with a natural connection formαa, encoding the vector field in
terms of the geometry of the local level surfaces: The fieldX can be reconstructed fromαa. The
collection of all internal variables provides all tangent vectors to all locally given level surfaces.
The curvature�a of αa describes the geometry of the level surfaces of the gradientfield in terms
of ωa and the Gaussian curvature.

There is a natural link between this sort of microstructure and quantum mechanics. To
demonstrate the mechanism we have in mind, the principal part a of the vector fieldX is assumed
to be constant (for simplicity only). Thus the integral curves, i.e. the field lines, are straight lines.
Fixing somex ∈ O and a solution curveβ passing throughx ∈ O, we consider the collection of
all geodesics on the restriction of the principal bundlePa to β. Each of these geodesics with the
same speed is called a periodic lift ofβ and passes through a common initial pointvx ∈ Pa

x , say.
If the periodic lifts rotate in time, circular polarized waves are established. Hence the integral

1



2 E. Binz - S. Pods - W. Schempp

curveβ is accompanied by circular polarized waves onPa of arbitrarily given frequencies. This
collection of periodic lifts ofβ defines unitary representationsρν of the Heisenberg groupGa

x ,
the Schrödinger representations (cf. [11] and [13]). The frequencies of the polarized waves
correspond to the equivalence classes ofρν due to the theorem of Stone-von Neumann.

The automorphism group ofGa
x is the symplectic groupSp(Fa

x ) of the symplectic complex
line Fa

x . Therefore, the representationρ1 of Ga
x yields a projective representation ofSp(Fa

x ),
due to the theorem of Stone-von Neumann again. This projective representation is resolved to
a unitary representationW of the metaplectic groupMp(Fa

x ) in the usual way. Its infinitesimal
representationdW of the Lie algebramp(Fa

x ) of Mp(Fa
x ) yields the quantization procedure for

all homogeneous quadratic polynomials defined on the real line. Of course, this is in analogy to
the quantization procedure emanating from the quadratic approximation in optics.

2. The complex line bundle associated with a singularity free gradient field in Euclidean
space

Let O be an open subset not containing the zero vector 0 in a three-dimensional orientedR-
vector spaceE with scalar product< , >. The orientation on the Euclidean spaceE shall be
represented by the Euclidean volume formµE .

Our setting relies on a smooth, singularity free vector fieldX : O −→ O× E with principal
parta : O −→ E, say. We shall frequently identifyX with its principal part.

Moreover, letH := R · e⊕ E be the skew field of quaternions wheree is the multiplicative
unit element. The scalar product< , > and the orientation onE extend to all ofH such
that e ∈ H is a unit vector and the above splitting ofH is orthogonal. The unit sphereS3,
i.e. Spin(E), is naturally isomorphic toSU(2) and coversSO(E) twice (cf. [8] and [9]).

Given anyx ∈ O, the orthogonal complementFa
x of a(x) ∈ E is a complex line as can be

seen from the following: LetCa
x ⊂ H be the orthogonal complement ofFa

x . Hence the field of
quaternionsH splits orthogonally into

(1) H = C
a
x ⊕ Fa

x .

As it is easily observed,

C
a
x = R · e⊕ R · a(x)

|a(x)|
is a commutative subfield ofH naturally isomorphic toC due to

(
a(x)

|a(x)|

)2
= −e ∀ x ∈ O,

where| · | denotes the norm defined by< , >. This isomorphism shall be called

j a
x : C −→ C

a
x ;

it maps 1 toe and i to a(x)
|a(x)| . The multiplicative group on the unit circle ofCa

x is denoted by

Ua
x (1). It is a subgroup ofSU(2) ⊂ H and hence a group of spins. Obviouslya(x) generates

the Lie algebra ofUa
x (1).

Fa
x is aCa

x-linear space under the (right) multiplication ofH and hence aC-linear space, a
complex line. Moreover,H is the Clifford algebra ofFa

x equipped with− < , > (cf. [9]).

The topological subspaceFa :=
⋃

x∈O{x} × Fa
x of O × E is a C-vector subbundle of

O × E, if curl X = 0, as can easily be seen. In this caseFa is a complex line bundle (cf. [15]),
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the complex line bundle associated withX. Let pra : Fa −→ O be its projection. Accordingly
there is a bundle of fieldsCa −→ O with fibreCa

x at eachx ∈ O. Clearly,

O × H = C
a × Fa

as vector bundles overO. Of course, the bundleFa −→ O can be regarded as the pull-back of
T S2 via the Gauss map assigninga(x)|a(x)| to anyx ∈ O.

We, therefore, assume that curlX = 0 from now on. Due to this assumption there is a
locally given real-valued functionV , a potential ofa, such thata = grad V . Each (locally
given) level surfaceSof V obviously satisfiesT S= Fa|S. HereFa|S =

⋃
x∈S{x} × Fa

x . Each

fibre Fa
x of Fa is oriented by its Euclidean volume formi a(x)

|a(x)|
µE := µE

(
a(x)
|a(x)| , . . . , . . .

)
. For

any level surface the scalar product yields a Riemannian metric gS on Sgiven by

gS(x; vx, wx) := < vx, wx > ∀ x ∈ O and ∀ vx, wx ∈ TxS.

For any vector fieldY on S, any x ∈ O and anyvx ∈ Tx S, the covariant derivative∇S of
Levi-Cività determined bygS satisfies

∇S
vx

Y(x) = dY(x; vx)+ < Y(x),Wa
x (vx) > .

HereWa
x : Tx S −→ TxS is the Weingarten map ofS assigning to eachwx ∈ Tx S the vector

d a
|a| (x;wx), the differential of a

|a| at x evaluated atwx . The Riemannian curvatureR of ∇S at
anyx is expressed by the well-known equation of Gauss as

R(x; vx, wx .ux, yx) = < Wa
x (wx),ux > · < Wa

x (vx), yx >(2)

− < Wa
x (vx),ux > · < Wa

x (wx), yx >

for any choice of the vectorsvx, wx,ux, yx ∈ TxS.

A simple but fundamental observation in our setting is that each fibreFa
x ⊂ Fa carries a

natural symplectic structureωa defined by

ωa(x; h, k) := < h × a(x), k > = < h · a(x), k > ∀ h, k ∈ Fa
x ,

where× is the cross product, here being identical with the product in H. In the context ofFa
x as

a complex line we may write

ωa(x; h0, h1) = |a(x)|· < h0 · i, h1 > .

This is due to the fact thath anda(x) are perpendicular elements inE. The bundleFa is fibre-
wise oriented by−ωa. In factωa extends on all ofE by setting

ωa(x; y, z) :=< y × a(x), z>

for all y, z ∈ E; it is not a symplectic structure onO, of course. Letκ(x) := detWa
x for all

x ∈ S, the Gaussian curvature ofS. Providedvx, wx is an orthonormal basis ofTx S, the relation
between the Riemannian curvatureR andω is given by

R(x; vx, wx.ux, yx) = κ(x)

|a(x)| · ωa(x; ux, yx)

for everyx ∈ Sandux, yx ∈ Tx S= Fa
x .
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3. The natural principal bundle Pa associated withX

We recall that the singularity free vector fieldX on O has the formX = (id , a). LetPa
x ⊂ Fa

x

be the circle centred at zero with radius|a(x)|−
1
2 for anyx ∈ O. Then

Pa :=
⋃

x∈O

{x} × Pa
x

equipped with the topology induced byFa is a four-dimensional fibre-wise oriented submanifold
of Fa. It inherits its smooth fibre-wise orientation fromFa. Moreover,Pa is aU(1)-principal
bundle.U(1) acts from the right on the fibrePa

x of Pa via j a
x |U (1) : U(1) −→ Ua

x (1) for any
x ∈ O. This operation is fibre-wise orientation preserving. The reason for choosing the radius

of Pa
x to be|a(x)|−

1
2 will be made apparent below.

Both Fa andPa encode collections of internal variables overO and both are constructed
out of X, of course. Clearly, the vector bundleFa is associated withPa.

The vector fieldX can be reconstructed out of the smooth, fibre-wise oriented principal
bundlePa as follows: For eachx ∈ O the fibrePa

x is a circle in Fa
x centred at zero. The

orientation of this circle yields an orientation of the orthogonal complement ofFa
x formed in

E, the direction of the field atx. Hence|a(x)| is determined by the radius of the circlePa
x .

Therefore, the vector fieldX admits a characteristic geometric object, namely the smooth, fibre-
wise oriented principal bundlePa on which all properties ofX can be reformulated in geometric
terms. Vice versa, all geometric properties ofPa reflect characteristics ofa. The fibre-wise
orientation can be implemented in a more elegant way by introducing a connection form,αa,
say, which is in fact much more powerful. This will be our nexttask. SincePa ⊂ O × E, any
tangent vectorξ ∈ TvxP

a can be represented as a quadruple

ξ = (x, vx,h, ζvx ) ∈ O × E × E × E

for x ∈ O, vx ∈ Pa
x andh, ζvx ∈ E ⊂ H with the following restrictions, expressing the fact that

ξ is tangent toPa:
Given a curveσ = (σ1, σ2) onPa with σ1(s) ∈ O andσ2(s) ∈ Pa

σ1(s)
for all s, then

< σ2(s), a(σ1(s)) >= 0 and |σ2(s)|2 = 1

|a(σ1(s))|
∀ s.

Eachζ ∈ TvxP
a given byζ = ·

σ2 (0) is expressed as

ζ = r1 · a(x)

|a(x)| + r2 · vx

|vx | + r · vx × a(x)

|vx | · |a(x)|

with

r1 = − < Wa
x (vx),h > , r2 = −|vx |

2
· d ln |a|(x; h)

and a free parameterr ∈ R. The Weingarten mapWa
x is of the form

da(x; k) = |a(x)| · Wa
x (k)+ a(x) · d ln |a|(x; k) ∀ x ∈ O , ∀ k ∈ E,

where we setWa
x (a(x)) = 0 for all x ∈ O. With these preparations we define the one-form

αa : TPa −→ R
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for eachξ ∈ TPa with ξ = (x, vx,h, ζ ) to be

αa(vx, ξ) := < vx × a(x), ζ > .(3)

One easily shows thatαa is a connection form (cf. [10] and for the field theoretic aspect [1]). To
match the requirement of a connection form in this metric setting, the size of the radius ofPa

x
is crucial for anyx ∈ O. The negative of the connection form onPa is in accordance with the
smooth fibre-wise orientation, of course.

Thus the principal bundlePa together with the connection formαa characterizes the vector
field X, and vice versa. To determine the curvature�a which is defined to be the exterior
covariant derivative ofαa, the horizontal bundles inTPa will be characterized. Givenvx ∈ Pa,
the horizontal subspaceHorvx ⊂ TPa is defined by

Horvx := ker αa(vx; . . .).

A vectorξvx ∈ Horvx , being orthogonal tovx × a(x), has the form(x, vx,h, ζhor) ∈ O × E ×
E × E whereh varies inO andζhor satisfies

ζhor = − < Wa
x (vx),h > · a(x)

|a(x)| − |vx |
2

· d ln |a|(x; h) · vx

|vx | .

SinceTpra : Horvx −→ Tx O is an isomorphism for anyvx ∈ Pa, dim Horvx = 3 for all
vx ∈ Pa and for allx ∈ O. The collectionHor ⊂ TPa of all horizontal subspaces in the
tangent bundleTPa inherits a vector bundle structureTPa.

The exterior covariant derivativedhorαa is defined by

dhorαa(vx, ξ0, ξ1) := dαa(vx; ξhor
0 , ξhor

1 )

for everyξ0, ξ1 ∈ TvxP
a, vx ∈ Pa

x andx ∈ O.

The curvature�a := dhorαa of αa is sensitive in particular to the geometry of the (locally
given) level surfaces, as is easily verified by using equation (2):

PROPOSITION1. Let X be a smooth, singularity free vector field on O with principal part
a. The curvature�a of the connection formαa is

�a = κ

|a| · ωa

whereκ : O −→ R is the leaf-wise defined Gaussian curvature on the foliationof O given
by the collection of all level surfaces of the locally determined potential V . The curvature�a

vanishes along field lines of X.

The fact that the curvature�a vanishes along field lines plays a crucial role in our set-up.It
will allow us to establish (on a simple model) the relation between the transmission of internal
variables along field lines ofX and the quantization of homogeneous quadratic polynomialson
the real line.

4. Two examples

If we consider specific vector fields in these notes, we will concentrate on the two types presented
in more detail in this section. At first let us regard a constant vector fieldX on O ⊂ E\{0} with
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a principal part having the non-zero valuea ∈ E for all x ∈ O. Obviously the principal bundle
Pa is trivial, i.e.

Pa ∼= O × Ua(1).

Since an integral curveβ of X is a straight line segment parametrized by

β(t) = t · a + x0 with β(t0) = x0,

the restrictionPa|im β of Pa to the imageim β is a cylinder with radius|a|−
1
2 .

As the second type of example of a principal bundlePa associated with a singularity free
vector field let us consider a central symmetric fieldX = grad Vsol on E\{0} with the only
singularity at the origin. The potentialVsol is given by

Vsol(x) := − m̄

|x| ∀ x ∈ O

wherem̄ is a positive real. This potential governs planetary motions and hence gradVsol is
called the solar field here. The principal parta of the gradient field is

grad Vsol(x) = − m̄

|x|2
· x

|x| ∀ x ∈ E\{0}.(4)

For reasons of simplicity we illustrate from a longitudinalpoint of view the principal bundlePa

associated with the gradient field. An integral curveβ passing throughx at the timet0 = 1 is of
the form

β(t) = −m̄ · (3 · t − 2)
1
3 · x for

2

3
< t < ∞.(5)

Hence the (trivial) principal bundlePa|im β is a cone. The radiusr of a circlePa
x with x ∈ im β

is r = |x|√
m̄

for all x ∈ O (cf. [12]).

5. Heisenberg group bundles associated with the singularity free vector field and curves
and the solar field

Associated with the(2+1)-splitting of the Euclidean spaceE caused by the vector fieldX there
is a natural Heisenberg group bundleGa with ωa as symplectic form. The bundleGa allows us
to reconstructX as well. Heisenberg groups play a central role in signal theory (cf. [13], [14]).
We essentially restrict us to the two types of examples presented in the previous section.

Givenx ∈ O, the vectora(x) 6= 0 determinesFa
x with the symplectic structureωa(x) and

Ca
x which decomposeH according to (1).

The submanifoldGa
x := |a(x)|−

1
2 · e · Ua

x (1) ⊕ Fa
x of H carries the Heisenberg group

structure the (non-commutative) multiplication of which is defined by

(z1 + h1) · (z2 + h2) := |a(x)|−
1
2 · z1 · z2 · e

1
2 ·ωa(x;h1,h2)· a

|a| + h1 + h2(6)

for any twoz1, z2 ∈ |a(x)|−
1
2 ·e·Ua

x (1) and any pairh1,h2 ∈ Fa
x (cf. [12]). The (commutative)

multiplication in the centre|a(x)|
1
2 · e · Ua

x (1) of Ga
x is given by adding angles. The reason

the centre has radius|a(x)|−
1
2 is the length scale onPa

x for any x ∈ O. The group bundle
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∪x∈O{x}× |a(x)|−
1
2 ·e·Ua

x (1), which is the collection of all centres, is associated withPa and
forms a natural torus bundle together withPa. The collection

Ga :=
⋃

x∈O

{x} × Ga
x

can be made into a group bundle which is associated with the principal bundlePa, too. Clearly
Fa ⊂ Ga as fibre bundles. In the cases of a constant vector field and thesolar field the Heisen-
berg group bundle along field lines is trivial.

In particular,a in (6) takes the values|a(x)|−
1
2 = |a|−

1
2 and|a(x)|−

1
2 = |x|

m̄ for all x ∈ O
in the cases of the constant vector field respectively the solar field.

The Lie algebraGa
x of Ga

x is

Ga
x := R · a

|a| ⊕ Fa
x

together with the operation
[
ϑ1 · a

|a| + h1, ϑ2 · a

|a| + h2

]
:= ωa(x; h1,h2) · a

|a|

for any ϑ1, ϑ2 ∈ R and anyh1,h2 ∈ Fa
x . The exponential map expGa

x
: Ga

x −→ Ga
x is

surjective. Obviously,X can be reconstructed from bothGa andGa. The coadjoint orbit of
Ada∗

passing through< ϑ · a
|a| + h1, .. >∈ Ga∗

x with ϑ 6= 0 isϑ · a
|a| ⊕ Fa

x .

In this context we will study the solar field next (cf. [12]). At first let us see how it emanates
from Keppler’s laws of circular planetary motion. Supposeσ is a closed planetary orbit inE\{0}
defined on all ofR; it lies in a planeFb′

, say, withb′ ∈ E\{0}, due to Keppler’s second law. Let
σ be a circle of radiusr . It is generated by a one-parameter groupϕ in SO(Fb) with generator
b, say, yielding

ϕ(t) = et ·b ∀t ∈ R.

Hence
ϕ̈ = b2 · ϕ = −|b|2 · ϕ.

This generator, a skew linear map inso(Fb), is identified with a vector inE in the obvious
way. The invariant norms onso(Fb) are positive real multiples of the trace norm, and hence on
so(Fb) the generator has a norm

||b||2 = −G′2 · tr b2 = G′2 · |b|2

for some positive real numberG′ and a fixed constant||b||.
The time of revolutionT := 2π

|b| is determined by Keppler’s third law which states

T2 = r 3 · const.(7)

Thereforeς̈ of ς := ϕ · x0 with |x0| = r has the form

ς̈ = −||b||2
G′2 · ς = −G · m

|ς |2
· ς|ς |

with G′2 = G−1 · r 3 andm := ||b||2 as solar mass. This is the reason whyX with principal
part gradVsol here is called the solar field. Newton’s field of gravitation includes the mass of
the planet, which is not involved here.



8 E. Binz - S. Pods - W. Schempp

Next let us point out a consequence of the comparison of the conePa|β embedded intoGa
x

for a fixedx ∈ im β, but shifted forward such that its vertex is in 0∈ E, with the coneCM of
a Minkowski metricga

M on Ga
x . The metricga

M relies on the following observation: Up to the
choice of a positive constantc, there is a natural Minkowski metric onH inherited from squaring
any quaternionk = λ · e+ u with λ ∈ R andu ∈ E since thee-component(k2)e of k2 is

−(k2)e = (|u|2 − λ2) · e = (b2 · k2)e

with b ∈ S2. Introducing the positive constantc, the Minkowski metricga
M on Ga

x mentioned
above is pulled back toGa

x by the right multiplication with a
|a| and reads

ga
M (h1, h2) :=< u1,u2 > −c · λ1 · λ2

for anyhr ∈ F
a
|a| represented byhr = λr · a

|a| + ur for r = 1,2. The respective interior angles

ϕa andϕCM which the meridians onP |im β andCM form with the axisR · x
|x| satisfy

tanϕa = m̄− 1
2 and tanϕCM = 1

c
,

and

m · c2 = G−1 · cot2 ϕa · cot2 ϕCM ,

providedm := m̄
G . This is a geometric basis to derive within our settingE = m · c2 from special

relativity (cf. [12]).

Now we will study planetary motions in terms of Heisenberg algebras. In particular we
will deduce Keppler’s laws from the solar field by means of a holographic principle (we will
make this terminology precise below). To this end we first describe natural Heisenberg algebras
associated with each time derivative of a smooth injective curveσ in O defined on an interval
I ⊂ R. For anyt ∈ I then-th derivativeσ (n)(t), assumed to be different from zero, defines a
Heisenberg algebra bundleG(n) for n = 0,1 . . . with fibre

G
(n)
σ (t) := R · σ (n)(t)⊕ F(n)

σ (t)

whereF(n)
σ (t) := σ (n)(t)⊥ (formed inE) with the symplectic structureω(n) defined by

ω(n)(σ (t);h1,h2) = < h1 × σ (n)(t),h2 > ∀h1, h2 ∈ F(n)
σ (t).

HereF(n) is the complex line bundle alongim σ for which F(n)
σ (t) := σ (n)(t)⊥ for eacht . The

two-formsω(n) are extended to all ofO by letting h1 andh2 vary also inR · σ (n)(t)
|σ (n)(t)| for all

t ∈ I . The Heisenberg algebraG(n)
σ (t) is naturally isomorphic toG(n)

σ (t0)
for a givent0 ∈ I , anyt

and anyn for whichσ (n)(t) 6= 0.

As a subbundle ofF(n) we constructP(n) ⊂ F(n) which constitutes of the circlesP(n)
σ (t) ⊂

F(n)
σ (t) with radius|σ (n)(t)|−

1
2 . On F(n) the curveσ admits an analogueα(n) of the one-formαa

described in (3), determined by

α(n)(σ (t);h) = < σ(t)× σ (n)(t),h > ∀ h ∈ F(n)
σ (t)
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for any t . Since the Heisenberg algebra bundle evolves fromG
(n)
0 we may ask howα(n) evolves

alongσ , in particular forα(1). The evolution ofα(n) can be expressed in terms ofα̇(n) defined
by

α̇(n)(σ (t);h) := d

dt
α(n)(σ (t);h)− α(n)(σ̇ (t),h)

= < σ(t)× σ (n+1)(t),h > ∀ h ∈ F(n)
σ (t).

A slightly more informative form foṙα(1) is

α̇(1)(σ (t);h) = ω(2)(σ (t);σ(t),h) ∀ h ∈ F(1)
σ (t).

Thus the evolution ofα(1) alongσ is governed by the Heisenberg algebrasG(2), yielding in
particular

α(1) = const. iff σ × σ̈ = 0, meaning iσω
(2) = 0.

Henceα(1) = const. is the analogue of Keppler’s second law. In this case the quaternionb :=
σ × σ̇ is constant and henceσ is in the planeF ⊂ E perpendicular tob. ThusR · b × Fb is a
Heisenberg algebra with

ωb(h1,h2) :=< h1 × b, h2 > ∀ h1,h2 ∈ Fb

as symplectic form onFa. Hence the planetary motion can be described in only one Heisenberg
algebra, namely inGb, which is caused by the angular momentumb, of course. We havëσ =
f · σ for some smooth real-valued functionf defined along a planetary motionσ , implying

ω(2) = f · |σ |2
m̄ · ωa. In caseσ is a circle, f is identical with the constant map with valuēm|σ |2 ,

due to the third Kepplerian law (cf. equation (7)). This motivates us to set

G
(2)
σ (t) = Ga

σ(t) ∀t(8)

along any closed planetary motionσ which hence impliesω(2) = ωa alongσ . In turn one
obtains

σ̈ (t) = gradVsol(σ (t)) ∀ t,(9)

a well-known equation from Newton implying Keppler’s laws.Equation (9) is derived from a
holographic principle in the sense that equation (8) statesthat the oriented circle ofP2

σ(t) matches

the oriented circle ofPa
σ(t) at anyt .

6. Horizontal and periodic lifts of β

Since, in general,�a 6= 0, the horizontal distribution inTPa does not need to be integrable
along level surfaces. However,�a vanishes along field lines and thus the horizontal distribution
is integrable along these curves. Let us look atPa|β whereβ is a field line of the singularity
free vector fieldX.

A horizontal lift of β̇ is a curveβ̇hor in Horβ = kerαa which satisfiesTpraβ̇hor = β̇

and obeys an initial condition inTPa|β . Hence there is a unique curveβhor passing through
vβ(t0) ∈ Pa

β(t0)
, say, called horizontal lift ofβ. In the case of a constant vector field or in the
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case of the solar field this is nothing else but a meridian of the cylinder respectively the cone
Pa|β containingvβ(t0). Letβ(t0) = x for a fixedx ∈ O.

Obviously, a horizontal lift is a geodesic onPa|β equipped with the metricgHorβ , say,
induced by the scalar product< , > on E.

At first let a be a non-vanishing constant. A curveγ onPa|β here is called a periodic lift
of β throughvx iff it is of the form

γ (s) = βhor(s) · ep·s· a
|a| ∈ Pa

β(s) ∀ s

wherep is a fixed real.

Clearly,γ is a horizontal lift throughvx iff γ = βhor, i.e. iff p = 0. In fact any periodic
lift γ of β is a geodesic onPa|β . Henceγ̈ is perpendicular toPa|β . Due to theU(1)-symmetry
of Pa|β , a geodesicσ onPa|β is of the form

σ(s) = βhor(θ · s) · ep·θ ·s· a
|a| ∀ s

as it is easily verified. Herep andθ denote reals.θ determines the speed of the geodesic. Thus
σ andβ have accordant speeds ifθ = 1 (which will be assumed from now on), as can be easily
seen from

γ̇ (0) = p · vx · a

|a| + β̇hor(0)

for t0 = 0. The real numberp determines the spatial frequency of the periodic liftγ due to
2·π
T = p

|vx | . The spatial frequency ofγ counts the number of revolutions aroundPa|β per unit
time and is determined by theFa

x -componentp of the initial velocity due to theU(1)-symmetry
of the cylinderPa|β . We refer top as a momentum.

For the solar fieldX(x) =
(

x,− x
|x|3

)
with x ∈ O, let |x0| = 1 and let a parametrization of

the body of revolutionPa|β be given in Clairaut coordinates via the mapx : U → E defined by

x(u, v) := −m̄ · (3v − 2)
1
3 · r

(
eu· a

|a|
)

·
(
vx + a

|a|

)

on an open setU ⊂ R2. Herer is the representation ofU
a
|a| (1) ontoSO

(
F

a
|a|
)

for anyx ∈ O.

Then a geodesicγ onPa|β takes the form

γ (s) = x(u(s), v(s)) = −m̄ · (3v(s)− 2)
1
3 · r

(
eu(s)· a

|a|
)

·
(
vx + a

|a|

)

where the functionsu andv are determined by

u(s) =
√

2 · arctan

(
s√
2 d

+ c1

2 d

)
+ c2(10)

and v(s) = ±1

3

((
1√
2

s + c1

)2
+ d2

) 3
2

+ 2

3
(11)

(cf. [12]) with s in an open intervalI ⊂ R containing 1. Herec1 andc2 are integration constants
determining the initial conditions. Since we are concernedwith a forward movement along the
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channelR · a
|a| , only the positive sign in (11) is of interest. The constantd fixes the slope of the

geodesic via

cosϑ = d√(
1√
2
s + c1

)2
+ d2

whereϑ is the constant angle between the geodesicγ , called periodic lift, again, and the parallels
given in Clairaut coordinates. This means thatd vanishes precisely for a meridian. A periodic
lift γ is a horizontal lift ofβ iff γ is a meridian. Thus the parametrization of a meridian as a
horizontal liftβhor of an integral curveβ parametrized as in (5) has the form

βhor(t) = −m̄ · (3t − 2)
1
3 · vx

with βhor(1) = −m̄ · vx as well asβ(1) = −m̄ · x for 2
3 ≤ t < 1 and any initialvx ∈ Pa

β(1).

For the constant vector field from above, any periodic liftγ of β throughvx is uniquely
determined by theUa(1)-valued map

s 7→ ep·s· a
|a| ,

while for the solar field a periodic lift is characterized by

s 7→ eu(s)· a
|a|

with u(s) as in (10). These two maps here are called an elementary periodic function respectively
an elementary Clairaut map. Therefore, we can state:

PROPOSITION2. Let x = β(0). Under the hypothesis that a is a non-zero constant, there
is a one-to-one correspondence between all elementary periodic Ua(1)-valued functions and all
periodic lifts ofβ passing through a givenvx ∈ Pa

x . In case X is the solar field there is a
one-to-one correspondence between all periodic lifts passing through a givenvx ∈ Pa

x and all
elementary Clairaut maps.

An internal variable can be interpreted as a piece of information. Thus the fibresFa
x and

Pa
x can be regarded as a collection of pieces of information atx. The periodic lifts ofβ onPa|β

describe the evolution of information ofPa|β alongβ. This evolution can be further realized by
a circular polarized wave: Let the lift rotate with frequency ν 6= 0. Then a pointw(s; t), say, on
this rotating lift is described by

w(s; t) = |vx | ·
βhor
vx

(s)

|βhor
vx (s)|

· e2πν(t−p·s)· a
|a| ∀s, t ∈ R, s 6= 0(12)

a circular polarized wave on the cylinder with1|p| as speed of the phase and|vx | as amplitude.

w travels alongR · a
|a| , the channel of information. Clearly,Pa|im β is in O × E and not inE.

However,w could be coupled to the spaceE and could be a wave inE traveling alongβ, e.g. as
an electric or magnetic field. More types of waves can be obtained by using the complex line
bundleFa instead of the principal bundlePa, of course.
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7. Representation of the Heisenberg group associated with periodic lifts of β on Pa|β of a
constant vector field

Let a 6= 0 be constant onO andx ∈ im β a fixed vector. There is a unique periodic liftγ of β
passing throughvx = γ (0) with prescribed velocitẏγ (0). At first we will associate witḣγ (0) a
well-defined unitary linear operator on a Hilbert space as follows.

The specification ofvx ∈ Pa
x turnsFa

x into a fieldF̂a
x isomorphic toC, since vx

|vx | ·C = Fa
x .

The real axis isR · vx
|vx | and the imaginary one isR · vx

|vx | × a
|a| . We rename these axes byq-axis

carried by the unit vector̄qx and byp-axis carried by the unit vector̄px, respectively. Clearly,
p̄x = q̄x · j a

x (i ). Any h ∈ Fa
x is thus of the formh = (q, p). The Schwartz space of the real axis

and itsL2- completion are denoted byS(R,C) and L2(R,C), respectively. The Schrödinger
representationρx of Ga

x acts on each complex-valuedψ ∈ S(R,C) ⊂ L2(R,C) by

ρx(z + h)(ψ)(τ) := z · ep·τ ·i · e− 1
2 ·p·q·i · ψ(τ − q) ∀ τ ∈ R(13)

for all z + h ∈ Ga
x with h = (q, p) (cf. [11], [13] and [7]). Clearly,

−p · q · i = ωa
x((0, p), (q, 0)) · i and z = eϑ · a

|a|

for someϑ ∈ R. By the Stone-von Neumann theoremρx is irreducible (cf. [13] and [7]). Setting
q = |vx |, for any p ∈ R, equation (13) turns into

ρx(z + (|vx |, p))(ψ)

(
τ + |vx |

2

)
= z · ep·τ ·i · ψ

(
τ − |vx |

2

)
∀ τ ∈ R.

Operators of this form generateρx(Ga
x), of course. In case 2πν with the frequencyν (justified

by (12)) is different from one, for eachp ∈ R equation (13) turns into

(14) ρν

(
et · a

|a| + (|vx |, p)
)
(ψ)

(
τ + |vx |

2

)
= e2πν·(t−p·τ )·i · ψ

(
τ − |vx |

2

)

for everyτ, t ∈ R.

This shows that 2πν(t − p · s) in the exponent of the factore2πν(t−p·s)·i for s = τ is
characteristic for the circular polarized wave described in (14) and determines the Schrödinger
representation. Thus the geometry on the collectionPa|β of all internal variables alongβ is

directly transfered to the Hilbert spaceL2(R,C) via the Schrödinger representation. Differently
formulated, the Schrödinger representation has a geometric counterpart, namelyPa together
with its geometry, which is, for example, used for holography. The counterpart ofi in quantum
mechanics is the imaginary unita|a| ∈ H.

On the other hand theUa
x (1)-valued functionτ −→ e2πν(t−p·τ )· a

|a| entirely describes the
periodic lift γ , rotating with frequencyν and passing throughvx, as expressed in (13). Thus

the circular polarized wavew is characterized by the unitary linear transformationρν(e
t · a

|a| +
(|vx |, p)) on L2(R,C). Due to the Stone-von Neumann theorem, the equivalence class ofρν is
uniquely determined byν and vice versa. Therefore, we state:

THEOREM 1. Let a be a non-vanishing constant. Any periodic liftγ of β on Pa|β with
initial conditionsγ (0) = vx and momentum p is uniquely characterized by the unitary linear
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transformationρx(1 + (|vx |, p)) of L2(R,C) with (1 + (|vx |, p)) ∈ Ga
x and vice versa. Thus

vx ∈ Pa
x determines a unitary representationρ on L2(R,C) characterizing the collection Cavx

of

all periodic lifts ofβ passing throughvx . The unitary linear transformationρν(e
t · a

|a| +(|vx |, p))
of L2(R,C) characterizes the circular polarized wavew on Pa|im β with frequencyν 6= 0
generated byγ and vice versa. The frequency determines the equivalence class ofρν .

As a consequence we have

COROLLARY 1. The Schrödinger representationρν of Ga
x describes the transport of any

piece of information(|vx |, p) ∈ T(vx,0)P
a|β along the field lineβ, with R · a

|a| as information
transmission channel.

The mechanism by which each geodesic is associated with a Schrödinger representation as
expressed in theorem 1 is generalized for the solar field as follows (cf. [12]): Let O = E\{0}.
Given im β of an integral curveβ, we consider the Heisenberg algebraR · a

|a| ⊕ F
a
|a| equipped

with the symplectic structure determined bya|a| . Now let γ be a geodesic onPa|im β and
ψ ∈ S(R,C). Then the Schrödinger representationρsol of the solar field on the Heisenberg
groupGa

x is given by

ρsol(z, x(s))(ψ)(τ)(s) := z · eu(s)·τ ·i · e− 1
2 ·u(s)·v(s)·i · ψ(τ − v(s))

for all s in the domain ofγ and anyτ ∈ R.

8. Periodic lifts of β on Pa|β , the metaplectic groupMp(Fa
x ) and quantization

Let ρx be given as in (13), meaning that Planck’s constant is set to one. Forvx ∈ Pa
x andγ̇vx (0)

of a periodic liftγvx of β,

γ̇vx (0) = γ̇vx (0)
Fa

x + β̇hor
vx

(0)

is an orthogonal splitting of the velocity ofγvx at 0. Clearly, theFa
x -component ofγ̇vx (0) is

γ̇vx (0)
Fa

x = p · p̄x, wherep is the momentum. Thus the momenta of periodic lifts ofβ passing
throughvx are in a one-to-one correspondence with elements inTvxP

a
x .

Therefore, the collection̄Ca
x of all periodic lifts of β on Pa|β is in a one-to-one corre-

spondence withTPa
x (being diffeomorphic to a cylinder) via a mapf : C̄a

x −→ TPa
x , say.

Let
j : TPa

x |β −→ Fa
x

be given byj := T j̃ where j̃ : Pa
x −→ Pa

x is the antipodal map. Thus

j (wx, λ) = j (w−x, λ) = λ

for every (wx, λ) ∈ TwxP
a
x with wx ∈ Pa

x and λ ∈ R. Clearly, j is two-to-one. Setting
Ḟa

x = Fa
x \{0}, the map

j ◦ f : C̄a
x −→ Ḟa

x

is two-to-one, turningC̄a
x into a two-fold covering ofḞa

x . j ◦ f describes the correspondence
between periodic lifts in̄Ca

x and their momenta. The symplectic groupSp(Fa
x ) acts transitively

on Fa
x equipped withωa as symplectic structure. Therefore, the metaplectic groupMp(Fa

x ),
which is the two-fold covering ofSp(Fa

x ), acts transitively onTPa
x .
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Thus givenu ∈ Fa
x , there is a smooth map

8 : Sp(Fa
x ) −→ Fa

x

given by8(A) := A(u) for all A ∈ Sp(Fa
x ). Since j ◦ f (uwx ) = j ◦ f (u wx ) for all uwx ∈

TPa|β(0), the map8 lifts smoothly to

8̃ : Mp(Fa
x ) −→ C̄a

x

such that
( j ◦ f ) ◦ 8̃ = p̃r ◦8

wherep̃r : Mp(Fa
x ) −→ Sp(Fa

x ) is the covering map. Clearly, the orbit ofMp(Fa
x ) on C̄a

x is
all of C̄a

x , andMp(Fa
x ) acts onFa

x with a one-dimensional stabilizing group (cf. [14]). Now let
us sketch the link between this observation and the quantization on R. Sp(Fa

x ) operates as an
automorphism group on the Heisenberg groupGa

x (leaving the centre fixed) via

A(z + h) = z + A(h) ∀ z + h ∈ Ga
x .

Any A ∈ Sp(Fa
x ) determines the irreducible unitary representationρA defined by

ρA(z + h) := ρx(z + A(h)) ∀ (z + h) ∈ Ga
x.

Due to the Stone-von Neumann theorem it must be equivalent toρx itself, meaning that
there is an intertwining unitary operatorUA on L2(R,C), determined up to a complex number of
absolute value one inCa

x , such thatρA = UA ◦ρ ◦U−1
A andUA1 ◦UA2 = coc(A1, A2) ·UA1◦A2

for all A1, A2 ∈ Sp(Fa
x ). Here coc is a cocycle with valuecoc(A1, A2) ∈ C\{0}. Thus

U is a projective representation ofSp(Fa
x ) and hence lifts to a representationW of Mp(Fa

x ).
Since the Lie algebra ofMp(Fa

x ) is isomorphic to the Poisson algebra of homogenous quadratic
polynomials,dW provides the quantization procedure of quadratic homogeneous polynomials on
R and moreover describes the transport of information inPa along the field lineβ, as described
in [4].
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MEDIA WITH MICROSTRUCTURES AND

THERMODYNAMICS FROM A MATHEMATICAL

POINT OF VIEW

Abstract. Based on the notion of continua with microstructures we introduce the
notion of microstructures on discrete bodies. Using the analogy with of differential
forms on discrete media we develop the discrete virtual workand the thermody-
namics in the sense of Caratheodory.

1. Continua with microstructures

Let B be a medium, i.e. a three dimensional compact, differentiable manifold with boundary. In
the case of classical continuum mechanics this medium is thought to be moving and deforming in
R3. A configuration is then a smooth embedding8 : B → R3. The configuration space is then
eitherE(B,R3), the collection of all smooth embeddings fromB into R

3, a Fréchet manifold,
or, for physical reasons, a subset ofE(B,R3) which we denote bycon f (B,R3). This classical
setting can be generalized to media with microstructures.

A mediumB with microstructure is thought as a medium whose points haveinternal degrees

of freedom. Such a medium was recently modelled by a specifiedprincipal bundleP
π→ B with

structure groupH, a compact Lie group ([3])

Accordingly the mediumB with microstructure is thought to be moving and deforming
in the ambient spaceR3 with microstructure, which is modelled by another specifiedprincipal

bundleQ
ω→ R3, with structure groupG, a Lie group containingH. A configuration is then a

smooth,H -equivariant, fibre preserving embedding8̃ : P → Q, i.e.

8̃(p, h) = 8̃(p) · h, ∀ p ∈ P, ∀ h ∈ H.

The configuration space is then eitherE(P,Q), i.e. the collection of all these configurations,
or again for physical reasonsCon f(P,Q), a subset ofE(P,Q). Clearly any8̃ ∈ E(P,Q)
determines some8 ∈ E(B,R3) by

8(π(p)) = ω
(
8̃(p)

)
, ∀ p ∈ P.

The mapπε : E(P,Q) → E(B,R3) given by

πε(8̃)(π(p)) = ω(8̃(p)), ∀ p ∈ P, ∀ 8̃ ∈ E(P,Q),

is not surjective in general. For the sake of simplicity we assume in the following thatπε is
surjective. Given two configurations̃81, 8̃2 in π−1

ε (8) ⊂ E(P,Q) for 8 ∈ E(B,R3), there
exists a smooth map̃g : P → G, called gauge transformation, such that

8̃1(p) = 8̃2(p) · g̃(p), ∀ p ∈ P.

17
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Moreover,g̃ satisfies

g̃(p · h) = h−1 · g̃(p) · h, ∀ p ∈ P, ∀ h ∈ H.

The collectionGH
P of all gauge transformations̃g form a group, the so-called gauge group.

The gauge groupGH
P is a smooth Fréchet manifold. In factE(P,Q) is a principal bundle

overE(B,R3) with GH
P as structure group.

2. Discrete systems with microstructures

In the following we show how the notion of media with microstructure dealed with above in the
continuum case can be introduced in the discrete case. To this end we replace the body manifold,
i.e. the mediumB, by a connected, two-dimensional polyhedronP. We denote the collection of
all verticesq of P by S0

P, the collection of all bounded edgese of P by S1
P, and the collection

of all bounded facesf of P by S2P. We assume that:

i) every edgee ∈ S1P is directed, havinge− as initial ande+ as final vertex, and therefore
oriented,

ii) every face f ∈ S2P is plane starshaped with respect to a given barycenterB f and ori-
ented. Morever,f is regarded as the plane cone over its boundary∂ f, formed with respect
to B f . This cone inherits fromR2 a smooth linear parametrization along each ray joining
B f with the vertices off and with distinguished points of the edges belonging to∂ f
and joining these vertices, as well as a picewise smooth, linear parametrization along the
boundary∂ f of f, i.e. along the edges.

A configuration ofP is a map8 : P → R3 with the following defining properties:

i) j : S0P → R3 is an embedding;

ii) if any two verticesq1 andq2 in S0P are joined by some edgee in S1P, then the image
8(e) is the edge joining8(q1) and8(q2);

iii) the image8( f ) of every face f in S2P, regarded as the plane cone over its boundary
∂ f formed with respect toB f , is a cone inR3 over the corresponding boundary8(∂ f )
formed with respect to8(B f );

iv) 8 preserves the orientation of every facef ∈ S2P and of every edgee ∈ S1P.

We denote byE(P,R3) the collection of all configurations8 of P, and bycon f
(
P,R3

)
the

configuration space, which is eitherE(P,R3) or eventually a subset of it.

As in the continuum case we model the plyhedronP with microstructure by a principal

bundleP
π→ P with structure groupH , a compact Lie group, while the ambient spaceR

3 with

microstructure is modelled by another principal bundleQ
ω→ R3 with structure groupG, a Lie

group containingH.

We note that we implement the interaction of internal variables by fixing a connection on

P
π→ P, and this can be done by using an argument similar to that one in [4]. Clearly not every

closed, piecewise linear curve inP can be lifted to a closed, piecewise linear curve inP.

The configuration spaceCon f(P,Q) is a subset of the collectionE(P,Q) of smooth,H -
equivariant, fibre preserving embeddings8̃ : P → Q.

Again Con f(P, Q) is a principal bundle overcon f(P,R3) or over some open subset of it
with GH

P as structure group.
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3. The interaction form and its virtual work

Let us denote byF(S0P,R3) the collection of allR3-valued functions onS0P, by A(S1P,R3)

the collection of allR3-valued one-forms onP, i.e. of all mapsγ : S1
P → R

3, and by

A2
(

S2P,R3
)

the collection of allR3-valued two-forms onP, i.e. of all mapsω : S2P → R3.

We note thatF(S0P,R3), A1S1P,R3) andA2(S2P,R3) are finite dimensionalR-vector spaces
due to the fact thatP has finitely many vertices, edges and faces. In all these vector spaces we
can present natural bases. Indeed, given anyz ∈ R3 and a fixed vertexq ∈ S0P, we define
hz

q ∈ F(S0P,R3) as follows:

hz
q(q

′) =
{

z , if q = q′

0 , otherwise .

On the other hand, for a fixed edgee ∈ S1P respectively a fixed facef ∈ S2P, γ z
e ∈

A1(S1P,R3) andωz
f ∈ A2(S2P,R3) are given in the following way:

γ z
e (e

′) =
{

z , if e = e′ ,
0 , otherwise ,

ωz
f ( f ′) =

{
z , if f = f ′ ,
0 , otherwise .

If now {z1, z2, z3} is a base inR3, then

{hzi
q | q ∈ S0

P, i = 1,2, 3} ⊂ F(S0
P,R3)

{γ zi
e | e ∈ S1

P, i = 1, 2, 3} ⊂ A1(S1
P,R3)

and
{ωzi

q | f ∈ S2
P, i = 1, 2,3} ⊂ A2(S2

P,R3)

are the natural bases mentioned above.

Given now a scalar product〈·, ·〉 on R3, we define the scalar productG0,G1 andG2 on
F(S0P,R3), A1(S1P,R3) and respectivelyA2(S2P,R3) by

G0(h1,h2) :=
∑

q∈S0P

〈h1(q), h2(q)〉 , ∀ h1,h2 ∈ F(S0
P,R3) ,

G1(γ1, γ2) :=
∑

e∈S1P

〈γ1(e), γ2(e)〉 , ∀ γ1, γ2 ∈ A1(S1
P,R3) ,

and
G2(ω1, ω2) :=

∑

f ∈S2P

〈ω1( f ), ω2( f )〉 , ∀ ω1, ω2 ∈ A2(S2
P,R3).

The differentialdh of anyh ∈ F(S0P,R3) is a one-form onP given by

dh(e) = h(e+)− h(e−) , ∀ e ∈ S1
P ,

wheree− ande+ are the initial and the final vertex ofe.

The exterior differentiald : A1(S1P,R3) → A2(S2P,R3) applied to anyγ ∈ A1(S1P,R3)

is given by
dγ ( f ) :=

∑

e∈∂ f

γ (e) , ∀ f ∈ S2
P .
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The exterior differentialdω for any two-formω on P vanishes. Associated withd and the
above scalar products are the divergence operators

δ : A2(S2
P,R3) → A1(S1

P,R3)

and
δ : A1(S1

P,R3) → F(S0
P,R3) ,

respectively defined by the following equations

G1(δω, α) = G2(ω,dα) , ∀ ω ∈ A2(S2P,R3) and
∀ α ∈ A1(S1P,R3) ,

and
G0(δα,h) = G1(α,dh) , ∀ α ∈ A1(S1P,R3) and

∀ h ∈ F(S0P,R3) .

d ◦ d = 0 impliesδ ◦ δ = 0. Elements of the formdh in A1(S1P,R3) for anyh ∈ F(S0P,R3)

are called exact, while elements of the formδω in A1(S1
P,R3) for anyω ∈ A2(S2

P,R3) are
called coexact.
The Laplacians10, 11 and12 on F(S0P,R3), A1(S1P,R3) and A2(S2P,R3) are respec-
tively defined by

1i := δ ◦ d + d ◦ δ , i = 0, 1,2 .

Due to dimP = 2 these Laplacians, selfadjoint with respect toGi , i = 0, 1, 2 , simplify to
10 = δ ◦ d on functions,11 = δ ◦ d + d ◦ δ on one-forms and12 = d ◦ δ on two-forms. Hence
there are the followingG0,G1- and respectivelyG2-orthogonal splittings, the so called Hodge
splittings [1]:

A0(S0P,R3) = δA1(S1P,R3)⊕ Harm0(S0P,R3) ,

A1(S1P,R3) = d F(S0P,R3)⊕ δA2(S2P,R3)⊕ Harm1(S1P,R3) ,

A2(S2P,R3) = d A1(S1P,R3)⊕ Harm2(S2P,R3) .

Here Harmi (Si P,R3) := Ker d ∩ Ker δ , i = 0,1, 2. Reformulated, this says thatβ ∈
Harmi (Si P,R3) if 1i β = 0, i = 0,1, 2 ; we note thatβ ∈ Harm0(S0P,R3) is a constant
function.

Letting H i (P,R3) be thei -th cohomology group ofP with coefficients inR3, we hence
have:

H i (P,R3)
∼= Harmi (Si

P,R3) , i = 1, 2 .

Next we introduce the stress or interaction forms, which areconstitutive ingredients of the
polyhedronP. To this end we consider the interaction forces, i.e. vectors in R

3,which act up on
any vertexq, along any edgee and any facef of P.

The collection of all these forces acting up on the vertices defines a configuration dependent

function α0(8) ∈ F(S0P,R3), where8 ∈ con f
(
P,R3

)
. Analogously the collection of all

the interaction forces acting up along the edges or along thefaces defines a one formα1(8) ∈
A1(S1

P,R3) or a two-formα2(8) ∈ A2(S2
P,R3) respectively. The virtual workAi (8) caused

respectively by any distortionγ i ∈ Ai (Si P,R3), i = 0, 1,2, is given by

Ai (8)(γ i ) = G i (αi (8), γ i ), i = 0,1, 2 .
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However, it is important to point out that the total virtual workA(8) caused by a deforma-

tion of the polyhedronP is given only byA1(8)(γ 1)+A2(8)
(
ρ2
)
, whereρ2 is the harmonic

part ofγ 2 ∈ A2(S2P,R3). In order to justify it we give the virtual worksAi (8)(γ i ), i = 1,2,
in accordance with the Hodge splitting forαi (8) andγ i , i = 0, 1, 2, and with the definition of
the divergence operatorsδ, the equivalent forms

G0(α0(8), δγ 1) = G1(dα0(8), γ 1),

G1(α1(8), γ 1) = G1(dβ0 + δω2 + ~1, γ 1)

= G0(β0, δγ 1)+ G2(ω2,dγ 1)+ G1(~1, ρ1)

G2(α0(8), δγ 1) = G2(dβ1 + ~2, γ 2) = G1(β1, δγ 2)+ G2(~2, ρ2),

Here the two terms

G1(~1, γ 1) = G1(~1,dh0 + dh2 + ρ1) = G1(~1, ρ1),

and
G2(~2, γ 2) = G2(~2, dh1 + ρ2) = G2(~2, ρ2)

depend only on the topology of the polyhedronP.

Comparing now the different expressions for the virtual works we get

A1(8)
(
γ 1
)

+ G2(~2, ρ2) = G0(α0(8), δγ 1)+ G2(α2(8),dγ 1)+
+ G1(~1, ρ1)+ G2(~2, ρ2),

α0(8) = δα1(8),

α1(8) = dα0(8)+ δα2(8)+ ρ1,

α2(8) = dα1(8)+ ρ2.

Moreover

10α
0(8) = α0(8) ,

12α
2(8)+ ~2 = α2(8) .

Accordingly, the total virtual work onP associated, as discussed above, withα0, α1 andα2

is given by

A(8)(γ 1, γ 2) := A1(8)(γ 1)+ A2(8)(ρ2)

= G1(α1(8),11γ
1)+ G1(~1, ρ1)+ G2(~2, ρ2)

However, due to translational invariance

αi (8) = αi (d8), i = 0,1, 2 .

For this reason we letd8 vary in a smooth, compact and bounded manifoldK ⊂ dcon f(P,R3)

with non-empty interior. The virtual work onP has then the form

A(8)(γ 1, γ 2) = A(d8)(γ 1, γ 2)

for any d8 ∈ K and anyγ i ∈ Ai (Si P,R3). Sincedcon f
(
P,R3

)
⊂ A1

(
S1P,R3

)
ac-

cording to the Hodge splitting is not open, not all elements in A1
(

S1P,R3
)

are tangent to
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dcon f
(
P,R3

)
. Therefore,A is not a one-form onK ⊂ dcon f

(
P,R3

)
, in general. To use the

formalism of differential forms, we need to extend the virtual workA to some compact bounded

submanifoldK1 ⊂ A1
(

S1P,R3
)

with K ⊂ K1- See [2] for details -

The one-formA(d8) needs not to be exact, in general. We decompose accordinglyA into

A(d8) = dI F +9.

This decomposition is the so called Neumann one, given by

divA = 1F, A(ξ) (ν(ξ)) = D(ξ)(ν(ξ))

for all ξ in the boundary∂K1 of K1. D is the Fréchet derivative onA1
(

S1P,R3
)
, while ν

is the outward directed unit normal field on∂K 1. The differential opeatorsdiv and1 are the

divergence and respectively the Laplacian onA1
(

S1P,R3
)
.

4. Thermodynamical setting

This Neumann decomposition, combined with the idea of integrating factor of the heat, as pre-
sented in [1], [6] and [7], yields a thermodynamical setting.

In order to do this let us remember first thatA1
(

S1P,R3
)

has according to the Hodge

splitting the decomposition

A1
(

S1
P,R3

)
= d F

(
S0

P,R3
)

⊕ δA2
(

S2
P,R3

)
⊕ Harm1

(
S1

P,R3
)
.

This fact implies the necessity of one additional coordinate function for the construction of
the therodynamical setting. Accordingly we extendK1 to KR := K1 × R and pullA back to
KR. The pull back is again denoted byA.

We follow now the argument in [2] and denote byU the additional coordinate function on
KR : we set for the heat

H := dIU − A

where by dI we denote here the differential onKR.

Let now 1
T be an integrating factor ofH ; i.e.

H = T dI S on KR,

whereS : KR → R is a smooth function ([2]). Next we introduce the free energyFKR
by

setting
FKR

:= U − T · S ,

yielding
A = dI FKR

− S dI T .

Both FKR
and T depend on the tuple(ξ,U) ∈ KR. The one-formA on KR depends

trivially on U. We think of some dependence ofU on ξ, i.e. we think of a maps : K1 → R and
restrict the above decomposition ofA to the graph ofs. s is determined by the equation

FKR
(ξ, s(ξ)) = F(ξ)+ F0,
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∀ξ in some submanifoldsV of K1. We call F the free energy, too. Then

A = dI F +9 on K1,

where9 on V has the form

9(ξ)(γ ) = S(s(ξ)) · dI T(s(ξ)) ∀ξ ∈ V ⊂ K1 and∀γ ∈ A1
(

S1
P,R3

)

dI is here the differential onK1.

We have considered here the thermodynamical setting only inthe case of the virtual work
done onP. This can be easily generalized to the virtual work on the microstructure. To do this
we define first the virtual work on the microstructure [4] and then we repeat the above argument.
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L. Bortoloni - P. Cermelli ∗

STATISTICALLY STORED DISLOCATIONS IN

RATE-INDEPENDENT PLASTICITY

Abstract. Work hardening in crystalline materials is related to the accumulation of
statistically stored dislocations in low-energy structures. We present here a model
which includes dislocation dynamics in the rate-independent setting for plasticity.
Three basic physical features are taken into account: (i) the role of dislocation
densities in hardening; (ii) the relations between the slipvelocities and the mobility
of gliding dislocations; (iii)the energetics of self and mutual interactions between
dislocations. The model unifies a number of different approaches to the problem
presented in literature. Reaction-diffusion equation with mobility depending on
the slip velocities are obtained for the evolution of the dislocations responsible of
hardening.

1. Introduction

Slip lines and slip bands on the surface of a plastically deformed crystal are due to complicated
phenomena which occur inside the crystal. When plastic deformation occurs, dislocations are
generated : some of them move towards the crystal surface forming slip lines, others may be
stored to harden the material and form more or less regular patterns ([1]-[16]). As reported in
Fleck et al. [1], “dislocations become stored for two reasons : they accumulate by trapping
each other in a random way or they are required for compatibledeformation of various parts
of the crystal. The dislocation which trap each other randomly are referred to asstatistically
stored dislocations...gradients of plastic shear result in the storage ofgeometrically necessary
dislocations”.

Taking into account both statistically stored dislocation(SSD) and geometrically necessary
dislocations (GND), our purpose in this paper is to construct a model which is able, at least in the
simple case of single slip, to describe dislocations patterns. The basic idea here is to introduce
dislocation densities as independent variables in the framework of Gurtin’s theory of gradient
plasticity [17].

Total dislocation densities have been introduced frequently in the literature, both to describe
hardening and the formation of patterns during plastic deformations ([18]-[26]).

In fact, materials scientists often describe hardening dueto dislocation accumulation by
means of the so-called Kocks’ model (see [22]): the resistance to slipζ is assumed to depend on
the total dislocation density% through a relation of the form

ζ = ζ(%),

∗This paper has been completed with the support of the ItalianM.U.R.S.T. 1998-2000 research project
“Modelli matematici per la scienza dei materiali”. We also wish to thank M.E. Gurtin, for his stimulating
comments and suggestions.
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and the accumulation of dislocations during plastic slip evolves according to an ordinary differ-
ential equation which can be rewritten in the form

(1)
d%

dt
= |ν|(ks

√
% − kr %),

whereν is the resolved (plastic) shear strain rate andkr , ks are positive constants. In the right
hand side of equation (1), the termks

√
% represents dislocation storage and the termskr % repre-

sents dynamic recovery. An important consequence of this approach is immediately recognizable
by equation (1): the dislocation rate%̇ depends on the strain rate. Roughly, this means that dis-
locations are less mobile when the material hardens.

The above approach does not take into account dislocation density gradients and thus, while
very efficient for small strain rates, it does not allow to study spatial variations of the density.
One of the first approaches tonon-local models, which should take into account both spatial
and temporal variations of the dislocation density, is due to Holt [18], which obtains a Cahn-
Hilliard equation for the total dislocation densities to describe patterning in a manner analogous
to spinoidal decomposition in alloys. His model is based on afree energy density which takes
into account dislocation interactions through higher gradients of the dislocation density, in con-
junction with a gradient-flow derivation of a balance equation for such densities.

Other authors, for instance Aifantis (see for example [23])and co-workers, model the com-
plex phenomena due to dislocation interaction and annihilation by means of a reaction-diffusion
system: in this approach two or more dislocation species areinvolved (e.g., mobile and immobile
dislocations) and an evolution equation for each specie, say %(X, t), is postulated

(2)
d%

dt
= D1% + g(%)

whereg(%) is a source term describing creation and annihilation of dislocations (e.g.,g(%) =
a% − b%2, with a andb phenomenological coefficients),D is a diffusive-like coefficient and1
is the laplacian. Models like (2) may be used to describe various phenomena related to pattern
formation, but they do not include (plastic) strain rate effects of the type described by (1).

The main goal of our work is a unified model which includes all the basic features of the
models described above, i.e., the dependence of (plastic) shear rate on dislocation density rate,
the non-locality, and finally a term describing work and soft-hardening.

Using consistently the assumption of rate-independence (see Gurtin [17]), we obtain an
equation for the total edge dislocation density of the form

(3)
d%

dt
= |ν|

(
ε1% − ∂ϕ

∂%

)

whereε may be interpreted as a diffusive coefficient andϕ(%) is a dislocation energy including
work and soft-hardening behavior. Notice that equilibriumsolutions satisfy

(4) ε1% − ∂ϕ

∂%
= 0.

Those solutions may correspond to low energy dislocations structures (LEDS, see Kuhlmann-
Wilsdorf [2]), or patterns forming during fatigue, where dislocations arrange themselves in such
a way that their self and interaction energy are minimized, and their average density does not
change with time, even if plastic flow does occur andν 6= 0.
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If τ andζ(%) denote the resolved shear stress and the slip resistance respectively, then by
regularization of the classical yield equationτ = (sgn ν)ζ(%), by lettingτ = (sgn ν)|ν|1/nζ(%)
for a large positive integern, we obtain

(5) |ν| =
( |τ |
ζ(%)

)n
.

By substitution ofν, as given by (5), into (3), we obtain the non linear parabolicdifferential
equation

(6)
d%

dt
=
( |τ |
ζ(%)

)n (
ε1% − ∂ϕ

∂%

)
,

which can be solved if the resolved shear stressτ = τ(X, t) is known as a function of position
and time.

2. Kinematics

Consider a body identified with its reference configurationBR, a regular region inR3, and let
X ∈ BR denote an arbitrary material point of the body. A motion of the body is a time-dependent
one-to-one smooth mappingx = y(X, t). At each fixed timet , the deformation gradient is a
tensor field defined by

(7) F = Grad y

and consistent withdet F(X, t) > 0 for anyX in BR. A superposed dot denotes material time
derivative so that, for instance,ẏ is the velocity of the motion.

We assume that the classic elastic-plastic decomposition holds, i.e.,

(8) F = FeFp,

with Fe andFp the elastic and plastic gradients, consistent withJe = det Fe > 0 andJp =
det Fp > 0. The usual interpretation of these tensors is thatFe represents stretching and
rotation of the atomic lattice embedded in the body, whileFp represents disarrangements due to
slip of atomic planes.

We restrict attention toplastic slip shear deformation, i.e., deformations such that the de-
composition (8) holds, withFe arbitrary and withFp of the form

(9) Fp = I + αs⊗ m, s · m = 0,

with I the identity inR3, s andm constant unit vectors andα = α(X, t). In (9), α̇ may be
interpreted as slip rate on the slip plane, defined by the glide directionsand the slip-plane normal
m. This plane is understood to be the only one active among all the available slip systems.

2.1. The geometrically necessary dislocation tensor

The presence of geometrically necessary dislocations in a crystal is usually described in terms of
Burgers vector, a notion strictly related to the incompatibility of the elastic deformation.



28 L. Bortoloni - P. Cermelli

DEFINITION 1. Let S be a surface in the deformed configuration, whose boundary ∂S is a
smooth closed curve. The Burgers vector of∂S is defined as

b(∂S) =
∫

∂S
F−1

e dx

where dx is the line element of the circuit∂S. Stokes’ theorem implies that

b(∂S) =
∫

S

(
curl F−1

e

)T
nda,

wheren is the unit normal to the surface S andcurl and da are, respectively, the curl operator
with respect to the pointx and the area element in the deformed configuration.

Sincecurl F−1
e 6= 0 is necessary to have non null Burgers vectors, the tensorcurl F−1

e
seems to be a candidate to measure geometrically necessary dislocations. As such, however, it
suffers some drawbacks: for example,curl F−1

e is not invariant under superposed compatible
elastic deformations; moreover, in view of applications togradient theories of plasticity, it should
be desirable to work in terms of a dislocation measure which can be expressed in terms of the
plastic strain gradient also. In [27], Cermelli and Gurtin prove the existence of a dislocation
tensor which satisfies both requirements above. We can rephrase their result as follows:

DEFINITION 2. Lety be a deformation andF = ∇y its deformation gradient. IfFe andFp

are smooth fields satisfying (8), then the identity1
Jp

FpCurl Fp = JeF−1
e curl F−1

e holds: we

define therefore the geometrically necessary dislocation tensor (GND tensor) as

(10) DG := 1

Jp
FpCurl Fp = JeF−1

e curl F−1
e .

By (10), we have an alternative plastic and elastic representation ofDG. As pointed out in
[27], in developing a constitutive theory “it would seem advantageous to use the representation
of DG in terms ofFp, which characterizes defects, leavingFe to describe stretching and rotation
of the lattice”. See [27] for an exhaustive discussion of thegeometrical dislocation tensor defined
by (10).

For single slip plastic deformations (9), the GND tensor hasthe form

(11) DG = (∇α × m)⊗ s = sgs⊗ s+ egt ⊗ s

wheret = s× m and

(12) eg = ∇α · s, sg = −∇α · t.

The quantitieseg andsg can be interpreted as densities associated to geometrically necessary
edgeandscrewdislocations, respectively, with Burgers vector parallelto s.

2.2. The total dislocation tensor

Individual dislocations can be visualized by electron microscopy and their direction and Burgers
vector can be determined experimentally. We thus assume that the microscopic arrangement of
dislocations at each point is characterized by scalar densities of edge end screw dislocations, for
any given Burgers vector. More precisely, assuming that only dislocations with Burgers vectors
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are present, and their line direction is contained in the slip planem⊥, we introduce nonnegative
functions

(13) e+ = e+(X, t), e− = e−(X, t), s+ = s+(X, t), s− = s−(X, t),

with the following interpretation :e+ ande− are the densities of dislocations with Burgers vector
s and line directiont and−t respectively (edge dislocations);s+ and s− are the densities of
dislocations with Burgers vectorsand line directions and−s respectively (screw dislocations).

Noting that all the information on a given system of dislocations may be summarized in one
of the tensorial quantities (recall thate±, s± ≥ 0)

e+t ⊗ s, −e−t ⊗ s, s+s⊗ s, −s−s⊗ s,

we assume that the edge and screw densities above are relatedto the geometrically necessary
dislocation tensor by a compatibility relation of the form

(14) DG = (e+ − e−)t ⊗ s+ (s+ − s−)s⊗ s

from which it follows that

e+ − e− = eg, s+ − s− = sg.

DEFINITION 3. Introducing the total edge and screw dislocation densities

e := e+ + e−, s := s+ + s−,

we define the total dislocation tensor by

(15) DS := e t ⊗ s+ s s⊗ s.

3. Dynamics

3.1. Standard forces and microforces

To describe the force systems associated to the motion of thebody, plastic deformation and the
evolution of the total dislocation densities, we introducea tensor fieldS, vector fieldsbext, ξ, κe
andκs, and scalar fields5, 5ext, Me, Mext

e , Ms andMext
e , all functions of(X, t).

These fields correspond to three physically distinct sets offorces acting on the body.

The first force system is standard, and is given by the usual Piola-Kirchhoff stress tensorS
and the body forcebext.

The second force system has been introduced by Gurtin in his theory of gradient plasticity
of single crystals (see [17]), to describe forces that perform work associated to plastic slip. This
system consists in a vector microstressξ , a scalar internal microforce5, and a scalar external
microforce5ext.

The last set of forces is introduced to account for the dynamics of the total screw and edge
dislocation densities. It consists of a vector forceκe, a scalar internal microforceMe, and a
scalar external microforceMext

e for edge dislocations, and corresponding quantitiesκs, Ms and
Mext

s for screw dislocations.

A balance law is associated to each force system. We considerfirst the standard system
(S,bext), which is governed by the classical force balances, in localform given by

(16) Div S+ bext = 0, SFT = FST,
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where we have omitted the inertial terms. To the second forcesystem(ξ,5,5ext), governing
plastic slip, a corresponding microforce balance is associated (Gurtin, [17])

(17) Div ξ +5+5ext = 0.

Following Gurtin, [17] we shall see later that this relationreplaces the usual yield condition for
the single slip system under consideration.

In our theory two more balances must be introduced, in order to obtain a complete integrable
set of equations once an adequate constitutive theory is developed. These new balances are
associated to the force systems(κe,5e,5

ext
e ) and(κs, 5s, 5

ext
s ), and are given in local form

by

Div κe + Me + Mext
e = 0,

Div κs + Ms + Mext
s = 0.(18)

Each of the above force system is characterized by the way it expends power on the rate of
change of the corresponding microstructural field : precisely, we assume that the working of the
forces on an arbitrary portionP of the body is

W(P) =
∫

∂P
(Sn · ẏ + ξ · nα̇ + κe · nė+ κs · nṡ)da

+
∫

P
(bext · ẏ + α̇5ext + ėMext

e + ṡMext
s )dv.(19)

Notice that the microstressξ and the corresponding external force, expend power on the slip
velocity α̇, while the total dislocation forcesκe andκs expand power on the rate of change of the
corresponding dislocation densities.

We take the second law in the form of a dissipation inequality, stating that the time-derivative
of the free energy relative to an arbitrary subregionP of the body may not exceed the working
of the external forces acting onP , i.e.,

(20)
d

dt

∫

P
ψdv ≤ W(P)

whereψ is the free energy, density per unit volume in the reference configuration. Using the
balance equations, this inequality becomes, in local form,

(21) ψ̇ ≤ Te · Ḟe + ξ · ∇α̇ + κe · ∇ė+ κs · ∇ṡ + πα̇ − Meė− Msṡ

where

(22) Te = SFT
p π = τ −5, τ = S · (Fes⊗ m).

Notice thatτ is theresolved shear stresson the slip system under consideration.

3.2. Constitutive equations

Lettingσ = (Fe,e+,e−, s+, s−,∇e+,∇e−,∇s+,∇s−) andv = (α̇, ė, ṡ) we consider consti-
tutive equations of the form

(23) ψ = ψ̂(σ ), Te = T̂e(σ ), ξ = ξ̂ (σ ), κe = κ̂e(σ ), κs = κ̂s(σ )
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and

(24) π = π̂ (σ, v), Me = M̂e(σ, v), Ms = M̂s(σ, v).

Requiring the consistency of the constitutive equations with the dissipation inequality for any
process, we obtain by the classical Coleman-Noll procedurethe result that the constitutive func-
tions above cannot depend on∇e+, ∇e−, ∇s+ and∇s−, but only on∇e and∇s, i.e., we can
rewrite the constitutive relations (23) in terms of the list

σ ′ = (Fe,e+,e−, s+, s−,∇e,∇s)

or, equivalently,
σ ′′ = (Fe,eg, sg,e, s,∇e,∇s).

Furthermore, the constitutive relations in (23) must satisy the requirements

(25)
Te = ∂ψ̂

∂Fe
, ξ = ∂ψ̂

∂eg
s+ ∂ψ̂

∂sg
m × s,

κe = ∂ψ̂

∂∇e
, κs = ∂ψ̂

∂∇s
,

while the internal microforcesMe andMs decompose as

(26) Me = −Mdis
e − ∂ψ̂

∂e
, Ms = −Mdis

s − ∂ψ̂

∂s

whereMdis
e , Mdis

s andπ must satisfy the residual dissipation inequality

(27) δ = πα̇ + Mdis
e ė+ Mdis

s ṡ ≥ 0

for all processes(σ, v).

3.3. Rate independence

Notice that, under a time scale transformation defined byt → t/θ , θ > 0, the fieldsα̇, ė andṡ
transform according tȯα → θα̇, ė → θ ė andṡ → θ ṡ. Following Gurtin, we assume that the
constitutive equations forMdis

e , Mdis
s andπ are rate-independent, in the sense that they satisfy

Mdis
e (σ, v) = Mdis

e (σ, θv), Mdis
s (σ, v) = Mdis

s (σ, θv), π(σ, v) = π(σ, θv),

for any(σ, v) and for allθ > 0.

4. A nonlinear model

For the applications presented in this paper, we choose a particular form of the free energy
functionψ , namely

(28) ψ = ψe(Fe)+ ϕ(eg, sg,e, s)+ 1

2
ε1|∇e|2 + 1

2
ε2|∇s|2

whereψe andϕ are non-negative functions andε1 andε2 are positive constants.
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Moreover, we shall assume that the dissipative fieldsMdis
e , Mdis

s andπ are given by

Mdis
e (σ, v) = a(e, s)

ė

|α̇| ,

Mdis
s (σ, v) = b(e, s)

ṡ

|α̇| ,(29)

π(σ, v) = ζ(e, s)sgn α̇,

wherea(e, s), b(e, s) andζ(e, s) are positive functions. This choice guarantees rate-independ-
ence, and yields a dissipation density1 quadratic in the rates of change of the total dislocation
densities. Moreover, as we shall see, whenα̇ = 0, equations (29)1 and (29)2 are well-defined.

Following Gurtin [17], the functionζ may be interpreted as theslip resistance. In [17], ζ
is introduced as internal variable, whose evolution is given by an ordinary differential equation,
called thehardening equation, of the form

ζ̇ = f (λ, α̇),

whereλ is a list possibly containing the fieldsFe, Fp, ∇Fp andζ . As shown in [17], when
restricted by rate independence, the hardening equation becomes

(30) ζ̇ = K (λ)|α̇|.

Our approach to hardening is substantially different from that based on internal variables: we
assume in fact thatζ is given by a constitutive relation compatible with the dissipation inequality
and the hypothesis of rate independence. Therefore it is notnecessary to introduce the hardening
equationa priori, since, as shown below, it is a consequence of the constitutive choices (29)1
and (29)2 for Mdis

e andMdis
s .

To write explicitly the evolution equations for our model, we assume that no external forces
are present, and choose a cartesian coordinate system(X,Y, Z) in the reference configuration
such that

(1,0, 0) = s× m (0, 1,0) = s (0,0, 1) = m.

The balance equations are then

1) the balances of linear and angular momentum

(31) Div

(
∂ψe

∂Fe
F−T

p

)
= 0, and

∂ψe

∂Fe
FT

e = Fe

(
∂ψe

∂Fe

)T
.

2) the yield equation

(32) τ = (sgn α̇)ζ − ∂2ϕ

∂e2
g

∂2α

∂Y2
+ 2

∂2ϕ

∂eg∂sg

∂2α

∂X∂Y
− ∂2ϕ

∂s2
g

∂2α

∂X2
,

Notice that the yield condition is modified by the presence ofgeometrically necessary
dislocations (we have used (12) to express the geometrically necessary dislocation den-
sities in terms of the derivatives of the plastic slipα), which can be thought as inducing
isotropic hardening-softening.

3) a reaction-diffusion system for the total dislocation densities

(33) ė = |α̇|
a

(
ε11e− ∂ϕ

∂e

)
, ṡ = |α̇|

b

(
ε21s − ∂ϕ

∂s

)
.
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Notice that the dislocation mobility is proportional to themodulus of the slip velocitẏα.
Henceforth, two characteristic features of dislocation dynamics are immediately recog-
nizable from (33):

(i) one can have equilibrium configurations for edge dislocations, i.e.,

ε11e− ∂ϕ

∂e
= 0

such thaṫe = 0 and dislocations are ”locked” in low energy structures, but plastic
flow does occur, and the slip velocity does not vanish:α̇ 6= 0. A similar discussion
applies to screw densities.

(ii) if the material behaves elastically, so thatα̇ = 0, then dislocations cannot move.

Besides, by derivations with respect the time of the constitutive relationζ(e, s) for the
slip resistance, and using equations (33)1 and (33)2, we obtain a hardening equation

(34) ζ̇ =
[

1

a

∂ζ

∂e

(
ε11e− ∂ϕ

∂e

)
+ 1

b

∂ζ

∂s

(
ε21s − ∂ϕ

∂s

)]
|α̇|

which is a generalization of the classical equation (30).

5. One dimensional model

In this section we describe some simplifying assumptions which allow to reduce the reaction-
diffusion system for the total dislocation densities, to a single one-dimensional equation for the
total edge density.

ASSUMPTIONS

(i) We assume that the geometrically necessary dislocationdensities vanish, i.e.,

eg = sg = 0,

which implies thate+ = e−, s+ = s− and thus, by (12),α only depends on(Z, t) .

(ii) Screw dislocations densities are assumed to vanish identically, and the total edge disloca-
tion densitye is constant on each slip plane, so thate depends only on(Z, t). Thuse is
the only non-vanishing dislocation density.

(iii) The resolved shear stressτ is assumed to be constant with respect to(X, t).

(iv) The constitutive relation for the slip resistance has the form

ζ(e) = ζ0 + c
√

e

whereζ0 andc are positive constants. This relation is well known in the materials science
literature (cf. Livingston [4], Van Drunen and Saimoto [5],Staker and Holt [6]).

(v) We approximatesgn α̇ for α̇ 6= 0 by

|α̇|
1
nsgn α̇

with n large (viscoplastic regularization).

(vi) Assuming that the bodyB is an infinite layer between the planesZ = 0 andZ = L , we
take natural boundary conditions for the microstress associated to the total edge disloca-
tion density,

∂e

∂Z

∣∣∣∣
Z=0

= ∂e

∂Z

∣∣∣∣
Z=L

= 0.
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5.1. A particular energy dislocation function

We further chooseϕ(e) in the form

(35) ϕ(e) = 1

4
[e(e− em)]

2,

with em > 0 a constant. The functionϕ(e) is non-convex and non-negative with a local minimum
at e = 0 ande = em and a local maximum ate = em/2.

5.2. The model

Assuming that the standard balance of momentum (31) is identically satisfied, the previous as-
sumptions reduce the general model to the following two equations

(36) τ = (sgn α̇)|α̇|1/n(ζ0 + c
√

e),

and

(37) ė = 1

a
|α̇|
(
ε1
∂2e

∂Z2
− e(e− em/2)(e− em)

)
.

Using (36), equation (37) becomes

(38) ė = 1

a

( |τ |
ζ0 + c

√
e

)n
(
ε1
∂2e

∂Z2
− e(e− em/2)(e− em)

)
,

supplemented by the natural boundary conditions discussedabove. Equation (38), which is
the basic result of this work, is a non-linear partial differential equation which may be solved
numerically: a complete discussion of the behavior of the solutions to (38) will be published
elsewhere.
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Università di Torino
Via Carlo Alberto 10
10123 Torino, ITALY
e-mail:cermelli@dm.unito.it



Rend. Sem. Mat. Univ. Pol. Torino
Vol. 58, 1 (2000)
Geom., Cont. and Micros., I

M. Braun

COMPATIBILITY CONDITIONS FOR DISCRETE

ELASTIC STRUCTURES

Abstract. The theory of plane, elastic trusses is reconsidered from the viewpoint
of the continuum theory of elastic media. A main difference between continuum
and discrete theories is the following: In the continuous case all quantities are
declared throughout the whole body, whereas in the discretecase each quantity
has its own “carrier”. In a truss, for instance, displacements and applied forces are
declared in the nodes while strain and stress live in the members of the truss.

The paper deals with the proper formulation of compatibility conditions for a
truss. They are derived along the same lines as St.-Venant’scompatibility condi-
tions of plane elasticity, i. e. by stipulating that Cesàro’s integrals are path inde-
pendent. Compatibility conditions can be formulated at each inner node of a truss,
and they relate the strains of all members which constitute the rosette surrounding
the inner node.

1. Continuous and discrete elastic systems

Continuum theories are usually developed from physical models that are discrete in nature. A
continuous distribution of dislocations, for instance, would hardly be conceivable, if we had not
a clear idea of anisolateddislocation. Even the notion of stress as a distributed force follows
the example of a single force. Within the framework of a continuum theory, however, discrete
quantities appear as singularities and are formally less convenient to handle than their continuous
counterparts.

By the process ofhomogenizationthe underlying discrete ideas are transformed into a con-
tinuum theory. The resulting partial differential equations do not admit closed-form solutions,
in general. To solve them numerically adiscretizationprocess is invoked, which approximates
the continuum by a discrete system. In this sense a continuumtheory is squeezed between the
underlying discretephysicalmodel and the discretenumericalapproximation.

The general structure of a physical theory should be perceptible independently of the dis-
crete or continuum formulation. A balance equation, for instance, has a genuine physical mean-
ing whether the model is continuous or discrete. The theory of a discrete elastic structure, be it
a crystal lattice, a finite-element system or an elastic truss, should exhibit the same fundamen-
tal laws as continuum elasticity theory. The general form ofthe fundamental equations can be
represented most suggestively by a so-called TONTI diagram [6, 7]. Figure 1 shows the TONTI

diagram of plane, linear elasticity theory. If we consider aplane,discreteelastic system, we
should encounter the same physical laws, although in a rather different formal garment.

This paper deals with the governing equations of plane, elastic trusses with special empha-
size of the compatibility conditions, which are derived along the same lines as ST.-VENANT’s
compatibility conditions of plane elasticity, i. e. by stipulating that CESÀRO’s integrals are path
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independent.

The theory of plane, elastic trusses is reconsidered from the viewpoint of the continuum
theory of elastic media. Mathematically a truss is considered as an oriented 2-complex, on
which displacement, strain, etc. are defined. In contrast tothe continuous body the mechanical
quantities in a truss are not available everywhere in the body, each quantity resides on its own
“carrier”: Displacements and applied forces are declared in the nodes while strain and stress live
in the members of the truss. It will be shown that the compatibility conditions are attached to
“rosettes”, ı. e. inner nodes that are completely surrounded by triangles of truss members.

To consider trusses from the point of view of elasticity theory is not at all new. KLEIN

and WIEGHARDT [4] have presented such an exposition even in 1905, and they rely on earlier
works of MAXWELL and CREMONA. Meanwhile, however, trusses have become more a subject
of structural mechanics and the more theoretical aspects have been banned from textbooks. As
an exception a manuscript by RIEDER [5] should be mentioned, in which the cross-relations
between electrical and mechanical frameworks are studied in great detail.

2. Trusses

Mechanically a truss is a system of elasticmembersjoint to each other in hinges ornodeswithout
friction. The truss is loaded by forces acting on the nodes only.

The appropriate mathematical model of a truss is a 1-complexconsisting of 0-simplexes
(nodes) and 1-simplexes (members), which are “properly joined” [3]. The subsequent analysis
gives rise to two extensions of this model, namely (i) each member is given an orientation, which

uuu
displacement

vector

Ei j = u(i, j )

EEEstrain tensor

ϑ = εikε j l Ei j ,kl

ϑ = 0
disclination

density
ϕ Airy’s stress

function

Ti j = εikε j l ϕ,kl

TTT stress tensor

Ti j , j + fi = 0

fff = 000
volume force
density

Ti j = λEkkδi j + 2µEi j

Figure 1: Tonti diagram of plane linear elasticity
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Figure 2: Plane truss as a geometric complex

may be prescribed arbitrarily, and (ii) the triangles or 2-simplexes formed by the members are
taken into account. Thus the mathematical model of a truss isextended to anoriented 2-complex
(Figure 2). Only the non-oriented 1-complex is reproduced in hardware while the imposed ori-
entation and the appended triangular patches are mere mathematical constructs which facilitate
the formulation of the theory.

Subsequently nodes will be designated by Latin lettersi, j , . . . while Greek lettersα,β, . . .
denote the members. The connectivity of the truss is described by incidence numbers[α, k],
which are defined as

[α, k] =





−1 if memberα starts at nodek,
+1 if memberα ends at nodek,

0 else.

The distinction between start and end point of a member provides its orientation. The matrix of
all incidence numbers describes the topological structureof the truss.

The geometry may be specified by prescribing the position vectors xxxk of all nodes in the
unloaded, stress-free state of the truss. The edge vector ofa memberα can then be represented
by

(1) aaaα =
∑

k

[α, k]xxxk,

where the summation index may run over all nodes, since the incidence numbers single out
the proper starting and terminating points, thus reducing the sum to a simple difference. The
decomposition

aaaα = `αeeeα

yields the length̀ α and the direction vectoreeeα of a member.
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It has been tacitly assumed that there exists an unloaded, stress-free state of the truss. In
continuum elasticity theory this corresponds to the assumption that the unloaded elastic body
is free of initial stresses. In a more general setting one hasto start from the lengths̀α of the
undeformed members rather than from a given initial placement k 7→ xxxk of the nodes. This
approach within a nonlinear theory is indicated in [2].

3. Displacement and strain

When loads are applied to the truss, each nodek is displaced by a certain vectoruuuk from its
original position. Thestrain or relative elongationε of a member due to displacementsuuu1 and
uuu2 of its endpoints is

ε = 1

`
eee ··· (uuu2 − uuu1),

if only linear terms are retained. Using again the incidencenumbers [α, k] the strainεα of an
arbitrary memberα can be represented by

(2) εα = 1

`α
eeeα ···

∑

k

[α, k]uuuk .

As in (1) above, the incidence numbers single out the end nodes of the member and the sum
reduces to a simple difference.

Due to the nodal displacements each memberα undergoes also a rotationωα . Restriction
to linear approximation yields

ωα = 1

`α
eeeα ∧

∑

k

[α, k]uuuk ,

where∧ denotes the outer product of two plane vectors. An approach starting from displace-
ments does not need these rotations explicitly, since they do not enter the stress-strain relation.
However, if the displacements have to be reconstructed fromgiven strains, the rotations are
needed as well.

��

��

`

eee

uuu1

uuu2

Figure 3: Elongation of a member
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i

PPPi

α

Fα

Figure 4: Equilibrium
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4. Equilibrium condition

Once the strain of a memberα is known, one obtains the transmitted force by HOOKE’s law

(3) Fα = (E A)αεα ,

whereE A denotes the axial rigidity of the member, i. e. the product ofYOUNG’s modulus and
cross-sectional area.

At any nodei of the truss the applied external forcePPPi and the member forces acting on
that node must be in equilibrium (Figure 4). The force acted upon the node by the memberα is
−[α, i ]Fαeeeα. Thus the equilibrium condition can be formulated as

(4)
∑

α

[α, i ]Fαeeeα = PPPi .

The sum may be taken over all members of the truss, since the incidence numbers single out only
those which start or end at nodei .

Combining the equilibrium condition (4), the constitutiveequation (3), and the definition of
strain (2) yields the linear system of equations

∑

k

∑

α

[α, i ] [α, k]
(

E A

`
eee⊗ eee

)

α

uuuk = PPPi ,

which is the discrete analogue of NAVIER ’s equations. In structural analysis the matrix of this
system of equations would be called the global stiffness matrix of the truss. The three con-
stituents of NAVIER ’s equations can be arranged in a TONTI diagram (Figure 5), which is still
incomplete, since the lower part with the compatibility condition and AIRY ’s stress function is
missing.

uuuk
nodal

displacements

εα = 1

`α
eeeα ···

∑

k

[α, k] uuuk

εα
member

strains
Fα

member
forces

∑

α

[α, i ]Fαeeeα = PPPi

PPPi
external
nodal forces

Fα = (E A)α εα

�

�

�

�

�

�

Figure 5: Tonti diagram (upper part) for an elastic truss
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5. Compatibility in plane elasticity

Before developing the compatibility conditions for a trusswe shall first review the ST.-VENANT

compatibility condition of plane elasticity, which may be used as paradigm. Starting from a
positionxxx0 with given displacement vector the whole displacement fieldhas to be reconstructed
from the strain fieldEi j = u(i, j ). Integration along a curveC connectingxxx0 with an arbitrary
positionxxx yields the displacement components in terms of CESÀRO’s integral,

(5) ui (xxx) = ui (xxx0)+
∫

C
(Ei j + ωεi j )dx j ,

whereεi j denotes the two-dimensional permutation symbol. The rotation ω = 1
2(u2,1 − u1,2),

however, is still unknown and has to be reconstructed from the strain field too.

For the integral in (5) to be path independent the integrand has to satisfy the integrability
condition

(6) ai ≡ Ei j ,kεkj − ki = 0,

whereki = ω,i denotes the rotation gradient orstructural curvature[1]. Geometrically this
means that the body is free of dislocations. On the other handthe rotation field itself can be
reconstructed by another integral,

(7) ω(xxx) = ω(xxx0)+
∫

C
ki dxi .

For this integral to be path-independent the integrabilitycondition

(8) ϑ ≡ ki, j ε j i = 0

has to be satisfied, which means that the body is free of disclinations. Combining the two condi-
tions (6) and (8) yields the ST.-VENANT compatibility condition

(9) εikε j l Ei j ,kl = 0,

which stipulates that both the dislocation and the disclination densities vanish.

The compatibility condition emerges from a two-stage process and combines two indepen-
dent conditions. To unwrap this combination the geometric part of the TONTI diagram, Figure 1,
has to be extended to show all the details, see Figure 6.

6. Compatibility condition for a plane truss

The displacement difference1uuu between the terminating nodes of a single member can be re-
constructed from the strainε and the rotationω of that member. According to Figure 7 one
obtains

(10) 1uuu = εaaa + ωaaa∧,

where the vectoraaa is aligned with the member andaaa∧ denotes the vector obtained by rotation
through+π/2.

The role of the pathC in CESÀRO’s integrals is adopted by an oriented 1-chain of truss
members (Figure 9). A 1-chainC can be specified by incidence numbers
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[C, α] =





+1 if C containsα and has the same orientation,
−1 if C containsα and has opposite orientation,

0 if C does not containα.

Extending (10) to an oriented 1-chainC yields the rotation difference

(11) 1uuuC =
∑

α

[C, α](εαaaaα + ωαaaa∧
α ).

This is the discrete analogue to CESÀRO’s first integral (5).

uuu

ω = 1

2
ui, j ε j i

ω

ki = ω,i

kkk

ϑ = ki, j ε j i

ϑ = 0

Ei j = 1

2
(ui, j + u j ,i )

EEE

ai = Ei j ,kεkj − ki

aaa = 000

displacement vector

rotation strain tensor

structural
curvature

dislocation
density

disclination density

St. Venant’s
compatibility condition

Figure 6: Geometry of continuous deformation
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The displacement difference (11) has to vanish for anyclosed1-chain, or 1-cycle,C. The
simplest nontrivial 1-cycle is a triangle formed by three members. With the numbering and
orientation as provided in Figure 10 the closing condition for this triangular 1-cycle reads

ε1aaa1 + ω1aaa∧
1 + ε2aaa2 + ω2aaa∧

2 + ε3aaa3 + ω3aaa∧
3 = 0.

Scalar multiplication by one of the edge vectors,aaa1 say, yields

ω2 − ω3 = 1

2A
(ε1aaa1 + ε2aaa2 + ε3aaa3) ··· aaa1 ,

where 2A = aaa1 ∧ aaa2 = −aaa1 ∧ aaa3 is twice the area of the triangle. From elementary geometric
considerations this can also be written as

(12) ω2 − ω3 = (ε1 − ε2) cotα3 + (ε1 − ε3) cotα2 ,

where the angles of the undeformed triangle are denoted as inFigure 10. Within each triangle the
rotation difference of two adjacent members can be computedfrom the strains in the members
of that triangle. This corresponds to the local integrability condition (6) of the continuum theory,
which expresses the rotation gradient in terms of derivatives of the local strain field.

The simplest 1-chain, for which a rotation difference can bedefined, has length 2, it is
formed by two adjacent members (Figure 8). An extended 1-chain may be decomposed into a
sequence of such elementary 1-chainsc. Thus the rotation difference of an arbitrary 1-chain is

1ωC =
∑

c
[C, c]1ωc

with appropriately defined incidence numbers [C, c]. Whereas the rotation difference1ωc is
defined for all pairsc of adjacent members, an explicit formula is available only,if these adja-
cent members are complemented by a third member to a closed triangle. Therefore, in order to
actually compute the rotation difference1ωC between the first and the last member of a con-
nected 1-chainC, it has to be accompanied by an appropriate sequence of triangles, i. e. a 2-chain.
Also the original 1-chainC must be extended by certain detours along the edges of the triangles
(Figure 11).

For any 1-cycleC the rotation difference1ωC has to vanish,

(13)
∑

c
[C, c]1ωc = 0 if ∂C = ∅.

��

��

aaa

εa
ωa

1uuu

Figure 7: Single member

aaa 1

aaa2

��

ω1
ω2

1ω = ω2 − ω1

Figure 8: Two members
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The shortest nontrivial 1-cycles are those surrounding an inner node of the truss (Figure 12).
For each of these rosette-like substructures we can formulate an appropriate condition, which
corresponds to the integrability condition (8) in the continuum case.

The closing condition for a rosette contains the differences 1ωc of successive members.
By use of (12) these can be expressed in the strains of the members of the corresponding trian-
gles. Using the numbering of members and angles indicated inFigure 12 one arrives at a single
condition of the form

(14)
n∑

i=1

(
cotα2i−2

mod 2n
,2i−1 + cotα2i−1,2i

)
ε2i−1 =

n∑

i=1

(
cotα2i−1,2i + cotα2i,2i+1

mod 2n

)
ε2i .
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This is the analogue of ST.-VENANT’s compatibility condition for a truss. It is obtained by
combining the closing condition (13) for the rotations around a rosette with the closing condition
(12) for the displacements around a triangle. For the truss to be stress-free in its unloaded state
the condition (14) is necessary but not sufficient, in general. If the 2-complex does not contain
any holes, the condition is also sufficient. The compatibility conditions are closely connected
with the extended model of the truss as an oriented 2-complex, although the 2-simplexes are not
material parts of the truss.

In the special case of a regular rosette (Figure 13) all the anglesαi,i+1 are equal and cancel
out. Thus the compatibility condition reduces to

n∑

i=1

ε2i−1 =
n∑

i=1

ε2i .

The sum of the circumferential strains must be equal to the sum of the radial strains. The general
compatibility condition (14) has a similar structure, withthe strains being affected by certain
geometrical weight factors. For a quadratic rosette the compatibility condition reads

ε1 + ε3 + ε5 + ε7 = ε2 + ε4 + ε6 + ε8 .

This equation can be interpreted as a discretization of ST.-VENANT’s compatibility condition
(9).

7. Conclusion

The general structure of elasticity theory is not confined tothe continuum version, but holds also
for discrete elastic systems such as trusses or finite-element models. A remarkable difference be-
tween the theories of plane trusses and of elastic continua is the fact that in the continuous case
all quantities are declared throughout the whole body, whereas in the discrete case of the truss
each quantity has its own “carrier”: Displacements are declared in the nodes, strain and rota-
tion are available in the members, rotation differences need pairs of members, and compatibility
conditions can be formulated for “rosettes”, ı. e. inner nodes that are completely surrounded by
triangles of truss members. In this sense the continuum theory could be regarded as “easier”,
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since all quantities are defined in each material point. A closer look shows, however, that the
continuum theory can also provide different carriers for different quantities. This becomes mani-
fest, if the mechanical quantities are described in terms ofdifferential forms rather than ordinary
field functions.∗

The compatibility condition for a truss have been developedusing the same ideas as in the
continuum. It rests upon the postulation that displacementand rotation can be represented by
path-independentintegrals or, in the discrete case, by path-independet finite sums. To generate
localizedintegrability conditions in a continuum the integral around a closed path is transformed
via STOKES’s theorem into a surface integral, which must vanish identically. In the truss case
the local conditions are obtained by choosing the smallest nontrivial closed paths or 1-cycles,
namely triangles for the displacements and rosettes for therotations.

The theory of trusses can be developed further and extended along these lines. The com-
patibility condition should be complemented by its dual, the representation of member forces
by AIRY ’s stress function. This quantity has the same carrier as thecompatibility condition,
i. e., it resides in the rosettes surrounding inner nodes of the truss. The generalization to three
dimensions is more intricate, especially with respect to the closing condition for the rotation
vector.

Quite interesting is the appropriate treatment of frame trusses, with members rigidly clamped
to each other. A frame truss allows forcesand couplesto be applied to the nodes, and its mem-
bers deform under extension,bending, andtorsion. In this case the corresponding continuum
theory has to include couple stresses. It might be interesting to compare the common features of
continuous and discrete couple-stress theories.

Also a nonlinear theory of trusses can be formulated from theparadigm of nonlinear elas-
ticity theory. The concept of differentplacementsis easily transferred to a truss, and also the
ESHELBY stress tensor has its counterpart in the discrete case. A first attempt in this direction
has been made by the author in [2].
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POLYCRYSTALLINE MICROSTRUCTURE

Abstract. Polycrystals are often modelled as Cosserat continua, the crystallo-
graphic directions within single crystals being represented through elements of
SO(3). To address the problem of an overall representation of a polycrystalline
aggregate, following the example of nematics, one may choose an appropriate em-
bedding ofSO(3) in a linear space. Some possibilities are explored and a sugges-
tion is made for such a choice.

1. Introduction

1.1. Orientation distribution in polycrystals

A polycrystal is a material body the elements of which comprise each a population of ‘specks’
having the structure of a single perfect crystal. In the simplest instance all such crystallites
are of the same kind, i.e., any two of them can be superposed through a rigid displacement.
Thus a reference crystallite can be chosen and a lattice orientation function can be assigned to
describe the polycrystal’s substructure. This approach isstandard in metallurgical analyses and
the problem of determining the orientation function is of industrial import.

The sketch above pertains to a particular range of observation scales. Actually no lattice
at all can be defined within dislocations cores, while, observing metals at low temperature and
at a scale significantly larger than the average dislocationspacing, a grain pattern appears. The
lattice orientation function is constant on regions of finite volume (the bulk of grains) and jumps
across their boundaries.

When observations at a scale much larger than the largest grain size are involved no account
is taken of grain shapes and the polycrystal is described simply through an orientation distribu-
tion function on the basis of probabilistic assumptions. The need arises for a global description
through a distribution of lattice orientations.

Thus when computations at a scale much larger than the largest grain size are involved, one
may wish to consider body elements which include many hundreds of grains and are charac-
terised by a whole distribution of lattice orientations. The question arises as to the constitutive
nature of the interactions between neighbouring body elements; it seems reasonable to start by
assuming that these interactions depend on the first moment of the distribution and thus on some
‘average’ orientation of the crystals within the material elements, and that these averages evolve
according to general rules described by multifield theories, whereas evolutions of the orientation
distribution function deep within the element be describedon the basis of a multivariable theory
(cf. [4, 5, 7, 8, 18]).

∗We thank our friend Fulvio Lazzeri for useful suggestions. This research is part of the programme
“Modelli Matematici per la Scienza dei Materiali” of the Italian Ministero dell’Università e della Ricerca
Scientifica e Tecnologica.
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In the case of polycrystals the manifoldM of ‘deep’ states,l’éspace profondof [7], is
a subset ofSO(3) (symmetry arguments may makeM a proper subgroup ofSO(3)) and, at
each pointx ∈ E , M is endowed with the structure of a probability space, so thateachµ ∈
M is a random variable with probability density, say,γ (the orientation distribution function).
Assuming that self-effects be weakly non-local inM, in the sense of [14], evolution equations
of general type can be found forγ , whereas interactions among neighbours inE occur through
some kind of average overM based onγ .

To achieve that average a device, simple to use, could be invoked. Whitney’s theorem
affirms that a linear spaceS , of dimension 2m + 1, exists within which the manifoldM, of
dimensionm, can be embedded. The embedding is not unique and there are even cases where
the embedding is feasible in a linear space of dimension lower than 2m + 1 (e.g.,SO(3), of
dimension 3, can be embedded in a 5-dimensional linear space). However the essential point is
thatS exists and, in it, averages can be evaluated in a straightforward manner; they fall, generally,
outside the imagêM of M in S , and fill altogether the convex hullH of that image. WithinH
complete disorder is represented by the average of a uniformdistribution onM.

1.2. General remarks on continuum models

The possible teaming up, for certain tasks, of a multifield and a multivariable theory has led one
of us to advance the remarks which follow [16]; we recall themhere because they are strictly
relevant and give to our present proposal a very general setting.

Multifield theories are based on the classical space-timeE×T . Fieldsν : E×T → N (N a
manifold of ‘substructures’) enrich the ‘natural’ classicdescription which invokes only bijections
E → E at each instant. Interactions between elements are supposed to have short range inE à
la Cauchy, though the nature of these interactions depends now, by duality arguments, on the
greater kinematic richness of the model.

Multivariable theories start from a wider representation of physical space, obtained by
adding to standard placements inE a setM of ‘deep’ placementsµ. Interactions range now
between neighbours inE × M, but the duality is usually narrow. These theories take the com-
ponentsµα of µ as extra independent variables beside the place variablex (and time if the case
requires). They introduce a distribution functionγ (µ, x) such thatγ (µ, x) dµ measures the
fraction of fragments of the element atx having a value of the substructure falling within the
interval(µ, µ+ dµ).

In some current research contributions it is assumed that the evolution ofγ is totally dictated
by the internal state of each element and related to gradients in the variableµ in a sort of weakly
nonlocal (onM) mode. Within the element spatial distances do not count, whereas it is easy to
believe that two fragments with slightly different values of µ influence one another more than
two fragments whose values are, in some measure, distant, irrespective of the exact location
of the two fragments within the element. The assumption of anexclusively internal dependence
may be sometimes a limiting factor, but this is not so critical in some problems for polycrystalline
solids where interelement effects due to spatial gradientsare modest, or occur mainly through the
agency of macrostress; contrariwise, when studying nematics and hyperfluids [10], one perceives
easily the depth of influence of certain constraining boundary conditions.

One way to fix the loophole: find somehow an average value ofµ over each element and
imagine such average influenced by the averages in neighbouring elements in the same way as
happens in less deep theories where all fragments in an element lead to the same value of the
substructural variable. Perhaps extract some ‘frame’ or background from the averages and, if ob-
jectivity commands, describe the internal distributionsγ and their internal evolution against that
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background. Judicious steps are always required to arrive at a proper and significant definition of
average. Previous embedding of the manifoldM in a linear spaceS of higher dimension is al-
ways possible (in dimension 2m+1, by the already quoted theorem of Whitney); then calculation
of averages is straightforward.

Actually reference tôM, as a hypersurface inS , rather then to the intrinsic manifoldM, if
managed with care, makes many developments easier; correspondinglyS may take the place of
N , again if prudence is exercised to avoid breaches of objectivity. Known concepts and relations
may be imported with advantage from available multifield theories.

Thus, for our present task, the matter of embeddingSO(3) in a linear space is an essential
prerequisite and becomes the core of our developments. To pave the way and make it even
more evident, we pause to consider first the simpler, and in part already well established, case of
nematic liquid crystals.

2. The example of nematics

In the theory of nematic liquid crystalsM is the manifold of directions, hence of dimension 2.
Whitney’s embedding can be realised in a linear space of dimension 5. Each direction is put first
into one-to-one correspondence with the tensorn ⊗ n − 1

3 I , wheren is any one of the two unit
vectors having the required direction andI is the identity. All those tensors belong to the linear
space (with dimension 5) of the symmetric traceless tensors; one of them, sayN, will be the
average when the element contains molecules with varying degree of orientation. The principal
axes ofN provide the frame upon which details regarding the distribution of orientations can be
assigned. Still, already the eigenvalues ofN + 1

3 I , call themλi determine two parameters which
describe essential traits of the distribution: the degree of prolation s (called also, by Ericksen,

degree of orientation) in
[
−1

2,1
]
:

s = 3


1

2

3∏

i=1

λi




1/3

and the degree of triaxiality in [0, 1]

β = 31/221/3

∣∣∣∣∣∣

3∏

i=1

(
λi − λi+1

)
∣∣∣∣∣∣

1/3

.

Perfect ordering corresponds to the valuess = 1, β = 0; ‘melting’ of the liquid crystal occurs
when both parameters vanish.

Many problems have been solved satisfactorily usingN as a substructural variable and
writing for it an appropriate evolution equation which involves the gradient ofN in physical
space (for a partial analysis in this direction see [2] and [12]; a fuller study is in a forthcoming
paper by Biscari and Capriz).

However, if the details of the distribution of directionsγ (n) become relevant for specific
problems, then the following further steps must be taken. Anevolution equation forγ must be
proposed, expressing its ‘conservation’ (the total ofγ overN must always equal to 1); here a
suggestion of Muschik [3, 17] may be accepted though modifiedso as to admit also an influence
onγ of N and of the gross displacement gradientF .
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Ultimately one comes to the equation

∂γ

∂τ
+ divN (γ ṅ)+ ( gradNγ ) · Ṅ + (gradFγ ) · Ḟ = 0 ,

where gradients enter along the manifoldsM andN . Actually if n ⊗ n, rather thann, had
been chosen as a variable, then divn would have been substituted by the appropriate surface
divergence alonĝM in S .

The balance equation above, exhaustive though it be in very special cases, must be sup-
plemented in general by a ‘deep’ balance equation, which, instatics, may express a minimality
condition for the energy connected with a certain choice ofγ (N) and of its gradient on̂M.
Alternatively, there may be steady states of deformation (e.g. of shearing) dominated by some
sort of viscous action which must be itself balanced (for matching developments in the theory of
polycrystals see [4, 6, 7, 9]).

3. Embedding ofSO(3) in R5

The so called ‘easy Whitney embedding theorem’ (cfr. [19]) proves thatSO(3) can, as any
compact (HausdorffCr ,2 ≤ r ≤ ∞) three dimensional manifold, be embedded inR

7, though
embeddings into linear spaces of smaller dimension may be possible.

It has been proved thatSO(3) cannot be embedded intoR4 (cfr. [11]), while an embedding
into R5 is known. The latter result can be shown through a chain of differentiable inclusions:
SO(3) can be included intoS2 × S2 associating with each element of the orthogonal matrix any
two column vectors of it:




c(1)1 c(2)1 c(3)1
c(1)2 c(2)2 c(3)2
c(1)3 c(2)3 c(3)3


 ∈ SO(3) → (c(1), c(2)) ∈ S2 × S2

One of the two unit 2-spheresS2 can be included into ]0,+∞[×R2:

c(2) ∈ S2 → (ξc(2)1 + ζ, ξc(2)2 , ξc(2)3 ) ∈]0,+∞[×R
2 ,

with 0< ξ < ζ ; then

S2 × (]0,+∞[×R
2) = (S2×]0,+∞[)× R

2 ≈ (R3 − {0})× R
2 ⊂ R

5 .

Notice thatS2×]0,+∞[ is diffeomorphic toR3 − {0} as it can be shown, e.g., choosing coordi-
nates(ϑ, φ) onS2 and taking the corresponding polar coordinatesc(1) = (sinφ cosϑ, sinφ sinϑ,
cosφ) onR3 − {0}:

(ϑ, φ, ρ) ∈ S2×]0,+∞[→ (ρ sinφ cosϑ, ρ sinφ sinϑ, ρ cosφ) ∈ R
3 − {0} .

We thus have the embedding:

[
c(i )j

]
∈ SO(3) →

(c(1)1 (ξc(2)1 + ζ ), c(1)2 (ξc(2)1 + ζ ), c(1)3 (ξc(2)1 + ζ ), ξc(2)2 , ξc(2)3 ) ∈ R5 .
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It can be shown that the conditions‖c(1)‖ = 1 and‖c(2)‖ = 1, and the conditionc(1)·c(2) =
0 correspond respectively to the equations (x ∈ R5):

(1)
(‖x‖2 − ξ2 − ζ2)2 + 4ζ2(x2

4 + x2
5) = 4ξ2ζ2 ,

x1(‖x‖2 − ξ2 − ζ2)+ 2ζ(x2x4 + x3x5) = 0 .

4. Embedding a subgroup ofSO(3) into Sym0

The embedding recalled in Sect. 3 from texts in differentialgeometry does not appear to have
intrinsic character required on principle for its use in a physical theory; the appropriate alter-
native is the introduction of a symmetric tensor of a specialclass to denote a particular lattice
orientation.

We must emphasise, however, at the outset that application of the theorem to our physical
context will be legitimate only when a set of three mutually orthogonal directions (no arrow!),
each endowed with a different characteristic length, existhaving an immediate physical signif-
icance in the description of crystallites (e.g. the edges ofthe elementary cell if the crystalline
system is orthorombic). Call{m(i ) | i ∈ {1,2, 3}}, ‖m(1)‖ < ‖m(2)‖ < ‖m(3)‖, the vectors rep-
resenting a crystallite, their sign being immaterial to thephysical description of the crystallite,
normalized to make

3∑

i=1

(m(i ))2 = 1 .

A polycrystal is a cluster of such crystallites, each uniquely identified through the proper
orthogonal tensorQ giving the rotation from a set of reference unit vectors{c(i )} to the crystal-
lite’s unit vectors{m(i )/‖m(i )‖} modulus rotations ofπ about anyc(i ); call M ⊂ SO(3) the
subgroup of such rotations.

Now let us define the following map from the same set of crystallites to the linear space of
symmetric tensors

S({m(i )}) =
3∑

i=1

m(i ) ⊗ m(i ) ;

for all {m(i )} it is trS= 1, trS2 =
∑3

i=1(m
(i ))4, and detS =

∏3
i=1(m

(i ))2.

There is a one to one differentiable map between the set of crystallites and the elements of
Symwhich verify the conditions listed above; in particular anytensorS verifying these condi-
tions has three distinct eigenvalues(m(i ))2, with the corresponding eigenvectors parallel to the
vectorsm(i ). The spectral decomposition of such a tensorS is thus

S({m(i )}) = QD2QT ,

whereD is the diagonal matrix

D :=




‖m(1)‖ 0 0
0 ‖m(2)‖ 0
0 0 ‖m(3)‖


 .

Therefore

M ≈



S ∈ Sym

∣∣∣∣∣∣
trS = 1, trS2 =

3∑

i=1

(m(i ))4, detS=
3∏

i=1

(m(i ))2



 ,
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and one can suggest the embedding in the affine space:

M ↪→ S ≡ {S ∈ Sym| trS= 1} .

REMARK 1. Chosen any reference the general element ofS is represented by

S=




x1 x5 x4
x5 x2 x3
x4 x3 1 − x1 − x2


 ,

i.e., by a mappingS → R5. The conditions trS2 =
∑3

i=1(m
(i ))4 and detS =

∏3
i=1(m

(i ))2,
can be written in coordinates (cfr. equations (1)):

‖x‖2 + x1x2 − x1 − x2 + 1 =
∑3

i=1(m
(i ))4 ,

(x1x2 − x2
5)(1 − x1 − x2)− x1x2

3 − x2x2
4 + 2x3x4x5 =

∏3
i=1(m

(i ))2 ,

representing the imagêM of M in S .

5. Conclusion

A distribution of orthorhombic crystals can be representedthrough the mean orientation defined
as:

S̃ :=
∫

SO(3)
γ (Q)S(Q)d(SO(3)) .

If the distribution is one of perfect order, with all crystals oriented as somêQ, thenS̃ = S(Q̂)
has three distinct eigenvalues and the corresponding eigenvectors represent the axes of the crys-
tallite. Contrariwise, if the disorder is complete, thenS̃ is spherical and no preferred axis can be
assigned to the average representation of the distributionof crystals. Intermediate conditions are
clearly possible, with the axial optical properties of the aggregate corresponding to the number
of distinct eigenvalues of̃S.

We have thus taken the first essential step for a convenient portrait of a polycrystal, a step
which opens the way for a rigourous connection between the theory of continua with microstruc-
ture as displayed in [13] and the theory of ‘deep’ space proposed in [4] with direct metallurgical
applications in mind.
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A. Carpinteri - B. Chiaia - P. Cornetti ∗

A FRACTIONAL CALCULUS APPROACH TO THE

MECHANICS OF FRACTAL MEDIA

Abstract. Based on the experimental observation of the size effects onthe struc-
tural behavior of heterogeneous material specimens, the fractal features of the mi-
crostructure of such materials is rationally described. Once the fractal geometry
of the microstructure is set, we can define the quantities characterizing the failure
process of a disordered material (i.e. a fractal medium). These quantities show
anomalous (non integer) physical dimensions. Our analysisallows a global ex-
planation of the size effects affecting the cohesive law, i.e. the constitutive law
describing the tensile failure of heterogeneous materials. Moreover, a fractal co-
hesive law which is a material property is put forward and itsvalidity is checked
by some experimental data. Then we propose new mathematicaloperators from
fractional calculus to handle the fractal quantities previously introduced. In this
way, the static and kinematic (fractional) differential equations of the model are
pointed out. These equations form the basis of the mechanicsof fractal media. In
this framework, the principle of virtual work is also obtained.

1. Introduction

In solid mechanics, with the termsize effectwe mean the dependence of one or more material
parameters on the size of the structure made by that material. In other words, we speak of
size effect when geometrically similar structures show a different structural behavior. The first
observations about size effect in solid mechanics date backto Galileo. For instance, in his
“Discorsi e dimostrazioni matematiche intorno a due nuove scienze attenenti alla meccanica e i
movimenti locali” (1638), he observed that the bones of small animals are more slender than the
bones of big animals. In fact, increasing the size, the growth of the load prevails on the growth of
the strength, since the first increases with the bulk, the latter with the area of the fracture surface.
In the last century, fracture mechanics allowed a deeper insight in the size effect phenomenon.
Nowadays, the most used model to describe damage localization in materials with disordered
microstructure (also called quasi-brittle materials) is the cohesive crack model, introduced by
Hillerborg et al. [1].

According to Hillerborg’s model, the material is characterized by a stress-strain relationship
(σ -ε), valid for the undamaged zones, and by a stress-crack opening displacement relationship
(σ -w, the cohesive law), describing how the stress decreases from its maximum valueσu to zero
as the distance between the crack lips increases from zero tothe critical displacementwc. The
area below the cohesive law represents the energyGF spent to create the unit crack surface. The
cohesive crack model is able to simulate tests where high stress gradients are present, e.g. tests

∗Support by the EC-TMR contract N◦ ERBFMRXCT 960062 is gratefully acknowledged by the authors.
Thanks are also due to the Italian Ministry of University andResearch (MURST).
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on pre-notched specimens; in particular, it captures the ductile-brittle transition occurring by
increasing the structural size. On the other hand, relevantscale effects are encountered also
in uniaxial tensile tests on dog-bone shaped specimens [2, 3], where smaller stress gradients
are present. In this case size effects, which should be ascribed to the material rather than to the
stress-intensification, can not be predicted by the cohesive crack model. In the following section,
a scale-independent damage model is proposed which overcomes the drawbacks of the original
cohesive model, assuming that damage occurs within a band where it is spread in a fractal way.
The fractal nature of the damage process allows us to explainthe size effects on tensile strength,
fracture energy and critical displacement and, particularly, the rising of the cohesive law tail
observed in [3].

2. Damage mechanics of materials with heterogeneous microstructure

Let us start our investigation about materials with disordered microstructures analyzing the size
effect on their tensile strength. Recent experimental results about porous concrete microstructure
[4] led us to believe that a consistent modelling of damage inconcrete can be achieved by assum-
ing that the rarefied resisting sections in correspondence of the critical load can be represented
by stochastic lacunar fractal sets with dimension 2− dσ (dσ ≥ 0). From fractal geometry, we
know that the area of lacunar sets is scale-dependent and tends to zero as the resolution increases.
Finite measures can be obtained only with non-integer (fractal) dimensions. For the sake of sim-
plicity, let us represent the specimen cross-section as a Sierpinski carpet built on the square of
sideb (fig. 1a). The fractal dimension of this planar domain is 1.893 (dσ = 0.107). The assump-
tion of Euclidean domain characterizing the classical continuum theory states that the maximum
load F is given by the product of the strengthσu times the nominal areaA0 = b2, whereas, in
our model,F equals the product of the Hausdorff measureA∗ = b2−dσ of the Sierpinski carpet
times thefractal tensile strengthσ ∗

u [5]:

(1) F = σu A0 = σ ∗
u A∗

whereσ ∗
u presents the anomalous physical dimensions [F ][ L ]−(2−dσ ).

The fractal tensile strength is the true material constant,i.e., it is scale-invariant. From eqn (1)
we obtain the scaling law for tensile strength:

(2) σu = σ ∗
u b−dσ

i.e. a power law with negative exponent−dσ . Eqn (2) represents the negative size effect on
tensile strength, experimentally revealed by several authors. Experimental and theoretical results
allow us to affirm thatdσ can vary between the lower limit 0 - canonical dimensions forσ ∗

u and
absence of size effect on tensile strength - and the upper limit 1/2 - σ ∗

u with the dimensions of a
stress-intensity factor and maximum size effect on tensilestrength (as in the case of LEFM).

Turning now our attention from a single cross-section to thewhole damage zone, it can be
noticed that damage is not localized onto a single section but is spread over a finite band where
the damage distribution often presents fractal patterns. This is quite common in material sci-
ence. For instance, in some metals, the so-called slip-lines develop with typical fractal patterns.
Also fractal crack networks develop in dry clay or in old paintings under tensile stresses due to
shrinkage. Thus, as representative of the damaged band, consider now the simplest structure, a
bar subjected to tension, where, at the maximum load, dilation strain tends to concentrate into
different softening regions, while the rest of the body undergoes elastic unloading. If, for the
sake of simplicity, we assume that strain is localized onto cross-sections whose projections on
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(c)
εc* b

1–dε
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b
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z

Figure 1: Fractal localization: of the stress (a), of the strain (b), of the energy dissipa-
tion (c).

the longitudinal axis are provided by a Cantor set, the displacement function at rupture can be
represented (fig. 1b) by a Cantor staircase graph (sometimescalled devil’s staircase). The strain
defined in the classical manner is meaningless in the singular points, as it tends to diverge. This
drawback can be overcome introducing a fractal strain. Let 1−dε = 0.6391 be, for instance, the
fractal dimension of the lacunar projection of the damaged sections (dε ≥ 0). According to the
fractal measure of the damage line projection, the total elongation of the band at rupture must be
given by the product of the Hausdorff measureb(1−dε) of the Cantor set times thefractal critical
strain ε∗c , while in the classical continuum theory it equals the product of the lengthb times the
critical strainεc:

(3) wc = εcb = ε∗cb(1−dε)

whereε∗c has the anomalous physical dimension [L ]dε . The fractal critical strain is the true
material constant, i.e., it is the only scale-invariant parameter governing the kinematics of the
fractal band. On the other hand, equation (3) states that thescaling of the critical displacement is
described by a power law with positive exponent 1−dε . The fractional exponentdε is intimately
related to the degree of disorder in the mesoscopic damage process. Whendε varies from 0
to 1, the kinematical control parameterε∗c moves from the canonical critical strainεc – [L ]0

– to the critical crack opening displacementwc – [L ]1. Therefore, whendε = 0 (diffused
damage, ductile behavior), one obtains the classical response, i.e. collapse governed by the strain
εc, independently of the bar length. In this case, continuum damage mechanics holds, and the
critical displacementwc is subjected to the maximum size effect (wc ∼ b). On the other hand,
whendε = 1 (localization of damage onto a single section, brittle behavior) fracture mechanics
holds and the collapse is governed by the critical displacementwc, which is size-independent as
in the cohesive model.

For what concerns the size effect upon the third parameter characterizing the cohesive law,
i.e. the fracture energyGF , several experimental investigations have shown thatGF increases
with the size of the specimen. This behavior can be explainedby assuming that, after the peak
load, the energy is dissipated inside the damage band, i.e. over the infinite lacunar sections
where softening takes place (fig. 1a,b). Generalizing equations (2) and (3) to the whole softening
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regime, we getσ = σ ∗b−dσ andw = ε∗b(1−dε). These relationships can be considered as
changes of variables and applied to the integral definition of the fracture energy:

(4) GF =
∫ wc

0
σdw = b1−dε−dσ

∫ ε∗c

0
σ ∗dε∗ = G∗

F b1−dε−dσ

Equation (4) highlights the effect of the structural size onthe fracture energy. On the other hand,
since (fig. 1c) the damage process takes place over an invasive fractal domainA∗ (different from
the lacunar one of equation (1)) with a dimension(2 + dG) larger than 2 (dG ≥ 0), we can also
affirm that the total energy expenditureW is equal to [4]:

W = GF A0 = G∗
F A∗

whereG∗
F is called thefractal fracture energyand presents the anomalous physical dimensions

[FL ][ L ]−(2+dG) and, as well asσ ∗
u andε∗c , it is scale-independent. SinceA0 = b2 and A∗ =

b2+dG , the value ofdG is linked to the values ofdσ anddε :

(5) dσ + dε + dG = 1

where all the exponents are positive. Whiledε can get all the values inside the interval [0,1], dσ
anddG tend to be comprised between 0 and 1/2 (brownian disorder). Equation (5) states a strict
restriction to the maximum degree of disorder, confirming that the sum ofdσ anddG is always
lower than 1, as previously asserted by Carpinteri through dimensional analysis arguments [5].

σu σu*

σ*σ

εu

ε εc

εc*0 0

(a) (b)

Figure 2: Fractal cohesive model.

It is interesting to note how, from equation (4), the fractalfracture energyG∗
F can be ob-

tained as the area below the softening fractal stress-strain diagram (fig. 2b). During the softening
regime, i.e. when dissipation occurs,σ ∗ decreases from the maximum valueσ ∗

u to 0, whileε∗

grows from 0 toε∗c . In the meantime, the non-damaged parts of the bar undergo elastic unloading
(fig. 2a). We call theσ ∗-ε∗ diagram the scale-independent orfractal cohesive law. Contrarily
to the classical cohesive law, which is experimentally sensitive to the structural size, this curve
should be an exclusive property of the material since it is able to capture the fractal nature of the
damage process.

Recently, van Mier et al. [3] accurately performed tensile tests on dog-bone shaped con-
crete specimens over a wide scale range (1:32). They plottedthe cohesive law for specimens
of different sizes and found that, increasing the specimen size, the peak of the curve decreases
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whereas the tail rises. More in detail,wc increases more rapidly thanσu decreases, since, in the
meantime, an increase of the area below the cohesive law, i.e. of the fracture energy, is observed.
Thus, the fractal model consistently confirms the experimental trends ofσu, GF ,wc.

The model has been applied to the data obtained by Carpinteri& Ferro [2, 6] for tensile tests
on dog-bone shaped concrete specimens (fig. 3a) of various sizes under fixed boundary condi-
tions. They interpreted the size effects on the tensile strength and the fracture energy by fractal
geometry. Fitting the experimental results, they found thevaluesdσ = 0.14 anddG = 0.38.
Some of theσ -ε and theσ -w diagrams are reported in fig. 3b,c, wherew is the displacement
localized in the damage band, obtained by subtracting, fromthe total one, the displacement due
to elastic and anelastic pre-peak deformation. Equation (5) yieldsdε = 0.48, so that the fractal
cohesive laws can be represented in fig. 3d. As expected, all the curves related to the single sizes
tend to merge in a unique, scale-independent cohesive law. The overlapping of the cohesive laws
for the different sizes proves the soundness of the fractal approach in the interpretation of the
size effects in concrete.
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Figure 3: Tensile tests over dog-bone shaped concrete specimens (a): stress versus
strain plots (b), cohesive laws (c), fractal cohesive law (d).

3. Fractional calculus, local fractional calculus and fractal functions

The main characteristic of fractals is their irregularity over all the length scales. This irregularity
is the reason of the non-integer dimensions of fractal sets and, unfortunately, it makes them very
difficult to handle analytically since the usual calculus isinadequate to describe such structures
and processes. Fractals are too irregular to have any smoothdifferentiable function defined on
them. Fractal functions do not possess first order derivative at any point. Therefore it is argued
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that a new calculus should be developed which includes intrinsically a fractal structure [7]. Re-
cently, Kolwankar [8], based on fractional calculus, defined new mathematical operators - the
local fractional derivative and the fractal integral - thatappear to be useful in the description of
fractal processes. It is important to emphasize that, what seems to be really interesting in study-
ing fractals via fractional calculus, are the non-integer physical dimensions that arise dealing
with both fractional operators and fractal sets. Physically, this means to find the same scaling
laws both from an analytic and a geometric point of view.

Let’s start our analysis from the classical fractional calculus. While classical calculus treats
integrals and derivatives of integer order, fractional calculus is the branch of mathematics that
deals with the generalization of integrals and derivativesto all real (and even complex) orders.
There are various definitions of fractional differintegraloperators not necessarily equivalent to
each other. A complete list of these definitions can be found in the fractional calculus treatises
[9, 10, 11, 12]. These definitions have different origin. Themost frequently used definition of a
fractional integral of orderq (q > 0) is the Riemann-Liouville definition, which is a straightfor-
ward generalization to non-integer values of Cauchy formula for repeated integration:

(6)
d−q f (x)

[d(x − a)]−q = 1

0(q)

∫ x

a

f (y)

(x − y)1−q
dy

From this formula, it appears logical to define the fractional derivative of ordern − 1 < q < n
(n integer) as then-th integer derivative of the(n − q)-th fractional integral:

(7)
dq f (x)

[d(x − a)]q
= 1

0(n − q)

dn

dxn

∫ x

a

f (y)

(x − y)q+1−n
dy

Once these definitions are given, it is natural to write differential equations in terms of such
quantities. In the last decade, many fractional differential equations have been proposed. They
include relaxation equations, wave equations, diffusion equations, etc [13]. In these general-
izations, one replaces the usual integer order time derivatives by fractional ones. In such way,
by varying the order of derivation, it is possible to obtain acontinuous transition between com-
pletely different models of the mathematical physics. Of course, whenq is not a positive integer,
the fractional derivative (7) is a non-local operator sinceit depends on the lower integration limit
a. The chain rule, Leibniz rule, composition law and other properties have been studied for
the fractional derivatives [9]. Looking for a link between fractional calculus and fractals, it is
worthwhile to cite the following scaling property (fora = 0):

dq f (bx)

[dx]q
= bq dq f (bx)

[d(bx)]q

It means that the fractional differintegral operators are subjected to the same scaling power laws
the quantities defined on fractal domains are subjected to (q being the fractal dimension). For
the scaling property in the casea 6= 0, see [9].

More recently, another important result has been achieved concerning the maximum order
of fractional differentiability for non-classical differentiable functions. Let us explain this prop-
erty for two kinds of functions: the Weierstrass function and the Cantor staircase. The first one is
continuous but nowhere differentiable. The singularitiesare locally characterized by the Hölder
exponent, which is everywhere constant and equal to a certain value 0< s < 1. It is possible
to prove that the graph of this function is fractal with a box-counting dimension equal to 2− s
and hence greater than 1. Although fractal, the Weierstrassfunction admits continuous fractional
derivatives of order lower thans. Hence, there is a direct relationship between the fractal dimen-
sion of the graph and the maximum order of differentiability: the greater the fractal dimension,
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the lower the differentiability. We have already encountered a Cantor staircase in Section 2.
This kind of functions (fig. 1b) can be obtained [14] as the integral of a constant mass density
upon a lacunar fractal set belonging to the interval [0,1]. The result is a monotonic function that
grows on a fractal support; elsewhere it is constant. The devil’s staircases are not fractal since
they present a finite length; on the other hand, they have an infinite number of singular points
characterized by a Hölder exponent equal to the fractal dimension of the support. Schellnhuber
& Seyler [15] proved that the Cantor staircases admit continuous fractional derivatives of order
lower than the fractal dimension of the set where they grow.

From a physical point of view, some efforts have been spent toapply space fractional dif-
ferential equations to the study of phenomena involving fractal distributions in space. Here we
can quote Giona & Roman [16], who proposed a fractional equation to describe diffusion on
fractals, and Nonnenmacher [17], who showed that a class of Lévy type processes satisfies an
integral equation of fractional order. This order is also the fractal dimension of the set visited by
a random walker whose jump size distribution follows the given Lévy distribution.

Recently, a new notion calledlocal fractional derivative(LFD) has been introduced with
the motivation of studying the local properties of fractal structures and processes [18]. The LFD
definition is obtained from (7) introducing two “corrections” in order to avoid some physically
undesirable features of the classical definition. In fact, if one wishes to analyze the local behavior
of a function, both the dependence on the lower limita and the fact that adding a constant to
a function yields to a different fractional derivative should be avoided. This can be obtained
subtracting from the function the value of the function at the point where we want to study the
local scaling property and choosing as the lower limit that point itself. Therefore, restricting our
discussion to an orderq comprised between 0 and 1, the LFD is defined as the following limit
(if it exists and is finite):

Dq f (y) = lim
x→y

dq[ f (x)− f (y)]

[d(x − y)]q
, 0< q ≤ 1

In [18] it has been shown that the Weierstrass function is locally fractionally differentiable
up to a critical orderα between 0 and 1. More precisely, the LFD is zero if the order islower
thanα, does not exist if greater, while exists and is finite only if equal toα. Thus the LFD shows
a behavior analogous to the Hausdorff measure of a fractal set. Furthermore, the critical order is
strictly linked to the fractal properties of the function itself. In fact, Kolwankar & Gangal [18]
showed that the critical order is equivalent to the local Hölder exponent (which depends, as we
have seen, on the fractal dimension), by proving the following local fractional Taylor expansion
of the function f (x) of orderq < 1 (for q > 1, see [19, 20]) forx → y:

(8) f (x) = f (y)+ Dq f (y)

0(q + 1)
(x − y)q + Rq(x − y)

whereRq(x − y) is a remainder, negligible if compared with the other terms.Let us observe
that the terms in the right hand side of equations (8) are nontrivial and finite only ifq is equal
to the critical orderα. Moreover, forq = α, the fractional Taylor expansion (8) gives us the
geometrical interpretation of the LFD. Whenq is set equal to unity, one obtains from (8) the
equation of a tangent. All the curves passing through the same point y with the same first
derivative have the same tangent. Analogously, all the curves with the same critical orderα and
the sameDα form an equivalence class modeled byxα . This is how it is possible to generalize
the geometric interpretation of derivatives in terms of “tangents”.

The solution of the simple differential equation df/dx = 1[0,x] gives the length of the
interval [0, x]. The solution is nothing but the integral of the unit function. Wishing to extend
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this idea to the computation of the measure of fractal sets, it can be seen immediately that the
fractional integral (6) does not work as it fails to be additive because of its non-trivial kernel. On
the other hand, Kolwankar [21] proved that a fractional measure of a fractal set can be obtained
through the inverse of the LFD defined as:

(9) aD−α
b f (x) = lim

N→∞

N−1∑

i=0

f (x∗
i )

d−α1dxi (x)[
d(xi+1 − xi )

]−α

where [xi , xi+1], i = 0, . . . , N −1, x0 = a andxN = b, provide a partition of the interval [a, b]
andx∗

i is some suitable point chosen in the subinterval [xi , xi+1], while 1dxi is the unit function

defined on the same subinterval. Kolwankar calledaD−α
b f (x) the fractal integralof orderα of

f (x) over the interval [a, b]. The simple local fractional differential equationDα f (x) = g(x)
has not a finite solution wheng(x) is constant and 0< α < 1. Interestingly, the solution exists
if g(x) has a fractal support whose Hausdorff dimensiond is equal to the fractional order of
derivationα. Consider, for instance, the triadic Cantor setC, built on the interval [0,1], whose
dimension isd = ln 2/ ln 3. Let 1C(x) be the function whose value is one in the points belonging
to the Cantor set upon [0, 1], zero elsewhere. Therefore, the solution ofDα f (x) = 1C(x) when
α = d is f (x) = aD−α

b 1C(x). Applying (9) with x0 = 0 andxN = x and choosingx∗
i to be

such that 1C(x
∗
i ) is maximum in the interval [xi , xi+1], one gets [17]:

(10) f (x) = 0D−α
x 1C(x) = lim

N→∞

N−1∑

i=0

F i
C
(xi+1 − xi )

α

0(1 + α)
= S(x)

0(1 + α)

whereF i
C is a flag function that takes value 1 if the interval [xi , xi+1] contains a point of the

setC and 0 otherwise; henceS(x) is the Cantor (devil’s) staircase (fig. 1b). Moreover, equation
(10) introduces the fractional measure of a fractal set we were looking for: for the Cantor set
C it is defined asFα(C) = 0D−α

1 1C(x). In factFα(C) is infinite if α < d, and 0 ifα > d.

For α = d, we findFα(C) = 1
0(1+α) . This measure definition yields the same value of the

dimension predicted by the Hausdorff one, the difference being represented only by a different
value of the normalization constant.

Eventually, consider two continuous functionsf (x) and g(x) defined upon [a,b] with a
zero first derivative except at the points belonging to the same lacunar fractal setC where they
present an Hölder exponentα equal to the dimension of the fractal support (i.e.f (x) andg(x)
are Cantor staircase type functions). Based on equation (8), it can be proved that, in the singular
pointsx ∈ C, (i ) the product functionh(x) = f (x)g(x) has the same Hölder exponentα unless
both the factor functions have zero value; (i i ) the LFD of orderα of h(x) can be computed using
the classical rule for the differentiation of the product:

(11) Dαh(x) = f (x)Dαg(x)+ g(x)Dα f (x)

Performing now, for both the sides of equation (11), a fractal integration of orderα upon [a, b]
yields to the followingfractal integration by parts:

(12) aD−α
b [ f (x)Dαg(x)] = [h(b)− h(a)] − aD−α

b [g(x)Dα f (x)]

which will be useful in the next section.
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4. Kinematic and static equations for fractal media

As shown in the Sections 1 and 2, fractality plays a very important role in the mechanics of mate-
rials with an heterogeneous microstructure. The aim of thisSection is to develop a model that, by
the local fractional operators introduced in Section 3, is able to capture intrinsically the fractality
of the material and, consequently, the size effects upon therelated physical quantities. Thus, let
us start with a uniaxial model [22], hereafter calledfractal Cantor baraccording to Feder’s ter-
minology [14]. Hence, consider a specimen of disordered material of lengthb. Suppose now to
apply a tensile load in thez (axial) direction. As pointed out in Section 2, because of the fractal
localization of strain, the plot of the axial displacementw versusz is a Cantor staircase (fig. 1b).
This plot corresponds to a strain field which is zero almost everywhere (corresponding to the
integer portions) except in an infinite number of points where it is singular (corresponding to the
localized cracks). The displacement singularities can be characterized by the LFD of order equal
to the fractal dimensionα = 1−dε of the domain of the singularities, the unique value for which
the LFD is finite and different from zero (the critical value). This computation is equivalent to
equation (3), passing from the global level to the local one.Therefore, we can define analytically
the fractal strainε∗ as the LFD of the displacement:

(13) ε∗(z) = Dαw(z)

Let us observe that, in equation (13), the non-integer physical dimensions [L ]dε of ε∗ are in-
troduced by the LFD, whilst in equation (3) they are a geometrical consequence of the fractal
dimension of the localization domain.

Now let’s turn our attention to the differential equilibrium equation, when the fractal bar is
subjected to an axial load. Consider again a fiber of the specimen and suppose that the body is in
equilibrium,z = 0 andz = b being its extreme cross sections. We indicate withp∗(z) the axial
load per unit of fractal length acting upon the fractal bar and with N(z) the axial force acting on
the generic cross section orthogonal to thez-axis. Take therefore into consideration a kinematical
field (w, ε∗) satisfying equation (13) and a static field (N, p∗). The fractal integration by parts
(12) can be interpreted as the principle of virtual work for the fractal bar. In fact, according to
the fractal nature of the material microstructure, the internal virtual work can be computed as the
fractalα-integral of the product of the axial forceN times the fractal strainε∗ performed over
the interval [0, b], which, according to equations (13) and (12), is in its turnequal to:

(14) 0D−α
b [N(z)ε∗(z)] = 0D−α

b [N(z)Dαw(z)] = [N(z)w(z)]z=b
z=0 − 0D−α

b [w(z)DαN(z)]

Since the body is in equilibrium, the virtual work principleholds. Hence the right hand side of
equation (14) must be equal to the external virtual work. This is true if and only if:

(15) DαN(z) + p∗(z) = 0

which is the (fractional) static axial equation of the fractal bar. Observe the anomalous dimension
of the loadp∗, [F ][ L ]−(1−dε), since it considers forces acting on a fractal medium.

What has been done in the one-dimensional case can be formally extended in the three-
dimensional case for a generic fractal medium [23]. As in theclassical continuum mechanics,
one needs the introduction of the fractal stress{σ ∗} and fractal strain{ε∗} vectors to replace the
corresponding scalar quantities in equations (13) and (15). Denoting with{η} the displacement
vector, the kinematic equations for a fractal medium can be expressed as:

(16) {ε∗} = [∂α ]{η}
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where [∂α ] is the kinematic fractional differential operator containing local fractional deriva-
tives of orderα = 1 − dε . Equation (16) is the three-dimensional extension of equation (13).
Analogously, equation (15) becomes:

(17) [∂α]T {σ ∗} = −{F∗}

where [∂α]T is the static fractional differential operator, transposed of the kinematic one and
{F∗} is the vector of the forces per unit of fractal volume. From the physical dimension of the
matrices at the first hand side of equation (17) and from the fundamental relationship (5) among
the fractal exponents, it can be easily shown that{F∗} owns the following physical dimension:
[F ][ L ]−(2+dG), where(2 + dG), comprised between 2 and 3, should now be seen as the fractal
dimension of the fractal medium.

In order to get the expression of the principle of the virtualwork for a fractal medium,
we need the extension to fractal domain of the Green theorem.This extension can be obtained
performing a fractal integration of orderβ − α of both sides of equation(12):

(18) D−β
�∗ [ f Dαg] = D−(β−α)

0∗ [ f gnx ] − D−β
�∗ [gDα f ]

where nowDα is the LFD in thex-direction, nx is the x-component of the outward normal
vector to the fractal boundary0∗ of the fractal body�∗. Other two scalar expressions can be
obtained analogously to equation (18), just considering the LFDs in they andz-directions. Thus
we are now able to derive the expression of the principle of virtual work for fractal media. It is
sufficient to apply the extension of the Green theorem – equation (18) – substituting appropriately
to the functionsf , g the components of the fractal stress{σ ∗} and displacement{η} vectors.
Furthermore,α andβ are equal respectively to(1−dε) and(2+dG ). Thus for vector fields{σ ∗},
{F∗} satisfying equation (17) (i.e. statically admissible) andvectors fields{ε∗}, {η} satisfying
equation (16) (i.e. kinematically admissible), it is possible to prove the validity of the following
equation:

(19)
∫

�∗
{F∗}T {η}d�∗ +

∫

0∗
{p∗}T {η}d0∗ =

∫

�∗
{σ ∗}T {ε∗}d�∗

which represents the principle of virtual work for a genericfractal medium and is the natural
extension of the classical continuum mechanics formulation of the principle. For the sake of
clarity, in equation (19) we used the classical symbol for the integrals; anyway they are fractal
integrals over fractal domains.{p∗} is the vector of the contact forces acting upon the (fractal)
boundary of the fractal medium; it has the same physical dimension of the fractal stress, to which
it is related by the relation:

[N ]T {σ ∗} = {p∗}
as naturally comes out in the proof of equation (19). [N ]T is defined at any dense point of the
boundary as the cosine matrix of the outward normal vector tothe boundary of the initiator (see
[14]) of the fractal set occupied by the body.

5. Conclusions

In this paper, the topologic framework for the mechanics of deformable fractal media has been
outlined. Based on the experimental observations of the size effects on the parameters char-
acterizing the cohesive law of materials with a disordered microstructure, the fractal quantities
characterizing the process of deformation have been pointed out. In the second part of the pa-
per, new mathematical operators from fractional calculus have been applied to write the field
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equations for solids with a fractal microstructure. It has been shown that the classical fractional
calculus cannot be used to describe properly the deformations of fractal media. Instead, the local
fractional operators, recently introduced by Kolwankar [8], can be successfully applied for our
purposes. The static and kinematic equations for fractal media have been obtained. Moreover, the
extension of the Green Theorem to fractal quantities and domains has been proposed, naturally
yielding the Principle of Virtual Work for fractal media. The next step should be the definition of
proper constitutive laws (e.g. elasticity) for fractal media. At this stage, only the formal structure
of the static and kinematic equations has been outlined. Moreover, further analytical research
about local fractional operators has to be carried out. Thus, engineering calculations may only
be at an early stage. However, once these goals were achieved, boundary value problems on
fractal sets could be solved, not only in principle, by meansof the Local Fractional Calculus.
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S. Cleja-Ţigoiu∗

ANISOTROPIC AND DISSIPATIVE FINITE

ELASTO-PLASTIC COMPOSITE

Abstract. Here we propose a macroscopic model for elasto-plastic composite,
characterized by an initial anisotropy, that can evolve during the large plastic de-
formation. Application to transversely isotropic and orthotropic composites will
be also developed. The paper deals with anisotropic finite elasto-plastic6-models,
which accounts for the dissipative nature of the plastic flow, within the constructive
framework of materials with relaxed configurations in internal variables. Here6
stands for Mandel’s non-symmetric stress tensor,or the quasi-static Eshelby stress-
tensor. The appropriate variational inequalities are derived, related rate quasi-static
boundary value problem, in our approach to composite materials.

1. Introduction

The continuum approach treats the composites as a single material with different properties in
different directions. The macroscopic response will be transversely isotropic about the fiber
direction if there exists just one family of reinforced fibres and orthotropic if there are two fam-
ilies. Spencer in [23] formulated yield conditions, flow rules and hardening rules for material
reinforced by one and two families of fibres, in small deformations plasticity theory. The yield
function is assumed to be not affected by a superposed tension in fibre direction. Spencer in
[22] proposed the term of proportional hardening for the corresponding theory of isotropic hard-
ening, for anisotropic plasticity. Rogers in [21] generalized Spencer’s results concerning fibre
reinforced materials, assuming that the yield condition isunaffected by the superposition of an
arbitrary hydrostatic pressure.

Experimental results performed on axially reinforced tubular specimens of boron alumini-
um composite, under complex loading, reveal the large kinematic hardening effects, see [20]. In
[26] the effect of shear on the compressive response and failure was investigated experimentally
for an unidirectional composite. Here both axes of loading could be operated in either load or
displacement control.

Here we propose a macroscopic model for elasto-plastic composite, characterized by an ini-
tial anisotropy, that can evolve during the large plastic deformation. Applications to transversely
isotropic and orthotropic composites will be developed, based on the papers [5, 6], which gener-
alized Spencer and Roger’s results.

The paper deals with anisotropic finite elasto-plastic6−models, which account for the
dissipative nature of the plastic flow, within the constitutive framework of materials with relaxed
configurations and internal variables, [1, 2]. Here6 stands for Mandel’s non-symmetric stress
tensor, see [15], or the quasi-static Eshelby stress tensor, see [17, 18]. We shown in [9], that

∗This work was supported by ANSTI, Grant 5229, B1/1999.
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there exist classes of6−models with hyperelastic properties, for which the dissipation postulate
[7] can be equivalently imposed through the normality and convexity properties, despite of the
non-injectivity of the function which describes6 as dependent on elastic strain. Our dissipation
postulate extend to anisotropic materials the results obtained by [13, 14, 16, 24].

During the elasto-plastic deformation process, see experimental evidences in [26], the chan-
ges in geometry and rotations of material elements cannot bedisregarded. Consequently, the
field equation and the boundary conditions at time t are properly formulated (see [11]) in terms
of the rate of thenominalstress. The second objective of the paper is to derive an appropriate
variational inequality, related to the rate quasi-static boundary value problem and associated
with a generic stage of the process in our approach to composite materials. Only when the
dissipative nature of the plastic flow is considered, the variational inequality is caracterized by
a bilinear form which becomes symmetric. In a forcomming paper a complete analysis of the
bifurcation of the homogeneous deformation will be performed, as in Cleja-Ţigoiu [4], based
on the variational inequality, under axial compressive stress. In our analyse it is not necessary
to make the assumptions either the fibres are uniformly inclined to the line of the loading by a
small angle, or the existence of a sinusoidal imperfection,which is uniformly distributed, as we
remark here that the stability can be lost, during plastic deformation.

Further we shall use the following notations:

Lin, Lin+− the second order tensors and the elements with positive determinant;

V− the three dimensional vector space;

Sym, Skew, Sym+− symmetric, skew-symmetric and symmetric and positive definite tensors;

Ort+− all proper rotation of the orthogonal groupOrt;
A · B := tr ABT− the scalar product ofA,B ∈ Lin;

As = 1

2
(A +AT ) andAa = 1

2
(A −AT )− the symmetrical and respectively skew- symmetrical

parts ofA ∈ Lin; I is the identity tensor;

ET− the transpose ofE− fourth order tensor, defined for allA,B ∈ Lin by

ET A · B := A · EB;
u̇− represents the derivative with respect to time;∂G ϕ(G, α)− the partial derivative of the
functionϕ(G, α) with respect toG;
d 6̂(G)− the differential of the map̂6 at G;
A · B := tr ABT− the scalar product ofA,B ∈ Lin; | A |=

√
A · A ≡

√
Ai j Ai j the modulus

of the second order tensor andAi j denote its Cartesian components;|E |4 =
√∑

i j kl

E2
i j kl denotes

the modulus of fourth order tensor andEi j kl are Cartesian components ofE;
< z>= 1/2 (z+ | z |), ∀z ∈ R− the set of all real numbers;

ρ0, ρ̃, ρ are mass densities in initial, relaxed and actual configurations;

Q[α] := QαQT for α ∈ Lin, Q[α] := α for α ∈ R.

2. 6-models

We introduce now the constitutive framework of anisotropicelasto-plastic materials,6−models
being included, see [8].

We fix a material pointX in the body, considered in the reference configurationk. For an
arbitrary given motionχ , defined in a certain neighborhood ofX, let consider the deformation
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gradientF(t) , det F(t) > 0, F(0) = I . We assume themultiplicative decompositionof the
deformation gradient into itselasticandplasticparts:

F(t) = E(t)P(t) where E(t) = ∇χ(X, t)K−1
t , P(t) = K t K

−1
0(1)

based on the local, current configurationK t .

We denote byG = ET E the elastic strain, and byY = (P−1, α) the set of the irreversible
variables, whereα represent the set of internal variables, scalars and tensors,5− symmetric
Piola-Kirchhoff stress tensorK t , T− Cauchy stress tensor, related by

5

ρ̃
= E−1 T

ρ
E−T

Theelastic type constitutivein term of6 is written under the form

6 := 6̂(G, α), 6̂(I , α) = 0,
G−16̂(G, α) = 6̂T (G, α)G−1, ∀ G ∈ Sym+.

(2)

The value of the tensor function written in (2)2 gives the current value of
5

ρ̃
, taking into account

the relation between symmetric Piola-Kirchhoff and Mandel’s stress tensors

6 = G
5

ρ̃

Therate independent evolution eqns.for P, α are expressed by

ṖP−1 = µ B̂(6, α), α̇ = µ m̂(6,α),
F̂(·, α) : D

F̂
⊂ Lin −→ R≤0, and F̂(0, α) < 0,

µ ≥ 0, µ F̂ = 0, and µ
˙̂
F = 0.

Material symmetry requirements(see [1, 3]). We assume that thepreexisting material symmetry
is characterized bythe symmetry group gk ⊂ Ort+, that renders the material functions invariant

6̂(QGQT ,Q[α]) = Q6̂(G, α)QT , F̂(Q6QT ,Q[α]) = F̂(6,α),

B̂(Q6QT ,Q[α]) = QB̂(6, α)(Q)T , m̂(Q6QT ,Q[α]) = Q[m̂(G, α)]

for everyQ ∈ gk.

THEOREM1. Any6− model leads to a strain formulation of the elasto- plastic behaviour
of the material with respect to the relaxed configurationK t . Also the material functions are gk−
invariant.

The appropriate material functions in strain formulationsare related to the basic functions
from6−models through relationships of the type:

F̃(G, α) = F̂(6̂(G, α), α), B̃(G, α) = B̂(6̂(G, α), α), etc.

THEOREM2 (STRAIN FORMULATION IN THE INITIAL CONFIGURATION ).
1. LetY := (P−1, α) characterizes the irreversible behaviour of the body, at the fixed material
point. The yield function in the reference configuration associated with the yield function in
elastic strain is defined by

F(C,Y) := F̃(P−TCP−1, α) ≡ F̃(G, α) with Y ≡ (P−1, α)
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as a consequence of (1).

2. The evolution in time ofY is governed by the solutions of Cauchy problem (see[1])

Ẏ = − < β(t,Y) > Ȳ(C(t),Y)H(F(C(t),Y))

β(t,C) = ∂CF(C(t),Y) · Ċ(t)

∂YF̄(C,Y) · Ȳ(C,Y) = 1 on F(C,Y) = 0

Y(0) = Y0

(3)

for a given strain history, denoted̂C ∈ Gs,

t ∈ [0,d] → Ĉ(t) ∈ Sym+, with Ĉ(t) = C(t) = FT (t)F(t).

HereH denotes the Heaviside function.

Basic assumptions:

I. There exists an unique solution of the Cauchy problem (3).

II. The smooth yield functioñF is given in such way that

i) F̃ : DF ⊂ Sym+ × Rn −→ R is of the classC1, and F̃(I , α) < 0 for all α;
ii) for all fixed α ∈ pr2 DF− the projection on the space of internal variables, the set

{G ∈ Sym+ | F̃(G, α) ≤ 0}

is the closure of a non-empty, connected open set, i.e. if necessary we restrict the yield function
to the connected set that containsI ∈ pr1 DF ⊂ Sym+;

iii) for all α ∈ pr2DF the set{G ∈ Sym+ | F̃(G, α) = 0} defines aC1 differential
manifold, called the current yield surface. Hence∂GF̃(G, α) 6= 0 on the yield surface.

THEOREM 3. The dissipation postulate, introduced in[7] is equivalent to the existence of
the stress potential(I), together with the dissipation inequality(II ).

I. For all Ĉ ∈ Gs and for all t ∈ [0,1) there exist the smooth scalar valued functions,ϕ, σ,

related by

σ(C,Y(t)) = ϕ(P−T (t)CP−1(t), α(t)) ∀C ∈ U(Ĉt ) with
U(Ĉt ) := {B ∈ Sym+ | F(B,Y(t)) ≤ 0}

the elastic range, at time t corresponding toĈ ∈ Gs. Here Ĉt is the restriction on[0, t ] of the
given history.

The functionsϕ, σ, are stress potentials

5(t)

ρ̃(t)
= 2 ∂Gϕ(G, α(t)),

T(t)
ρ

= 2 F∂Cσ(C(t),Y(t))F
T ,

G = P−T (t)C(t)P−1(t).
(4)

II. The following equivalent dissipation inequalities

[∂Yσ(A,Y(t))− ∂Yσ(C(t),Y(t))] · Ẏ(t) ≥ 0 and

(6(t)−6∗) · Ṗ(t)P−1(t)+ (a(t)− a∗)α̇(t) ≥ 0
(5)
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hold for all G,G∗ such thatF̃(G, α) = 0, F̃(G∗, α) ≤ 0, when the conjugated forces to
internal variables (see [10]) are considered

a(t) := −∂αϕ(G(t), α(t)), a∗ = −∂αϕ(G∗, α(t))

Here6(t),6∗ are calculated from (2) for the elastic strainsG(t) andG∗.

PROPOSITION1. When the dissipation inequality (5)2 is satisfied then modified flow rule

(∂G6̂(G, α))
T [ṖP−1] = µ∂GF̃(G, α)+ ∂2

α Gϕ(G, α)[α̇](6)

withµ ≥ 0, holds. The dissipation inequality (5)1 imposes that

−∂Y [∂Cσ(C,Y)][ Ẏ] = µ̄∂CF(C,Y) µ̄ ≥ 0,(7)

for all C = C(t) on yield surfaceF(C,Y) = 0, for the fixedY = Y(t), with µ̄ ≥ 0.

To end the discussion about the consequences of the dissipation postulate we recall the basic
result, similar to [13]:

THEOREM4. 1. At any regular point6 of the yield function in stress spacêF(6, α) = 0,
but with6 = 6̂(G), the appropriate flow rule, i.e. the modified flow rule, takes the form

L p ≡ ṖP−1 = µ ∂6F̂(6, α)+ L p∗;
L p∗ : (d 6̂(G))T (L p∗) = 0

(8)

3. Rate boundary value problem and variational inequalities

We derive the variational inequalities with respect to the actual and respectively initial config-
urations, related to the rate quasi-static boundary value problem and associated with a generic
stage of the process, at the timet . We use an appropriate procedure as in [19, 4] and different
motion descriptions that can be found in [25].

Thenominal stresswith respect to the actual configuration at timet, or thenon-symmetric
relativePiola- Kirchhoff, is defined by

St (x, τ ) = (detFt (x, τ ))T(y, τ )(Ft (x, τ ))−T ,

with
Ft (x, τ ) = F(X, τ )(F(X, t))−1

the relative deformation gradient.
Herex = χ(X, t), y = χ(X, τ ), or y = χt (x, τ ) ≡ χ(χ−1(x, t), τ )− the motion in the relative
description. At timet we have

St (x, t) = T(x, t) and

Ṡt (x, t) ≡ ∂

∂τ
St (x, τ ) |τ=t

= ρ(x, t)
∂

∂τ
(
T(y, τ )
ρ(y, τ )

) |τ=t −T(x, t)LT (x, t).

(9)

HereL (x, t) = ∇v(x, t) represents the velocity gradient, in spatial representation.
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Let us consider a body, identified with� ⊂ R3 in the initial configuration, which undergoes
the finite elasto-plastic deformation and occupies the domain �τ = χ(�, τ) ⊂ R3, at timeτ.

Theequilibrium equationat timeτ, in terms of Cauchy stress tensorT(y, τ ) ∈ Sym

div T(y, τ )+ ρ(y, τ )b(y, τ ) = 0, in �τ

whereb are the body forces, can be equivalently expressed, with respect to the configuration at
time t− taken as the reference configuration

div St (x, τ )+ ρ(x, t)bt (x, τ ) = 0 , with bt (x, τ ) = b(χt (x, τ ), τ )

St (x, τ )FT
t (x, τ ) = Ft (x, τ )ST

t (x, τ )
(10)

When the reference configuration is considered to be a natural one, we add the initial conditions

S0(X,0) = 0, F(X,0) = I , P(X,0) = I , α(X,0) = 0,

for everyX ∈ �0 and the following boundary conditions on∂�t :

St (x, τ )n(t) |01t = Ŝt (x, τ ) , (χt (x, τ )− x) |02t = Ût (x, τ )(11)

Here ∂�t ≡ 01t
⋃
02t denotes the boundary of the thredimensional domain�t , n(t) is the

unit external normal at01t , while χt (x, τ ) − x is the displacement vector with respect to the
configuration at timet . Ŝt and Ût , the surface loading and the displacement vector are time
dependent,τ, prescribed functions, with respect to the fixed at timet configuration.

The rate quasi-static boundary value problem at timet, involves the time differentiation, i.e.
with respect toτ, of the equilibrium equations, (10),∀ x ∈ �t , and of the boundary condition
(11), whenτ = t

div Ṡt (x, t)+ ρ(x, t)ḃt (x, t) = 0 ,

Ṡt (x, t)n(t) |01t =
˙̂St(x, t),

v(x, t) |02t =
˙̂Ut(x, t)

(12)

using the notatioṅbt (x, t) for
∂

∂τ
bt (x, τ |τ=t .

At a generic stage of the process the current values, i.e. at the timet, of F,T,Y, and the set
of all material particles, in which the stress reached the current yield surface

�
p
t = χ(�p, t), with �p ≡ {X ∈ � | F(C(X, t),Y(X, t)) = 0}

are known for allx ∈ �t , with the current deformed domain�t also determined.

The set of kinematically admissible (at timet) velocity fields is denoted by

Vad(t) ≡ {v : �t −→ R3 | v |02t =
˙̂Ut}.

and the set of all admissible plastic multiplier

M(t) ≡ {δ : �t −→ R≥0 | δ(x, t) = 0, if x ∈ �t\�p
t ,

δ(x, t) ≥ 0, if x ∈ �p
t }.
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THEOREM5. At every time t the velocity field,v, and the equivalent plastic factorβ satisfy
the following relationships

∫

�t

ρ
{
∇v

T
ρ

· (∇w − ∇v)+ 4F∂2
CCσ(C,Y)[F

T {∇v}sF]FT · ({∇w}s −

{∇v}s)}dx − 2
∫

�
p
t

ρ
β

hr
F∂CF(C,Y)F

T · ({∇w}s − {∇v}s)dx =(13)

∫

�t

ρḃ · (w − v)dx +
∫

02t

˙̂St · (w − v)da

and

−2
∫

�
p
t

ρ

hr
(δ − β) F∂CF(C,Y)F

T · ({∇v}s)dx +
∫

�
p
t

ρ

hr
(δ − β)βdx ≥ 0,(14)

which hold for every admissible vector fieldw ∈ Vad(t), and for all δ ∈ M(t).

Proof. In the theorem of virtual power, derived from the rate quasi-static equilibrium equation
(12): ∫

�t

Ṡt · ∇wdx =
∫

∂�t

Ṡtn · wda +
∫

�t

ρḃt · wdx, ∀w ∈ Vad(t)

we substitute the rate of the nominal stress, at timet , calculated from (9), taking into account the
potentiality condition (4)2. First of all we calculate the differential with respect toτ of the right
hand side in (4)2, in which we replacėFF−1 = L andĊ = 2FDFT , with D = Ls. Thus

∂

∂τ
(
T
ρ
) = 2LF∂Cσ(C,Y)F

T + 2F∂Cσ(C,Y)F
T LT+

2F∂2
CCσ(C,Y)[2FDFT ]FT + 2F(∂2

YCσ(C,Y)[Ẏ])FT

(15)

in which we introduce the modified flow rule, (7), written under the form (see Remark 2)

∂2
YCσ(C,Y)[Ẏ] = −µ∂CF(C,Y),(16)

Hence the equality (13) follows at once from (9), (15)and (16).

In order to prove (14) we note thatµ ≥ 0 can be express either by the inequality

(µ̃− µ)
˙̂
F ≤ 0, ∀ µ̃ ≥ 0, together with µ F̂ = 0,(17)

or under its explicit dependence on the rate of strain:

µ = β

hr
, with β = 2∂6F̂(6, α) · d6̂(G, α)[ET DE],

hr = 2∂6F̂(6, α) · d6̂(G, α)[{GB̃}s] − ∂αF̂(6, α) · m̃,

where the hardening parameterhr > 0. The time derivative ofF̂(6,α) with (2) is introduced in
(17). Consequently, for allx ∈ �p

t we get

(µ̃− µ)(−µhr + 2∂6F̂(6,α) · d6̂(G, α)[ETDE]) ≤ 0.(18)
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hr > 0. We can substituteµ and µ̃ by β/hr and δ/hr . By integrating on�p
t from (18) the

inequality (14) holds, when the equality

∂CF · A = ∂6F̂(6, α) · d6̂(G, α)[P−T AP−1]) , ∀ A ∈ Sym

is also used forA = FT DF.

Let us define the convex set̃K in the appropriate functional space of the solutionHad, by

K̃ := {(w, δ) | w ∈ Vad(t), δ : � −→ R≥0},

andthe bilinear forms, in the appropriate spaceHab:

K [v,w] =
∫

�t

ρ
(
∇v

T
ρ

· ∇w + 4F∂2
CCσ(C,Y)[F

T {∇v}sF]FT · {∇w}s
)
dx(19)

A[β, δ] =
∫

�
p
t

ρ

hr
β δdx

B[δ, v] = −2
∫

�
p
t

ρ

hr
δ F∂CF(C,Y)F

T · {∇v}sdx

are defined∀ v,w ∈ Vad(t), ∀ δ, β : �t −→ R≥0.

As a consequence of (19) , (13) and (14) the below statement holds:

THEOREM6. Find U = (v, β) ∈ K̃ , solution of the variational inequality,V.I.:

a[U,V − U] ≥ f [V − U] ∀ V ∈ K̃(20)

a[·, ·] is the bilinear and symmetric formdefined on Had

a[V,W] := K [v,w] + B[β,w] + B[δ, v] + A[β, δ]

defined∀ V = (v, β),W = (w, δ) and

f [V] :=
∫

01t

˙̂St · vda +
∫

�t

ρḃt · vdx, 01t ⊂ ∂�t .(21)

REMARK 1. Under hypotheses: there existsHad− a Hilbert space, with the scalar product
denoted by·, the continuity of the bilinear form onHad, | a[V,U] |≤ co || V ||H || U ||H ,
and of the linear functional from (21) then the existence ofQ− linear operator associated to the
bilinear form:

a[U,V] = QU · V ∀ U,V ∈ Had.

The variational problemcan be equivalently formulated (see for instance Glowinski, Lions,
Trémolières [1976]): Find̃U ∈ Had such that

a[Ũ,U − Ũ] − f · (U − Ũ)+8K̃ (U)−8K̃ (Ũ) ≥ 0 ∀ U ∈ Had.

Here8K̃ - the indicator function ofK̃ , is zero on K̃ , and infinity outside.
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By using the subdifferential∂8K̃ of the function8K̃ the variational inequality becomes

−(QŨ − f) ∈ ∂8K̃ (Ũ)

We recall that thesubdifferentialof 8K̃ is defined as the mapping onHad such that

∂8K̃ (x) = {η ∈ H | 8K̃ (y)−8K̃ (x) ≥ η · (y − x) ∀ y ∈ H};

η ∈ ∂8K̃ (x) are called subgradients of8K̃ ( see [18]). The domain of∂8K̃ coincides with

K̃ , and ∂8K̃ (x) = {0} when x belongs to the interior ofK̃ .

PROPOSITION2. For linear elastic type constitutive equation, in the plastically deformed
configuration, the following formula

4∂2
CCσ(C,Y)[A] = P−1E [P−TAP−1]P−T , ∀ A ∈ Sym

follows.

In the case of small elastic strains

1 = 1

2
(G − I) ' εe E = ReUe, where

Ue = I + εe, G = I + 2εe with | εe |≤ 1,

Re− elastic rotation, the following estimations

| ∇w
T
ρ

· ∇w |≤| ∇w |2| E |4| εe |

4 | F∂2
CCσ(C,Y)[F

T {∇w}sF]FT · {∇w}s | ≤ | ∇w |2| E |4
hold.

In conclusion: in the case of small elastic strains the first terms in the bilinear formK [·, ·]
can be neglected in the presence of the second one. Moreover,if the behavior of the body, with
small elastic strain only, is elastic, which means thatβ = 0 in the solution of the variational
inequality, (20),then the bilinear forma[V,V] for V = (v, 0) is symmetric and positive definite.

In a similar manner, but starting from theequilibrium equationand thebalance equation of
momentumwith respect to the initial configuration, expressed as

Div S+ b0 = 0, and SFT = FST , in � with

S := (detF)TF−T , S := ρ0FP−15

ρ̃
P−T

S− non-symmetric Piola- Kirchhoff stress tensor, whereb0 are the body forces, we can prove:

THEOREM 7. The formulation of the rate quasi- static boundary value problem, in the
initial configuration leads to the variational inequality:

Find (u̇, µ) ∈ V × M , such that∀(v, ν) ∈ V × M

K0[u̇, v − u̇] + B0[µ, v − u̇] = R[v − u̇],

B0[u̇, ν − µ] + A0[µ, ν − µ] ≥ 0
(22)
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where K0, B0, A0 denote the bilinear forms:

K0[v,w] =
∫

�
ρ0{∇vP−15

ρ̃
P−T · ∇w + E

p
[{FT∇v}s] · {FT∇w}s}dX

B0[µ,w] = −2
∫

�p

ρ0

hr
µP−1(d 6̂)T [∂6F̂ ]P−T · {FT∇w}sdX

A0[µ, ν] =
∫

�p

ρ0

hr
νµdX

The linear functional

R[v] =
∫

01

Ḟ0 · vda +
∫

�
ρ0ḃ0 · vdx,

represents the virtual power produced by the variation in time of the of the mass forceb0 and of
the forces acting on the part01 of the boundary domain∂�, i.e. SN |01= F0.

Here we have introduced the elastic tensor with respect to the reference configurationE
p

E
p
[A] : = 4 P−1∂2

GGϕ[P−T AP−1]P−1

ϕ(G, α) = σ(C,Y) , G = P−T CP−1, Y = (P−1, α).

Here we denoted byV ≡ {v | v = U̇0 on02 ⊂ ∂�}, the set of admissible displacement rate(
for a given functionU0 ), and byM, the set of admissible plastic factors.

REMARK 2. Note thatF = I +∇Xu, whereu(X, t) = χ(X, t)−X represents the displace-
ment vector field anḋF = ∇X u̇, and the spatial representations of the bilinear form (19) are just
represented in (22).

The plastic factorµ = β

hr
which enter variational inequality is just the plastic factor which

characterizes the evolution of plastic deformation, via the modified flow rule (7). In order to
justify the above statement we recall the formula

∂CF = P−1∂GF̃P−T = P−1d6̂T [∂6F̂(6, α)]P
−T ,

and from the modified flow rule (6) we found

d6̂T [ ṖP−1 − µ∂6F̂(6,α)] = 0.

On the other hand when we pass to the actual configuration we get

B0[µ, u̇] = B[µ, v]

for

u̇ = ∂χ

∂ t
(X, t) and v = ∂χ

∂ t
(X, t) |x=χ−1(X,t)

the rate of the displacement vectoru̇ andv represent the velocity at the material pointX in the
material and the spatial representation.
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4. Composite materials

We describe the composite materials within the framework of6-models, with the potentiality
condition and the modified flow rule.

The macroscopic response will be orthotropic if there are two families reinforced fibres. In
our model othotropic symmetry, characterized ( see [12]) bythe groupg6 ∈ Ort defined by

g6 := {Q ∈ Ort | Qni = ni , or Qni = −ni , i = 1, 2,3.}

where{n1, n2,n3} is the orthonormal basis of the symmetry directions.

For transverse isotropy we distinguish thesubgroups g1, g4, equivalently described in Liu
[1983] by:

g1 ≡ {Q ∈ Ort | Qn1 = n1, QN1QT = N1}
g4 ≡ {Q ∈ Ort | Q(n1 ⊗ n1)Q

T = n1 ⊗ n1}

whereN1 = n2 ⊗ n3 − n3 ⊗ n2, for {n1,n2, n3} an orthonormal basis, withn1− thesymmetry
direction. The general representation theorems of Liu [1983] and Wang[1970] for anisotropic
and isotropic functions were consequently employed by [5],to describe the complete set of the
constitutive equations under the hypotheses formulated above. Here we give such kind of the
model.

The linear g4−transversely isotropic elasticconstitutive equation with five material param-
eters, in tensorial representation is written with respectto plastically deformed configuration,
K t ,

5

ρ̃
= E(1) ≡ [a1n1 · n1 + ctr1](n1 ⊗ n1)+ (c1n1 · n1 + dtr1)I +

+ e[(n1 ⊗ n1)1+1(n1 ⊗ n1)] + f1

The last representation is written in terms of the attached isotropic fourth order elastic tensor,̂E,

such that∀ Q ∈ Ort . HereE is symmetric and positive definite.

The yield condition is generated via the formula (24) by the functionf orthotropic, i.e.
dependent on fourteen material constant (or scalar functions invariant relative tog6 ), such that

f (6) := f̂ (6s, 6a, (n1 ⊗ n1), (n2 ⊗ n2)) ≡
≡ M̂((n1 ⊗ n1), (n2 ⊗ n2))6 ·6 =
= C1(6

s · I)2 + C26
s ·6s + C3(6

a)2 · I +
+ C4(6

s · I)(6s · (n1 ⊗ n1))+ C5(6
s · I)(6s · (n2 ⊗ n2))+(23)

+ C66
s · {6s(n1 ⊗ n1)}s + C76

s · {6s(n2 ⊗ n2)}s +
+ C86

s · {(n1 ⊗ n1)6
a}s + C96

s · {(n2 ⊗ n2)6
a}s

+ C10[6s · (n1 ⊗ n1)]
2 + C11[6s · (n2 ⊗ n2)]

2 +
+ C12[6s · (n1 ⊗ n1)][6

s · (n2 ⊗ n2)] + C13(6
a)2 · (n1 ⊗ n1)+

+ C14(6
a)2 · (n2 ⊗ n2)

REMARK 3. When we consider the symmetrical case, that corresponds to small elastic
strains, i.e. when6s = 5,6a = 0 then the yield condition is given from (23) in which
C3 = C8 = C9 = C13 = C14 = 0.
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The rate evolution equation for plastic deformation expressed by Mandel’s nine- dimen-
sional flow rule, i.e. there is a particular representation of the modified flow rule given in (8),

ṖP−1 = µ∂6F(6, α, κ)

is associated to the orthotropic yield function, generatedby (23), which describe the proportional
and kinematic hardening given by

F(6, α, κ) ≡ f (6, κ)− 1 ≡
M̂((n1 ⊗ n1), (n2 ⊗ n2), κ)6 ·6 − 1 = 0, 6 = 6 − α.

(24)

Here we put into evidence the possible dependence onκ of the yield function through the fourth
order tensorM.

We provide the constitutive relations for the plastic strain rate,Dp, as well as for the plastic
spinW p, defined by

Dp = 1/2(L p + L pT
), W p = 1/2(L p − L pT

), where L p = ṖP−1

For orthotropic material the plastic strain rate is given by

Dp = µ N̂p(6,α, κ, (n1 ⊗ n1), (n2 ⊗ n2))

with

N̂p = 2C1(6
s · I)I + 2C26

s + C4[(6
s · I)(n1 ⊗ n1)+(25)

+ (6
s · n1 ⊗ n1)I ] + C5[(6

s · I)(n2 ⊗ n2)+ (6
s · n2 ⊗ n2)I ] +

+ 2C6{6
s
(n1 ⊗ n1)}s + 2C7{6s

(n2 ⊗ n2)}s +
+ C8{(n1 ⊗ n1)6

a}s + C9{(n2 ⊗ n2)6
a}s +

+ 2C10(6
s · (n1 ⊗ n1))(n1 ⊗ n1)+

+ 2C11(6
s · (n2 ⊗ n2))(n2 ⊗ n2)+

+ 2C12[(6 · (n1 ⊗ n1))(n2 ⊗ n2)+ (6 · (n2 ⊗ n2))(n1 ⊗ n1)]

and the plastic spin is expressed under the form

W p = µ �̂p(6, α, κ,n1 ⊗ n1,n2 ⊗ n2) with

�̂p = −2C36
a + C8{(n1 ⊗ n1)6

s}a + C9{(n2 ⊗ n2)6
s}a−

−2C13{6
a
(n1 ⊗ n1)}a − 2C14{6

a
(n2 ⊗ n2)}a

(26)

REMARK 4. W p involves the terms generated by the symmetric part of6, while Dp con-
tains terms generated by the skew- symmetric part of6, with two coupling coefficientsC8,C9.

REMARK 5. In the case of6 ∈ Sym, i.e. for small elastic strainsandα ∈ Sym, directly
from (26) we derive the following expression fororthotropic plastic spin

W p = µ �p = µ {C8{(n1 ⊗ n1)6
s}a + C9{(n2 ⊗ n2)6

s}a}(27)

But in this case, the yield condition (23) does not depend on the parameters which enter the
expression (27) of the plastic spin.
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PROPOSITION3. From the orthotropic Mandel’s flow rule (26) the flow rule characterizing
the g4− transversely isotropic material is derived when C5 = C7 = C9 = C11 = C12 = 0, i.e.
dependent on six material constants. The plastic spin is given by (25), in which C9 = C14 = 0,
i.e. dependent on three constant only.

Evolution equation for internal variablecan be described, see [6], by some new generaliza-
tion to finite deformation of Armstrong- Frederick hardening rule.

From the orthotrop representationg4− transversely isotropic case only can be obtained.
Thus for plasticallyincompressiblematerial, i.e. ρ̃ = ρ0, the representatio from [21] can be
obtained by taking into account small deformation theory. The fibre-inextensible case given in
[22] can be also derived from our general representation, when the appropriate yield constant is
much grater then the others.
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MICROSTRUCTURE DESCRIBED BY HIERARCHICAL

INTERNAL VARIABLES

Abstract. In this paper a clear distinction is made between the different scales and
the different processes in the microstructure which influence the dynamics at the
macrolevel. In the first case the governing equation for wavepropagation is repre-
sented by a hierarchy of waves. In the second case it has been shown, how useful
the concept of internal variables is. The different processes can be best described
by a hierarchy of internal variables. An example of cardiac muscle contraction is
briefly described, demonstrating the dependence of the active stress on sliding the
molecules and ion concentration involving the corresponding internal variables.

1. Introduction

Continuum mechanics is usually based on macroscopic concepts and quantities, such as energy
density, stress, strain, etc. However, materials (whatever their origin is) have usually a mi-
crostructure because of inhomogeneities, pores, embeddedlayers, reinforcements, etc.. This list
can be prolonged but one is clear - the description of the behaviour of many materials should take
into account both the macroscopic and microscopic properties, occuring at different length scales
and involving different physical effects. Within the framework of continuum mechanics, such a
behaviour is best described by distinguishing macro stresses and microstresses with interactive
microforces ([1], [2]). We feel however, that for materialswith complicated properties indicated
above, one should start distinguishing clearly the observable and internal variables ([10], [13]).
Although the formalism of internal variables is well known ([10], [13]), for the clarity sake we
repeat here some basic concepts.

The observable variables are the usual macroscopic field quantities such as elastic strain, for
example. These variables are governed by conservation lawsand possess inertia. The internal
structure of the material (body, tissue, composite, etc.) is supposed to be described by internal
variables which are not observable and do not possess inertia. They should compensate our
lack of knowledge of the precise description of the microstructure. The formalism of internal
variables involves constructing of a dissipation potential D in parallel to the LagrangianL for the
observable variable. However, the governing equations of internal variables are kinetic equations
(not hyperbolic) – see [10], [13].

The idea of using internal variables for describing dynamical processes in microstructured
materials has earlier been presented in [12], [4]. The problems become more complicated when
either the scales or possible processes in materials are different and form a certain hierarchy. This
brings us directly to the idea of hierarchical internal variables that certainly need generalization

∗This study is supported by the Estonian Science Foundation.J.E. would like to thank Department of
Mathematics, University of Turin, for the financial supportto attend the 4 th International seminar ”Geome-
try, Continua & Microstructure” where the ideas of this paper were discussed.
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of the existing formalism. An example and main concepts of hierarchical internal variables are
given in [6], here a certain systematic approach is presented following by an example.

In Section 2 basic ideas of modelling are briefly described. The description involves contin-
uum mechanics, internal variables and evolution equations- all needed for further presentation.
More detailed description can, for example, be found in [3].Section 3 presents the central ide-
ology of this paper. It makes clear distinction between different scales and different processes in
the microstructure. In the first case the result is a wave hierarchy, in the second case - a hierarchy
of internal variables. In Section 4 an example is presented,illustrating the hierarchical internal
variables. The case study is based on the contraction of the cardiac muscle depending on the cell
energetics. Last Section 5 includes conclusions and open problems.

2. Basic modelling

2.1. Continuum mechanics

To be brief, we refer to [1], [2] for basic concepts for microstructured solids. For a bodyB ⊂ <3

with microstructure, an added fieldδ describes the mechanical characteristics of the microstruc-
ture. The stress fields can be introduced after the definitionof the expended power in arbitrary
processes [9], including a macroscopic (gross structure) stress and force, a microscopic (fine
structure) stress and force, and an interaction force between the macro- and microstructures. In
[2], this approach has been extended to include different microstructures at their characteristic
scales. Then for arbitrary regionW in <3 with outward unit normalm we have for the actual
power50(W):

50(W) =
∫

∂W
Tgm · vda+

∫

W
fg · vdv +5micro,1(W).

Herev is the velocity,Tg is the macroscopic stress, andfg is the macroscopic body force.
Note that indexing has here and below been changed compared with [2]. The field5micro,1(W)

is the power expended by the microstructure. Further, the difference from the general theory [9]
involves a sequence of microscopic processesdk, k = 2, 3, .... Now, we can magnify a small
region ofW iteratively by magnificationsλk. At the first stage

5micro,1(W) =
∫

∂W1

T1m · v1da+
∫

W1

f1 · v1dv +5micro,2(W).

wherev1 = λv + ḋ1 andT1 is the microscopic stress at this level. Further on,

5micro,2(W) =
∫

∂W2

T2m · v2da+
∫

W2

f2 · v2dv +5micro,3(W),

etc. (for details, see [2]. The general balance laws can now easily be rewritten in the referential
form.

2.2. Internal variables

The formalism of internal variables is presented in [10], [13]. Here we need point out just
essentials for further analysis in Section 3. The behaviourof a system, i.e. dynamic state of a
body involves description of observable state variablesχ (e.g. elastic strain and particle velocity)
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and a certain number of internal variablesα. The dependent variable(s) (e.g. the stress) must be
simultaneously a function of both

σ = σ(χ, α)

which must be complemented by a governing equation forα:

(1) α̇ = f (χ, α)+ g(χ, α)χ̇.

It is assumed that the strainε is split up in an elastic partεe and an ”anelastic” partε p:

ε = εe + ε p.

The free energy functionψ is assumed to be

ψ = ψ(εe, T;α,∇α)

whereT is temperature. The equations of motion are then easily derived. In addition, we need
to concretize Eq (1). For that, a dissipation potentialD is postulated

D = D(σ, α̇, εe, T, α,∇α) > 0

possessing certain properties [10]. Then the governing Eq (1) for α is derived as

δψ

δα
+ ∂D

∂α̇
= 0.

As a rule, this equation is not hyperbolic.

2.3. Mathematical models

It is clear that mathematical models involving both observable and internal variables are of the
mixed (e.g. inertial-diffusive [10]) type. The general ideas for asymptotic analysis of such
systems are presented in [4], [5]. To get an idea, the simplest 1D case could be described. Let
an n-vectorU be the vector of the observable variables, a scalarw – the internal variable and
X1 = X. Then the governing system is of the following form

(2) I
∂U
∂t

+ A1
∂U
∂X

+ εB11
∂2U
∂t∂X

+ h.o.t = H(U, w)

(3)
∂w

∂t
+ d11

∂2w

∂X2
+ h.o.t = p(U, w)

where I is a unit matrix,A1(U, X), B11(U, X) are the matrices of parameters,H(U, w) and
p(U, w) are the coupling vector and function, respectively,d11 is a constant andε a small pa-
rameter while h.o.t stands for higher order terms (derivatives).

It is proposed [4], [5] to use conventional asymptotic approach for deriving the evolution
equation(s) for system (2), (3) (see [3]).
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3. Types of models

Depending on the different length and time scales, the asymptotic governing equations derived
along the ideas of Section 2, may have different character. Nevertheless, it is possible to distin-
guish between the two types of governing equations.

Thefirst typeis based on structural hierarchy of a material (body) and strong dependence on
length scales within the material and of the excitation which are the leading factors. The simplest
example is just a material where macro- and microstructure are described by their own balance
laws [1], [9]. It means that the dynamic behaviour of the constituents is basically similar and
differs in parameters.

Thesecond typeis based on process hierarchy in a material (body) where at various levels
various dynamical processes are of importance, all influencing the macrobehaviour. This is
an example of the cardiac muscle [6] and characterized best by internal variables that form a
hierarchy.

Below both types are briefly characterized.

3.1. Structural hierarchy and hierarchy of waves.

Many materials possess microstructure at various scales. On the other hand, it is widely known
that dissipation and dispersion is different for various frequency scales. Hence, given the initial
excitation with a fixed frequency (wavelength), the response of the material depends actually
on a certain underlying microstructure which is responsible for the governing physical effects.
Actually, this could be just a case of macro- and microstructure, or then a case of several mi-
crostructures. The outcome, i.e. the governing equation should certainly reflect this possible
choice emphasized by certain input-dependent parameters.One could intuitively address the
problem asking a question, which material properties are more important: those characteristic to
the macrostructure or those characteristic to the microstructure of a certain level. It is clear that
a single governing equation should have a certain hierarchyembedded into it.

Wave hierarchies are analysed by Whitham [15], showing the hierarchy of just two orders. A
case, demonstrating the wave hierarchy in dissipative solids, is analysed in [4]. For a dissipative
microstructured solids where dissipation rates are different for macro- and microstructure, the
final linearized governing equation in the dimensionless form is the following:

(4)
∂

∂ξ

(
∂u

∂τ
− K1

∂2u

∂ξ2

)
+ λ2

(
L
∂u

∂τ
+ M

∂u

∂ξ
− K2

∂2u

∂ξ2

)
= 0.

whereu stands for the displacement gradient,τ andξ are the moving coordinates,K1, K2, L , N
are the constants andλ is the input-depending scale parameter. Equation (4) is derived from
the conventional equations of motion in the reference form by using the asymptotic (reductive
perturbative) method (see, for example [3]). Forλ small, the influence of the microstructure
may be neglected and dissipation is governed by the constantK1, for λ large, the dissipation is
governed by microstructural properties, i.e. byK2, while K1 6= K2.

Waves in dispersive solids (granular materials) where dissipation is neglected are analysed
in [7]. In this case for scaled density fluctuationw the governing equation is

(5)
∂2

∂ξ2

(
∂w

∂τ
+ w

∂w

∂ξ
+ N1

∂3w

∂ξ3

)
+ µ

(
∂w

∂τ
+ w

∂w

∂ξ
+ N2

∂3w

∂ξ3

)
= 0.
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whereN1, N2, µ are the coefficients. Contrary to the case (3.1), here dispersion is important and
(5) represents actually a hierarchy of the Korteweg-de Vries equations. Intuitively, denoting by
π an operator for the Burger’s-type (dissipative) materials, Korteweg-de Vries-type (dispersive)
materials, or both, the hierarchy of waves could be represented by

∑

m
εm

∂n

∂ξn πm = 0

whereπm denotes the operator form-th scale andεm – a corresponding small parameter, if
any. Hence,π0 denotes the wave operator in the highest, i.e. in the macrolevel (c.f. Section
2.1). The order of derivativesn(m) represents the order of coupling between various effects.
As a conjecture, one could propose that dispersive effects are characterized byn = 2,4,... and
dissipative effects – byn = 1,3,... (c.f. Eqs (4) and (5)).

3.2. Process hierarchy and hierarchical internal variables.

Beside the different scales, the embedded microstructuresare sometimes characterized by com-
pletely different physical processes going on simultaneously. As said before, such processes
are internal and governed by internal variables [10], [13].If now these processes are linked to
the macrobehaviour by a certain hierarchy then the corresponding internal variables form also a
hierarchy. We use then notion of hierarchical internal variables [6].

In general terms, the idea of building up the mathematical model is the following [6]:
1) a constitutive equation for a dependent variable, sayσ (i.e. stress, for example), depends on
observable variableχ and thefirst-levelinternal variableα

σ = σ(χ, α);

2) the evolution law forα is

(6) α̇ = f (χ, α, β),

whereβ is the next,second-levelinternal variable influencingσ only through dynamics of the
first-level internal variableα;
3) the evolution law forβ is

(7) β̇ = g(χ, α, β, γ ),

whereγ is again the next, now thethird-level internal variable, influencingσ only through
dynamics of the second level internal variableβ;
4) the evolution law forγ is

(8) γ̇ = h(χ, α, β, γ, ...),

etc.

Internal variablesα, β, γ, ... form a hierarchy reflecting the hierarchical processes in the
material.

Consequently, the mathematical model of the macrobehaviour is governed by a system in-
cluding several equations that can be of the various types. Note, however, that Eqs. (6), (7),
(8) could also include gradients and then at least the governing system is composed by partial
differential equation.
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4. Example: cardiac muscle contraction

Here we refer to the fundamental treatises on cardiac performance [8], [16]. In terms of contin-
uum mechanics, ventricles are thick-walled shells made of anisotropic fibres. These fibres have
complicated microstructure and act as following. The muscle fibres are made up by the bunches
of smaller elements called myofibrils with a surrounding sarcotubular system. The main task of
myofibrils is to convert metabolic energy into mechanical energy while the surrounding sarco-
tubular system governs the behaviour ofCa2+ ions needed for activation. In sense of continuum
mechanics, these processes include the internal variablescompared to the observable macrovari-
ables like strain. The stress in the muscle is the dependent variable and its constitutive law is
linked to the observable variable and then the hierarchy of internal variables. Leaving aside the
details of this extremely fascinating mechanism (the reader is referred to [6], [14]), we concen-
trate here on the description of the mathematical model.

We assume, that the total (Cauchy) stress in the muscle can besplit up into two parts

σσσ = σσσ p + σσσa,

whereσσσ p andσσσa denote passive and active stress, respectively. The passive stress results from
the elastic deformation of the tissue and can be calculated traditionally like

σσσ p = ∂ψ

∂εεεe ,

whereψ is the free energy andεεεe is the strain. Givenψ , the passive stress is easily calculated.
The active stressσa is generated in myofibrils by activation and is directed parallel to the fibre
orientation. Hence

σσσa = σaεεε1εεε1,

whereε1 is the unit vector showing the orientation. Now the complicated mechanism producing
active stress needs the more detailed description of the sequence of internal variables, which are
the main actors. At this structural level, myofibrils are thestarting point. A myofibril is com-
posed of repeating units of myosin and actin filaments, called sarcomeres. The actin filament is
made of a double helix of actin molecules with troponin molecules localized in certain intervals.
The myosin filament consists of myosin proteins with certainspatially localized meromyosin
molecules with heads resembling ”golf-clubs”. These headsare called cross-bridges. The excita-
tion of a muscle is triggered by an action potential from the conducting system. This potential in
its turn releasesCa2+ ions in the sarcotubular system which then activate the troponin molecules
so that they will be able to attach the heads of myosin molecules. This attaching means swiv-
elling of myosin molecules that cause sliding the actin and myosin filaments against each other.
As a result, active stress is created.

The mechanism briefly described above (for details see [6], [14] and the references therein)
needs to be cast into a mathematical model.

We start here from the macrolevel down. The force on actin molecules (along the actin
filament) depends on the distancez between an attached cross-bridge and the nearest actin site.
There are two states through the cycle, producing force. Denoting them byA and B, we may
calculate the corresponding forces by

FA = K A z, FB = KB z

whereK A, KB are elastic constants. Further we takeK A = KB = K . The total force over a
sarcomere of the lengthls depends on the number of crossbridges betweenz andz − dz in both



Microstructure described 89

states. We take the uniform distribution of crossbridges inz over an internald. The active stress
is then found by

σa = mlsK

2d

(∫ d/2

−d/2
nA(z)dz+

∫ d/2

−d/2
nB(z)dz

)

wherem is the number of cross-bridges per unit volume andnA(z),nB(z) are relative amounts
of cross-bridges producing force (i.e. being in statesA andB). These variables,nA andnB are
nothing else than thefirst-level internal variables. They (c.f. Section 3.2) are governed by the
following kinetic equations

∂nA

∂t
+ w

∂nA

∂z
= f1nC + g2nB − (g1 + f2)nA,

∂nB

∂t
+w

∂nB

∂z
= f1nA − (g2 + f3)nB,

wherew is the velocity of lengthening,f1, f2, f3, g1, g2 are kinetic constants between the states
andnC is the amount of cross-bridges that does not produce force. Clearly, the summation of all
activated cross-bridges gives

A = nA + nB + nC .

Now, A is the next, i.e. thesecond-level internal variable, the changes of which affects the
variableσa only overnA,nB. The internal variableA (the activation parameter) has its own
kinetic equation

(9)
d A

dt
= c1(ls)[Ca2+](1 − A)− c2(ls)A,

with c1(ls), c2(ls) as certain parameters. Equation (9) involves thethird-level internal variable
[Ca2+] which must be governed by its own kinetic equation

d[Ca2+]

dt
= f ([Ca2+]).

In practice, the last equation is usually replaced by the approximation of experimental curves.

So, in this case the variableσa is influenced by three levels of internal variables that forma
hierarchy.

The calculations of contraction are performed by using thismodel and FEM for the idealized
spheroidal left ventricle and will be published elsewhere.

5. Discussion

As explained in Section 3 and demonstrated in Section 4, hierarchies of the internal structure of
a material (body, tissue) lead to certain hierarchies in mathematical models. These hierarchies
can be either the hierarchy of waves in the Whitham’s sense [15] or the hierarchy of internal
variables. Both cases need actually more detailed analysis. The models are complicated that
is why in order to get practical results, numerical simulation must be used. However, there are
many open questions also from the theoretical viewpoint.

For example, the question on dispersive properties embedded into the hierarchy of waves
must be analysed. It is known that higher-order dispersion terms are the same in the wave hierar-
chy ((3.2) in [7]) and in the governing equation obtained by adirect asymptotic derivation [11].
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This certainly shows the correctness in leading terms but the properties of the wave hierarchy are
not clear.

For hierarchical internal variables the line of questions seems to be longer. The extra entropy
flux k in the formalism of internal variables [10], [13] depends then also on internal variables
in a certain sequence that must be analysed. Open is the question, how to construct dissipative
potentialsDα,Dβ ,Dγ , ... corresponding to the each level of internal variables. It seems, that a
more detailed formalism of internal variables might cast light over the formation of dissipative
structures.
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ARE CONTINUOUS DISTRIBUTIONS OF

INHOMOGENEITIES IN LIQUID CRYSTALS POSSIBLE?

Abstract. Within a theory of liquid-crystals-like materials based ona generalized
Cosserat-type formulation, it is shown that continuous distributions of inhomo-
geneities may exist at the microstructural level.

1. Introduction

In the conventional theories of liquid crystals, the free-energy density is assumed to be a function
of a spatial vector field and its spatial gradient. Starting from the pioneering work of Frank
[6], various improvements were proposed by Leslie [9] and byEricksen [4] [5]. A different
point of view was advocated by Lee and Eringen [7] [8], as early as 1972, when considering a
liquid criystal within the framework of the theory of materials with internal structure. The main
difference between these points of view is that the second approach emphasizes the dependence
of the constitutive equations on themappingsbetween vectors or tensor fields, rather than on
their values alone. This mapping-dependence is essential not only for sustaining continuous
distributions of inhomogeneities, but also, as shown by Maugin and Trimarco [10], for the proper
setting of a definition of Eshelby stresses. The general connection between these two aspects of
material behaviour is described in [3].

2. The generalized Cosserat medium

A generalized Cosserat body(GCB) consists of the frame bundle of an ordinary bodyB. In other
words, a GCB is a body plus the collection of all its local frames at each point. Denoting byX I

(I = 1, 2, 3) andxi (i = 1, 2,3) Cartesian coordinate systems for the bodyB and for physical
space, respectively, a configuration of a GCB consists of thetwelve independent functions:

xi = xi (XJ )

H i
I = H i

I (X
J )

whereH i
I represents the mapping of the frames attached at pointXJ . It is important to stress

that the ordinary deformation gradientF i
I = ∂xi

∂X I and the mappingH i
I are of the same nature,

but represent two independent vector-dragging mechanisms.

A GCB is hyperelasticof the first grade if its material response can be completely charac-
terized by a single scalar (“strain-energy”) function:

W = W(F i
I , H i

I , H i
I ,J ; XK )

∗Partially supported by the Natural Sciences and Engineering Research Council of Canada, and DGI-
CYT (Spain) (Project PB97-1257).
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where comma subscripts denote partial derivatives. Under achange of reference configuration
of the form

YA = YA(XJ )

H A
I = H A

I (X
J )

where the indicesA, B,C are used for the new reference, the energy function changes to:

W = W′(F i
A, H i

A, H i
A,B; YC)

= W(F i
AF A

I , H i
AH A

I , H i
A,B F B

J H A
I + H i

AH A
I ,J ; XK (YC))(1)

Notice the special form of the composition law for the derivatives of H i
I .

Generalizing Noll’s idea of uniformity [11], by taking intoaccount the composition laws in
Equation (1), one can show [1] [2] that in terms of an archetypal energy function

Wc = Wc(F
i
α, H i

α, H i
αβ )

where Greek indices are used for the archetype, a GCB isuniform (namely, it is made of “the
same material” at all points) if there exist three uniformity fields of tensorsPI

α(XJ ), QI
α(X

J )

andRI
αβ (X

J ) such that the equation

W(F i
I , H i

I , H i
I ,J ; XK ) = Wc(F

i
I PI

α, H i
I QI

α, H i
I ,J PJ

βQI
α + H i

I RI
αβ )

is satisfied identically for all non-singularF i
I andH i

I and for allH i
I ,J . Homogeneity(global

or local) follows if, and only if, there exists a (global or local) reference configuration such that
these fields become trivial.

3. The liquid-crystal-like model

We call aliquid-crystal-like model(LCM) a material whose internal structure can be represented
by the deformation of one or more vector or tensor fields. Morespecifically, we say that a GCB
is of the LCM type if a nowhere-zero material vector fieldD = D I EI and a material tensor field
A = AI

JEI ⊗ EJ exist such that the energy density function depends on its arguments in the
following way:

(2) W = W(F i
I , H i

I , H i
I ,J ; XK ) = f (F i

I , H i
I D I , H i

I ,J D I + H i
I AI

J ; XK )

where we have used the letterf to denote the new functional dependence.

To clarify the rationale behind this definition, we considerfirst the particular case of a ref-
erence configuration in whichD(X) constitutes a parallel unit vector field andA(X) vanishes
identically. We can then write (for that particular reference configuration, if it exists) that

W = f (F i
I , H i

I D I , (H i
I D I ),J ; XK )

This constitutive equation is unable to detect any difference between different deformations of
triads that happen to map the director into the same vector inspace. In other words, all that
matters is the resulting vector and its gradient, just as in the “conventional” theory of liquid
crystals, and it is in this sense that Equation (2) constitutes a generalization. More importantly,
when seen under this light, the tensorA no longer appears as an artificial construct, but as the
natural outcome of describing the manner in which the conventional archetype has been inserted
in the body in a pointwise fashion.
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It is apparent that the particular form of the constitutive law adopted for an LCM must
entail certainminimal symmetries, namely, certain local changes of reference configuration that
are indistinguishable as far as the material response is concerned. In addition, an LCM may have
other non-generic symmetries, but here we are interested inderiving those symmetries that are
already inherent in the definition. Now, any symmetry of a GCBconsists of a triple{G, K , L}
satisfying:

f (F i
J , H i

J DJ , H i
M,N DM + H i

M AM
N ; XK ) =

f (F i
I GI

J , H i
I K I

J DJ , (H i
I ,J GJ

N K I
M + H i

I L I
M N )D

M + H i
I K I

M AM
N ; XK )

for all non-singularF i
I andH i

I and for allH i
I ,J . Since we are looking for minimal symme-

tries, namely, those stemming from the particular dependence assumed onH and its gradient,
we setG equal to the identity. It then follows that the energy function will have the same values
for all K andL satisfying the following identities:

H i
J DJ = H i

I K I
J DJ

and

H i
M,N DM + H i

M AM
N = H i

I ,N K I
M DM + H i

I L I
M N DM + H i

I K I
M AM

N

for all non-singularF i
I and H i

I and for all H i
I ,J . It follows immediately that the minimal

symmetries are those satisfying the following conditions:

(3) K I
J DJ = D I

and

(4) L I
M N DM = (δ I

M − K I
M )A

M
N

The first condition is the obvious one: the energy function ata point remains invariant under
any change of reference configuration which leaves the director at that point unchanged. In
other words, the matrixK has the director as an eigenvector corresponding to a unit eigenvalue.
The second condition, on the other hand, is far from obvious and could not have been predicted
except by means of the kinematically based method we have used. Note that in the particular
case in which the tensor fieldA is zero, the right-hand side of the second condition vanishes. It
is not difficult to show by a direct calculation that the collection of all the symmetries satisfying
the above two conditions forms a groupGmin, which we will call theminimal symmetry group
of any LCM, under the multiplication law given by Equation (1).

Although not strictly necessary, we will adopt as theLCM archetypea point whose consti-
tutive law is of the form

Wc = Wc(F
i
α, H i

α, H i
αβ ) = fc(F

i
α, H i

αDα, H i
αβ )

namely, we adoptAαβγ = 0 at the archetype. According to the general prescription for unifor-
mity, then, fieldsPI

α(XK ), QI
α(X

K ) andRI
αβ (XK ) must exist such that:

W(F i
I , H i

I , H i
I ,J ; XK )

= Wc(F
i
I PI

α, H i
I QI

α, H i
I ,J PJ

βQI
α + H i

I RI
αβ )

= fc(F
i
I PI

α, H i
I QI

αDα, (H i
I ,J PJ

βQI
α + H i

I RI
αβ )D

α)
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It is a straightforward matter to verify that the resulting functionW has the requisite form:

W(F i
I , H i

I , H i
I ,J ; XK ) = f (F i

I , H i
I D I , (H i

I ,J D I + H i
I AI

J ))

where
D I = QI

αDα

and
AI

J = RI
αβ (P

−1)β J Dα

Indeed

fc(F
i
I PI

α, H i
I QI

αDα, (H i
I ,J PJ

βQI
α + H i

I RI
αβ )D

α)

= fc(F
i
I PI

α, H i
I D I , PJ

β (H
i
I ,J D I + H i

I AI
J ))

= f (F i
I , H i

I D I , H i
I ,J D I + H i

I AI
J ; XK )

Under a change of reference configuration we know that the tensor fieldAI
J transforms to

AA
B = (H A

I ,J D I + H A
I AI

J)(F
−1)J B

and we ask the question: does there exist a change of reference configuration leading to an
identically vanishingAA

B in an open neighbourhood of a point? It is not difficult to showthat a
sufficient condition for this local homogeneity requirement to take place is that:

AI
J = D I

,J

identically in that neighbourhood. Indeed, if that is the case, we can write:

AA
B = (H A

I D I ),J(F
−1)J B

Therefore, any change of reference configuration of the form

YA = YA(XK )

H A
I = (Q−1)α I δ

A
α

will do the job. We conclude then that the local homogeneity of an LCM body is guaranteed, in
addition to the ordinary condition of homogeneity of the macromedium, by the equation

(5) AI
J = D I

,J

describing the compatibility of the liquid crystal superstructure. If, however, the underlying
macromedium is homogeneous but condition (5) is violated, we have a genuine distribution of
inhomogeneities at the microstructural level. On the otherhand, it can be shown that the two
conditions taken together are not only sufficient, but also necessary, for local homogeneity of
an LCM uniform body whose symmetry group is minimal. This fact holds true even though the
minimal symmetry group is continuous. More surprisingly, perhaps, the same conclusion holds
even when the macromedium is a genuine liquid, namely, when its symmetry group is the whole
unimodular group.

Assume that we have a reference configuration that is homogeneous as far as the underly-
ing macromedium is concerned and in which the director field is unit and parallel. The only
source of inhomogeneity left is, therefore, a smooth second-order tensor fieldA(X). By the po-
lar decomposition theorem, this field can be seen geometrically as a field of ellipsoids, whose



Distributions of inhomogeneities 97

axes and eccentricities vary smoothly from point to point. In principle, then, we have a situation
equivalent to that of a standard liquid crystal, except thatthe standard ellipsoids of orientational
distribution are now replaced by the ellipsoids arising form the inhomogeneity of the microstruc-
ture. These last ellipsoids are manifest, as already noted,even if the director field is perfectly
unitary and parallel! The typical optical patterns, whose beautiful curvy shapes have become
associated in popular imagination with liquid crystals, and usually explained as a manifestation
of the variation of the mean orientational order of the molecules, could therefore be explained
equivalently by the presence of continuous distributions of inhomogeneities.

4. Concluding remarks

We have shown that, at least in principle, it is possible to formulate a theory of liquid-crystal-like
uniform bodies that admit continuous distributions of inhomogeneities. The main ingredient of
this theory is the inclusion of maps, and derivatives thereof, between whole fibres of the princi-
pal frame bundle of the underlying body. This stands in contrast with the conventional theory,
which recognizes only the transformation of a single vectorfield and its derivative. Although
the treatment of a liquid crystal as some kind of generalizedCosserat body is not new, the way
in which a particular director field is made to enter the formulation is different from previous
formulations. Instead of imposing a constitutive symmetryupon a standard Cosserat medium,
we emphasize a kinematic motivation as a rationale for constraining the constitutive functional
to a particular form, and only then derive a-posteriori results for the minimal symmetry group.
These results differ form the a-priori counterparts in [7] and [8] in the rather complicated sym-
metry requirement for the microstructural component, a requirement that is absent in the a-priori
statement. But it is precisely this condition that allows for the existence of legitimate microstruc-
tural inhomogeneities. Further mathematical details of the theory are now under investigation,
including differential-geometric implications.
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MATERIAL CRYSTAL PLASTICITY AND DEFORMATION

TWINNING

Abstract. In classical crystal plasticity, the lattice orientation is unchanged from
the reference configuration to the local to the local intermediate is plastically de-
formed configuration. Material plasticity corresponds to adifferent irreversible
process by which the lattice rotates together with materiallines between reference
and intermediate configurations. Deformation twinning is an example of mate-
rial plasticity. A continuum model for mechanical twinningof single crystals is
presented in this work. Twin formation is regarded as an unstable localization
phenomenon, followed by twin front propagation. Finite element simulations are
provided showing the twinning and untwinning of a single crystal under cyclic
loading, the development of twins at a crack tip, and lastly the formation of twin
networks in a coating on an elastic substrate.

1. Material vs. dislocation-based crystal plasticity

The constitutive framework of anisotropic elastoplasticity has been settled by Mandel in [11]:
it requires the definition of a tryad of directors attached toeach material point. In the case of
single crystal plasticity, the relative rotation rate of lattice directors with respect to material lines
is derived in a unique way from the kinematics of plastic glide according toN slip systems. A
unique intermediate configuration can be defined for which the lattice orientation is the same as
the initial one. This results in a multiplicative decomposition of the deformation gradientF∼ into
elastic and plastic parts, as shown on figure 1a:

F∼ = E∼P∼, Ṗ∼P∼
−1 =

N∑

s=1

γ̇ sms ⊗ ns

where slip systems is described by the slip directionms and the normal to the slip planens,
andγ s denotes the amount of associated slip. It follows that from the reference configuration to
the intermediate one, the lattice directions are left unchanged whereas the material lines rotate
according to the rotation part in the polar decomposition ofP∼.

One can also imagine an irreversible deformation process bywhich the lattice directions of
the crystal would simply follow the material lines. This is what we callmaterial crystal plasticity.
It leads to the picture of figure 1b where the individual atomsundergo a uniform simple glide in
a cooperative way. However this process is not so simple as itmay look since during the shearing
the lattice structure is changed usually going from a highlysymmetric class to a less symmetric
one. Some critical shear amountγ0 may exist for which the crystal structure is retrieved with
possibly an orientation different from the initial one ([14]). Such a deformation process exists

∗The authors want to thank Prof. André Pineau for many discussions on twinning phenomena in zinc.
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in some crystals. It is referred to asdeformation twinning([2, 16]). The sequel of the paper is
devoted to the continuum modelling of this particular mode material crystal plasticity.

(a)

F

P E

(b)

Figure 1: Kinematics of crystal plasticity based on dislocation glide (a); homogeneous
shearing of a lattice as an example of material crystal plasticity (b).

Figure 2: Twin network and four cleavage cracks in a large flatzinc grain coated on a
steel sheet (grain size : 500µm).
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2. Continuum modelling of deformation twinning

2.1. Elements of deformation twinning

Deformation twinning now is a well–known deformation mechanism in cubic and hexagonal
crystals. A modern and exhaustive account of the current knowledge from the crystallographic,
metallurgical and mechanical point of view can be found in [3]. We will simply retain the
following features:

• the deformation of the twinned part of the crystal can be described by a homogeneous
shearingγ0 in directionη1 and in the planeS;

• the crystal structure of the twin usually is the mirror imageof the parent crystal in the
crystallographic twin planeK1; K1 very often coincides with the plane of contact between the
two crystals called composition plane which is neither rotated nor distorted; the direction inS
undergoing only a rotation is calledη2 andK2 denotes the plane containingη2 and normal toS;

• in fact, a simple shear applied to atom positions, as distinct from lattice points, is not
always capable of producing all the atom movements which areneeded to form a twin: additional
reshuffleof some atoms of the unit cell is necessary, in particular in multiple lattices.

For simplicity, the present work is actually restricted to compound twins for which all el-
ementsKi , ηi are rational ([10]). More specifically, the provided examples deal with pure zinc
having hexagonal closed–packed symmetry. Using classicalindex notations for this type of sym-
metry ([2]), the twinning system of pure zinc is given by:

η1 =< 1011>, K1 = {1012}, η2 =< 1011>, K2 = {1012}, γ0 = 0.139

The lattice orientation relationship between the parent crystal and the twin in zinc are: a mirror
symmetry inK1, or equivalently a rotation of angleπ aroundη1, a mirror symmetry in the plane
normal toη1 or a rotation of angleπ around the normal toK1.

2.2. Elastoplastic model of twinning

Mechanical models for twinning are available from both microscopic and macroscopic points of
view. At the level of the cooperative behaviour of atoms, non–linear elasticity with a non–convex
potential has proved to be an efficient method to describe such a phase transition–like process
([4, 19]). Indeedelastic twinningexists if there are no lattice friction forces opposing the motion
of the dislocations at irregular interfaces. In this case, twins will run back when the applied
stress is removed. In calcite for instance, small twins nucleate by indentation and disappear
when the load is removed ([10]). However, more generally twinning isnot reversibleand twins
remain in a crystal after it has been unloaded. The reason often is that accommodation has
occurred by slip, relieving the stresses at the edge of the twin. Under these conditions, blunt twin
plates with quite irregular interfaces are possible (figure2). That is why deformation twinning
is modelled here as an elastoplastic process associated with dissipation. Such an approach has
already been proposed to model at the macroscopic level the volume fraction of twins appearing
in a polycrystalline volume element of metal deforming by both slip and twinning ([9, 18]). We
tackle here a different problem since the aim is to simulate the nucleation and propagation of
twins at the grain level.

The classical framework of crystal plasticity is now extended to incorporate the following
features of twinning (figure 3):

• twin formation is modelled as an unstable plastic slip process according to classical
dislocation–based crystal plasticity;
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• as soon as a critical amount of shearγ = γ0 has been reached for the activated twin
system, the orientation of the isoclinic intermediate configuration is changed switching from the
initial parent one to that of the associated twin.

The driving force for twinning is the resolved shear stressτ on the twin plane in the twinning
direction and the slip rate is computed using:

γ̇ =< τ − τc

K
>n, τc = τ0 + Q(1 − e−b(γ−E(γ /γ0)))

where the viscosity parametersK andn are chosen so that the resulting behaviour is as rate–
independent as necessary.τ0 denotes the initial threshold for twinning and the hardening pa-
rameterQ is taken negative. Such a softening behaviour makes twin nucleation an unstable
deformation mode associated with strain localization. Thefunction floorE(.) taking the integer
part of . is introduced so that the initial threshold is recovered once the local twinning process
is finished. Contrary to the classical Schmid law in dislocation - based plasticity, the sign ofτ
plays a role since twinning is possible only in one specific direction : compression in directionc
in zinc triggers deformation twinning, but not tension. Thechoice ofm andn is such thatτ, γ
andγ̇ are positive when twinning occurs.
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Figure 3: Kinematics of twinning plasticity

2.3. Thermodynamic setting

The state variables of the system can be taken as the Green–Lagrange strain tensor with respect
to the intermediate configuration]:

]1∼ = 1

2
(E∼

T E∼ − 1∼)

and temperature. The free energyψ( ]1∼ , α) may also be a function of an internal variableα to
be specified. In the sequel, it is referred to the pure isothermal case. Only one twinning system
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is considered for simplicity. The local form of the energy balance equations then reads:

ρε̇ = T∼ : Ḟ∼F∼
−1

whereT∼ is the Cauchy stress tensor andε the internal energy. The free energy takes the form:

ρ]ψ(
]1∼ , α) = 1

2
]1∼ : C∼∼

: ]1∼ + g(α)

The Clausius–Duhem inequality reads:

−ρ]ψ̇ + T∼ : Ḟ∼F∼
−1 ≥ 0

Noting that
T∼ : Ḟ∼F∼

−1 = (E∼T∼E∼
−T ) : Ṗ∼P∼

−1 + (E∼
−1T∼E∼

−T ) : ]1̇∼
it follows that

−(ρ ∂ψ
∂ ]1∼

− E∼
−1T∼E∼

−T ) : ]1̇∼ + (E∼T∼E∼
−T ) : Ṗ∼P∼

−1 − ρ
∂ψ

∂α
α̇ ≥ 0

from which the state laws are deduced:

]T∼ = ρ]
∂ψ

∂ ]1∼
=
ρ]

ρ
E∼

−1T∼E∼
−T

The thermodynamic force associated with the internal variable is:

A = −ρ]
∂ψ

∂α
= −g′

The intrinsic dissipation rate then becomes:

D = ]S∼ : Ṗ∼P∼
−1 + Aα̇, with ]S∼ =

ρ]

ρ
E∼

T T∼E∼
−T = E∼

T E∼
]T∼

The positiveness of the intrinsic dissipation is then ensured by the choice of a convex dissipation
potential�( ]S∼, A):

�( ]S∼, A) = 1

n + 1
<
τ − τc

K
>n+1, with τ = ]S∼ : (m ⊗ n)

such that

Ṗ∼P∼
−1 = ∂�

∂ ]S∼
=< τ − τc

K
>n m ⊗ n

α̇ = ∂�

∂A
= −γ̇ ∂τc

∂A

(1) D = τ γ̇ + Aα̇

Only calorimetric measurements can lead to an estimation ofthe dissipation associated with
twinning in a single crystal. It appears from (1) that the amount of dissipated power is determined
by the proper choice of the internal variableα and this will be dictated by the experimental
measurements. Let us distinguish three cases:
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• if no internal variable is introduced,D = τ γ̇ so that the entire plastic power is dissipated
into heat; it is positive for a proper choice ofm andn (such thatτ > 0 whenγ̇ > 0), even if a
softening behaviour is introduced;

• if we takeg′ = τc = −A, thenα = γ and D = (τ − τc)γ̇ which vanishes in the rate-
independent case; accordingly, the entire plastic power isconsidered as irreversibly stored, like
dislocation forest hardening in dislocation–glide plasticity;

• if we take τc = τ0 − A, i.e. g′ = −A = Q(1 − e−bγ ), thenα = γ and D =
(τ − (τc − τ0))γ̇ ' τ0γ̇ in the quasi–rate–independent case; it is again positive since the twin-
ning system orientation convention is such thatγ̇ ≥ 0. This choice is classical in conventional
elastoviscoplasticity ([1]).

A much more fine tuning of the internal variable will be necessary in the case of twinning
([17]) and is not undertaken here.

3. Finite element simulations of twinning in single crystals

The ability of the model to reproduce several experimental features of deformation twinning
in single crystals is illustrated for three different situations. For that purpose, finite element
simulations are provided based on classical nonlinear algorithms for the resolution of global
equilibrium and the local integration of the evolution equations.

3.1. Twinning and untwinning under cyclic loading

The main justification for choosing a softening stress-strain constitutive equation in the model
stems from the experimental results obtained by Price ([15]) on zinc whiskers deformed in ten-
sion under a transmission electron microscope. He was able to observe and control the nucle-
ation of a single twin and its propagation in the sample cross–section. The twin then thickens
and invades the entire specimen. The load–displacement curve displays a sharp softening stage
associated with twin nucleation. The parameters of the model have been adjusted according to
this curve.

The simulation of a single crystal zinc plate oriented for plane single twinning in tension
is now considered. A geometrical defect is introduced to trigger strain localization that is in-
terpreted here as twin nucleation. Indeed a deformation band appears and its orientation corre-
sponds to that of a twin. Once the critical amount of shearγ0 is reached, the twin starts growing.
Twin growths is the result of the motion of the localization front on one or both sides of the twin
in the spirit of ([12]). The twin thickens and spreads over the entire specimen (figure 5a). When
the whole sample has twinned, the crystal behaves elastically in tension. The crystal can then be
entirely untwinned if it is subsequently subjected to compression (figure 5b). It must be noted
that at the last deformation stage, a virgin crystal is obtained that can again twin in tension. This
results in the hysteresis loop shown in figure 4.

3.2. Twinning modes at a crack tip

Let us now consider a single crystalline Compact Tension specimen classically used in fracture
mechanics. Thec–axis of the zinc crystal is normal to the crack plane and the initial crack growth
direction coincides with [0110]. It is recalled that twinning occurs in a specific directionη1 and
not in the opposite direction. A positive resolved shear stress in this direction is necessary for
twinning to become possible. The distribution of resolved shear stresses for the single considered
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Figure 4: Load-displacement curve of the twinning and untwinning of a single crystal
in tension-compression

twin system is shown on figure 6a. It appears that for the chosen orientation the resolved shear
stress is negative ahead of the crack tip. Accordingly, a twin can form only behind the crack tip
where the stresses are compressive. This is indeed possibleas shown on figure 6b. This situation
has been observed very often in the deformation of zinc coatings and is therefore justified by the
present computation ([13]).

3.3. Multiple twinning in a zinc coating

The last example deals with the simulation of the formation of twin networks in a single crystal
coating on an isotropic hyperelastic substrate subjected to tension. Two twinning systems are
taken into account here: [0111], (0112) and [0111], (0112). Thec–axis of the crystal is normal
to the coating and the tensile vertical direction is [0110], parallel to the interface. The twinning
directions of the considered systems are contained in the plane of the two–dimensional simu-
lation. A displacement is prescribed at the top of the sampleand the specimen is fixed at the
bottom. Figure 7 shows that a first twin forms and is repelled at the interface, which corresponds
to the formation of a second twin. A second pair of twins formsthen independently at the lower
part of the sample. Two of the twins intersect. The growth of the twins is limited by the fact that
the interface cannot accommodate the deformation since thesubstrate remains elastic. Instead
many twins form to build an actual network. This type of network is similar to that of figure
2. Sections of the coating are presented on figure 8 showing the twin development in the thick-
ness of the coating. No direct experimental evidence of twinreflexion at the interface has been
detected but this may be due to the specific crystal orientations.
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(a)

(b)

Figure 5: Twin formation and propagation in a single crystalin tension (a) followed by
compression (b).

The twin systems activated in each strain localization bandare given on figure 9. In the
computation, the orientation of the sample is sligthly tilted with respect to the previously given
orientation so that twin system 1 is significantly more activated than twin system 2. It is however
quite surprising to see that the pair of almost perpendicular bands at the top of the sample belongs
to the same twin system. This should in principle be impossible since two twins having the
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(a) 0 28 55 83 110

(b)0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Figure 6: Twin formation at a cleavage crack tip : resolved shear stress distribution
((a), in MPa) and equivalent plastic deformation field (b).



108 S. Forest - R. Parisot

Figure 7: Multiple twinning in a zinc coating: the first twin is repelled at the interface
coating/substrate (left), multiple reflexion and formation lead to a network of twins in
the coating (right, only the coating is represented).

Figure 8: Section of the coating in the thickness showing theshape and orientation of
the twins; the thickness of the coating is 10µm.

same twin plane should be parallel. These bands must be interpreted in fact as shear bands in a
single crystal undergoing single slip. Simple glide in the twinning direction has been artificially
introduced in the modelling to simulate twin formation. Twin formation has been interpreted
as a strain localization phenomenon. In single slip, it is known that two localization planes
are possible : slip bands lying in the slip plane but also kinkbands that are normal to the slip
direction ([5]). The last picture gives the distribution oflattice rotation with respect to the initial
orientation before the twinned lattice has been reindexed.This information enables us in fact to
distinguish the different types of bands : slip bands are usually associated with no lattice rotation
whereas kink banding induces lattice curvature. It appearsthat the first twin at the top is akink
twin and the second one a “slip twin”. A “kink twin” can be seen as a stacking of many parallel
twin lamellae. A severe limitation of the model is that such kink twins are usually not observed
experimentally.



Material cristal plasticity 109

(a) (b) (c) (d)

Figure 9: Structure of the twins in the coating : (a) equivalent plastic deformation, (b)
twinning system 1, (c) twinning system 2, (d) lattice rotation before reindexing.

4. Discussion: The pros and the cons of the model

The proposed finite strain elastoplastic model of deformation twinning is able to account for
several experimental features : twin formation and propagation in a single crystal, hysteresis
loop associated with a twinning–untwinning process, arrowshape of twins at a cleavage crack
tip and build–up of twin networks in a coating on a substrate.

Several important limitations remain however. One may for instance discuss the fact that a
twinning criterion based on a critical resolved shear stress has been chosen. It is often recalled
that twin initiation is a nucleation (in contrast to propagation) controlled process. It can therefore
be affected for instance by prior dislocation glide so that it may be difficult to assign a critical
value τ0 to the twinning mechanism. Let us then admit thatτ0 is the critical resolved shear
stress for twinning in a dislocation–free crystal like Price’s zinc whiskers. The effective twin
nucleation stress can then decrease if dislocation glide has already taken place, according to a
softening law like:

τ = τ0 + Q2(1 − e−b2γslip)

whereQ2 is negative andγslip denotes the cumulative amount of prior dislocation glide.

Furthermore, deformation twinning is systematically associated with dislocation glide be-
cause of the high local stresses arising for instance at the twin tip. This interaction has not been
taken into account yet, which leads to unrealistic local high stresses. Plastic slip can take place
before twinning and the question to be solved is then : what happens to the obtained dislocation
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structure when it twins? How can prior slip activity affect further dislocation glide within the
newly formed twin? Mechanical metallurgy has already provided some answers that must be
incorporated into continuum modelling.

Special attention should also be paid to the intersection oftwins that has occured in some
simulations.

A strong limitation has already been pointed out, namely theprediction of kink twins that
are not observed in practise. The elimination of such deformation modes is however possible
using for instance Cosserat crystal plasticity ([6, 7]).

An alternative approach to deformation twinning is proposed in ([8]) based on minimization
principles. This global approach enables one to predict self–equilibrating structures that are
frequently observed. The difficulty then is the numerical exploration of all possible regions
and shapes where twinning can occur in order to finger out the most favourable configuration.
The authors themselves plead for a Landau–Ginzburg or Cahn–Hilliard–type of modelling of
displacives phase transitions and deformation twinning. That is why an improvement of the
present model could be the introduction of an order parameter, aiming at forbiding “interrupted
twins”, i.e. regions where crystal glide has begun but wherethe valueγ0 has not been reached
yet.
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J. F. Ganghoffer

NEW CONCEPTS IN NONLOCAL CONTINUUM MECHANICS

Abstract. A new theoretical framework in nonlocal mechanics is defined, based on
the concept of influence functions between material points within the continuum.
The traditional idea of a fixed and isotropic representativevolume is abandoned
and the non-locality is introduced via an influence function, which defines a non-
local interaction between material points. The general framework developed is
exemplified by the description of damage as a scalar internalvariable : the local
damage rate at a given point can be expressed as a path integral involving the in-
fluence functions and the values of the local rate of damage transported along each
path. The properties satisfied by the influence function are first evidenced and the
influence function is given an explicit expression, using a path integration tech-
nique. The concept of a representative volume is further defined as an outcome of
the stationarity of the internal entropy production with respect to the path. An im-
plicit equation which defines the representative volume is formulated. The strength
of the nonlocal interaction is further incorporated into the space geometry, so that
a metric characteristic of a Riemanian space is coupled to the internal variable dis-
tribution. It appears that the curvature characterises thestrength of the nonlocal
interaction.

1. Introduction

Traditional continuum models in nonlocal mechanics usually rely on the assumption that the
nonlocal variables are simply volume averages of the corresponding local variables over a fixed
and isotropic representative volume element around the considered material point, see e.g. [1,
2, 3, 4, 5]. Considerations based on micromechanical arguments however show that the size
of the representative volume, i.e. the extension of the interaction shall depend on the local
variable distribution itself : in the work by Mühlhaus et al. ([6]), a Cosserat theory for granular
materials is elaborated, starting from a particulate model. The model predicts that the shear band
thickness evolves with the shear strain. A micromechanicalargument for nonlocal damage has
been advanced in [2]: the strain-softening damage due to distributed cracking is modelled by a
periodic array of cracks. The results of the model show that the elastic part of the response shall
be local, whereas the damage recovered at the macro scale shall be nonlocal. Furthermore, the
size of the averaging region is determined by the crack spacing.

During loading of the cracked body, the increment of the stress along one crack is the sum
of the average stress increment over the crack length and thecontributions of all other cracks :

(1) 1Si (x) =
〈
1Si (x)

〉
+
∫

V
3i j (x, ξ)1Sj (ξ)dV(ξ).

The interactions of a set of microcracks cancel out over a short distance, and this in turn deter-
mines the size of the representative volume. The kernel3(x, ξ) that determines the influence

113
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between two cracks located at pointsx andξ depends on both the radial and angular variables,
and evolves with the current crack distribution pattern. Thus, the form of the influence function
shall depend upon the distribution of the internal variables at each time / loading – step. The last
integral is in fact a path integral, depending on the spatialdistribution of the cracks. The path
that do effectively contribute to the local stress increment on the left-hand side of (1) change
according to the evolution of the spatial pattern of cracks.

In Ganghoffer et al., a path integral formulation of the nonlocal interactions has been formu-
lated, with damage as a focus. The scalar damage variable there represents the internal variable.
The new concepts advanced therein can be considered as an attempt to model in a phenomeno-
logical manner the nonlocal interactions between defects in a solid material. In this contribution,
we only give the main thrust of the ideas developed in [7].

2. Path integral formulation of nonlocal mechanics

The formulation of nonlocal damage relies upon the thermodynamics of irreversi-ble processes;
accordingly, a damage potential function is set up, with arguments the internal variables, namely
the local and the nonlocal damage. The consistency condition for the damage potential function
and its dependence upon the local and nonlocal damage imply an integro-differential equation
for the rate of the local damage, that can be recast into the general form

(2) ḋ(x) = 1∫
�

G1(x, y)dy

∫

�

G1(x, y)ḋ(y)dy,

with G1(x, y) an influence function. Equality (2) is rewritten into the more compact form

(3) ḋ(x) = G(x, y) ◦ ḋ(y),

whereby the kernelG and the composition operator◦ are identified from the integral form in (2),
i.e. (3) defines an integral operator having the kernel

G(x, y) = 1∫
�

G1(x, y)dy
G1(x, y).

When the kernelG(x, y) only depends on the difference(x − y) (e.g. in the form of the gaussian
(3)), equality (2) gives the rate of damage as the convolution product of the kernel with the rate
of damage. From now on, the starting point shall be the relation (2), in whichwe do not a
priori know the kernel G(x, y). A path integration technique will then be used to determinethe
expression of this kernel.

Since the kernelG determines the evolution of the internal variable, it shallbe called the
propagatoras well. Properties satisfied by the kernelG are first evidenced. First note that
relation (3) embodies an implicit definition ofG : elaborating (3) yields

(4) ḋ(x) = G(x, y) ◦ G(y, z) ◦ ḋ(z) = G(x, z) ◦ ḋ(z)

and therefore, one has formally

(5) G(x, z) = G(x, y) ◦ G(y, z)

in which the composition operator means that one first propagates the influence fromx to y,
and then fromy to z. Relation (5) is called theinclusion relationof an intermediate point. In
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its present form (4),G appears as a linear operator - acting on functionsf : R3 → R+ -
and not depending on time (it only depends on the space variables). This is consistent with the
fact that we shall only treat instantaneous quasi-static dissipative processes in this contribution
(consideration of time-dependent or dynamic phenomena would involve a dependence of the
kernelG on time as well). As a consequence, the inversion property for G reads as

(6) G(x, x) = Id = G(y, x) ◦ G(x, y) ⇒ G(x, y) = G(y, x)−1.

According to the elementary property satisfied byG :

(7) G(x, x) = Id,

we define the infinitesimal operatorB, such that

(8) G(x, x + dx) = Id + dx B(x).

Note that (8) has been set up as an exact relation, which meansthat B(x) includes virtually all
powers ofdx in the series expansion ofG(x, x +dx). SinceG(x, x+dx) connects two material
pointsx andy = x + dx which are in the same infinitesimal neighbourhood,G(x, x + dx) is in
fact the infinitesimal propagator and it is seen that the knowledge of the operatorB completely
determinesG(x, x + dx). In the sequel, we shall formally evaluate the propagator between two
points located at a finite distance from each other. This is done in a two steps procedure : first,
the infinitesimal propagator is evaluated, and then a path integration technique shall be used to
reconstruct the propagator for finitely distant points.

The operatorB is involved to derive a partial differential equation - p.d.e. - for G( . , . ).
SinceG(x + dx, y) = G(x + dx, x) ◦ G(x, y) = (Id + B(x)dx) ◦ G(x, y) , one has the limit

lim
dx→0

G(x + dx, y)− G(x, y)

dx
= B(x) ◦ G(x, y),

which implies

(9)
∂G

∂x
(x, y) = B(x) ◦ G(x, y).

From (3), one then obtains the p.d.e. for the local damage

∂ḋ

∂x
(x) = ∂G

∂x
(x, y) ◦ ḋ(y) = B(x).ḋ(x)

with B(x) = G′(0). Equations (7) and (9) imply that the influence function is given by the
integral

G(x, y) = Id +
∫

S(y,x)

B(z) ◦ G(z, y)dz

with S(x, y) a continuous path fromy to x, while the inversion rule (6) can be rewritten as

(10) dG(x, y) ◦ G−1(x, y) = B(x).dx

and one cannot integrate directly the left-hand side of thisequation.

An iterative solution of equation (10) is constructed, which renders the limit functionG(x, y) :=
limn→∞ Gn(x, y) :

(11) G(x, y) = M


exp





∫

S(y,x)

B(z)dz










116 J. F. Ganghoffer

with M an operator, that orders the material points in space. Invariance by space translation -
which can be easily deduced from (11) - results in the more specific form G(x, y) = G(x − y).

Assuming further that angular variations of the rate of damage are much smaller compared
to the radial variations, at least infinitesimally, we get

G(x, y = x + dx) = exp
∫ x

y
a2(x)(z − x)dz =(12)

= exp

[
a2(x)

(z − x)2

2

]x

x+dx

=

= exp− k

[
(y − x)

l (x)

]2

introducing a quantityl (x) as a function ofx, (such thata2(x) = −k/ l (x)2), which can be
thought of as an internal length (it has the dimension of a length); k is a constant which depends
on the dimension of space. Note that since expression (2.1312) is only valid for pointsx andy
such thaty − x = dx, the internal length depends on the distance (not on the orientation of the
vectory−x if the isotropy assumption is kept) betweenx andy as well, thus we use the notation
l (x, dist(x, y)) in the sequel.

In the second step of the procedure, the form (12) of the infinitesimal propagator is used to
evaluate the propagator for arbitrary pointsx andy, now separated by a finite distance. Iterating
the integral equation in (2) yields :

(13) ḋ(x) = 1

C(x)

∫

�

G(x, y)

C(y)
dy
∫

�

G(y, z)ḋ(z)dz = 1

C(x)

∫

�

G(x, z)ḋ(z)dz

with the coefficients

C(x) :=
∫

�

G(x, y)dy.

We next define the concept of path integral, and rewrite (13) as

(14) ḋ(x) =
∫

�

dy




∑

S[x,y]

∫

z∈S[x,y]

K (y, z)ḋ(z)ds(z)





in which the functionK (y, z) is identified from (13) :

K (y, z) := G(x, y).G(y, z)

C(x)C(y)

which means that one propagates the intermediate pointz over all possible pathsS[x, y] joining
the pointsx andy, fig.1. The summation done over all possible paths that join the pointsx andy
means that the variablez covers the whole space. A final summation is done so that the influence
is evaluated at all pointsy. Since a given path is in fact a line in space, the infinitesimal distance
elementds in (14) is given by the expression

(15) ds2 = gi j dxi dx j

which involves the metric tensor(gi j ) of the space. The co-ordinates of the generic point are

x1 = x; x2 = y; x3 = z, when the space is sustained by a set of basis vectors(ei )i . The
coefficients of the metric in (15) are simply the inner products gi j = ei .ej .
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Next, the concept of sum over all paths is given a more precisemeaning, since we must
first characterise and label the paths in some systematic way. For that purpose, we make a space
slicing, so that a continuous path from the end pointsx andz shall be decomposed inn discrete
parts(z, z1, z2, ..., zn−1, x) of straight lines, having all the same sizeε :=

∥∥zi − zi−1
∥∥ /n, fig.2.

Iterating the inclusion rule so as to include the influence ofall intermediate points, we get

G(x, z) =
∫

�

G(x, zn−1)

C(zn−1)
ds(zn−1)

∫

�

G(zn−1, zn−2)

C(zn−2)
ds(zn−2)...

...

∫

�

G(z2, z1)

C(z1)

∫

�

G(z1, z)ds(z1)dy

which means that the effect ofz on x is propagated through the discrete path defined by the set
of intermediate points(z1, z2, ..., zn−1), fig.2. In that way, a discretization of the propagator
G(x, y) is performed. Recall then the expression of the influence coefficient

G(zi , zi−1) = exp−k

{
(zi − zi−1)

l (zi−1,dist(zi , zi−1))

}2
.

We further assume that the length can be writtenl (zi−1,dist(zi , zi−1)) = l (ε.N), with N the
unit vector that joinszi−1, zi , andε the length of the segment

[
zi−1, zi

]
, supposed to be identical

for all segments. Restricting further to the isotropic assumption, the lengthl does not depend on
the vectorN, which justifies the notationl (ε). Furthermore, we suppose that we can locally find
a system of co-ordinates such that the Riemannian space can be locally considered as Euclidean;
as a consequence, since the infinitesimal lengthds is an invariant, the infinitesimal segments
ds(zp) are all equal to the Euclidean distance, i.e.ds(zp) = ds = dz, ∀p ∈ [0,n]. Since
now all the segments have the same length, the internal length l (ε) remains constant. With these
assumptions, we evaluate the propagator fromz to z2, which is the nearest point afterz1:

G(z2, z) =
∫

�

G(z2, z1).G(z1, z)

C(z1)
dz1

=
∫

�

exp−k
[
(z2 − z1)

2 + (z1 − z)2
]
/ l (2ε)2

∫
�

exp−k(z − z1)
2/ l (ε)2dz

dz1

in which the two lengthsl (ε) andl (2ε) are involved. We then use the following general equality,
valid for any non zero real numbersa andb

∫
exp

[
a(x − x1)

2 + b(x − x2)
2
]

dx =
( −π

a + b

)1/2
exp

[
ab

a + b
(x1 − x2)

2
]

to derive the expression

∫

�

exp−k(z − z1)
2

l (ε)2
dz1 ∼=

∫

]−∞,+∞[3

exp− kx2

l (ε)2
dx =

√
π

l (ε)√
k
,

replacing the volume occupied by the solid� by the infinite space ]−∞,+∞[. We thus obtain

G(z2, z) = lim inf
ε→0

1√
2

l (2ε)

l (2ε − ε)
exp

[
− k

2l (2ε)2
(z − z2)

2
]
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which is nothing else than the influence coefficientG(z1, z) whenz1 is replaced byz2 andε by
2ε (defining l (0) := 1). The integration overz1 has been performed over the whole space of
reels, i.e. over ]−∞,+∞[, whereas the solid occupies a finite volume in space : it is thought
however that this is a valid approximation when the length ofthe interactions is much smaller
than the global dimension of the body. Repeating this process then leads to

(16) G(x, z) = 1√
2

lim inf
ε→0

l (nε)

l ((n − 1)ε)
exp

[
− k

2l (nε)2
(x − z)2

]
.

The continuous case in (16) is recovered when taking the limit of the discrete influence coeffi-
cient in the following way : the length of the segments tends to zero, thusn → ∞, ε → 0,
nε → dist(x, z), and the internal length becomesl (nε) → l (d(x, z)): we obtain the final
expression

(17) G(x, z) = 1√
2

exp
[
− k

2l (dist(x, z))2
(x − z)2

]
.

When a more complete expansion of the functionB(x, z) is retained, we believe that a closed
form of the kernelG(x, y) is much more difficult to derive. The nonlocal damage is further
defined as

d(x) := 1∫
�

G(x, y)dy

∫

�

G(x, y)d(y)dy

using the kernel determined in (12).

The differences with the more traditional approaches, e.g.the nonlocal damage model in
[2] are: the internal length is a function of both the material point considered, and on the dis-
tance between the pointsx and y, whereas the traditional models assume it is a fixed, uniform
quantity. In (17),l (x, y) is not defined, thus a complementary rule is still needed; this rule will
be elaborated in the next section. Note furthermore that in (13), the normalisation condition

∀y ∈ �, d(y) = 1 ⇒ ∀x ∈ �, d(x) = 1

is satisfied.

The path integral formulation can further be interpreted inthe following way : consider a
path S joining x andz, and make a partition of the space� in all sets of possible such paths.
Then, for a fixed pointy, the integral (14) can be formally expressed as a sum over allpossible
paths of the damage rate convected along each path with an amplitude equal to the influence
coefficient K (x, z). The set of paths that effectively contribute to the damage rate at a given
point shall be selected from a thermodynamic criterion elaborated in the next section.

3. Selection rule for the path

We first rewrite formally the dissipation as an integral involving a product of - local - thermody-
namic forcesFi and associated fluxesVi in the more condensed form

(18) φ = 1∫
�

Gi (x, y)dy

∫

�

Fi (y).Vi (y)Gi (x, y)dy

in which the summation is intended over the indexi . A specific kernelGi (x, y) is associated to
each dissipative mechanism, and it has the form establishedin the previous section. Considering
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nonlocal damage coupled to elasticity, the fluxes are the rate of irreversible strain and the rate of
damage (with a minus sign), and the associated thermodynamic forces are the local stress and the
damage driving force, respectively : according to (17), we can identify the force and the kernel
associated to the irreversible strain as

Fσ (y) := σ(y); Gσ (x, y) := δ(x − y)

and the force conjugated to the damage rate splits into a local contribution

F l
d(y) := We(y); GF l

d
:= δ(x − y),

and a nonlocal contribution
Fd(y) := β(1 − d(y)),

in which the kernelG(x, y) has the form defined in the previous section. We then perform the
variation of the integral in (18), considering thatx is a fixed point in space :

δφ = 1∫
�

Gi (x, y)dy

∫

�

δ {Fi (y)Vi (y)Gi (x, y)} dy −(19)

−
δ

{
∫
�

Gi (x, y)dy

}

[
∫
�

Gi (x, y)dy

]2

∫

�

{Fi (y)Vi (y)Gi (x, y)} dy.

We first work out the term
∫
�

δ {Fi (y)Vi (y)Gi (x, y)} dy , which is rewritten as the path integral

∫

�

δ {Fi (y)Vi (y)Gi (x, y)} dy =

∫

�

Fi (y)Vi (y)δ
∑

z∈S[x,y]





∫

S[x,y]

Gi (x − z)
Gi (z, y)

Ci (z)
ds(z)





dy

where the summation (defined by the symbol
∑

) is performed over all pathsS[x, y] that connect
pointsx andy. The variation in (18), (19) is performed with the quantities at the extremal points
x and y considered as fixed. Furthermore, in a first step, we considerthe metric of space as a
given quantity, at each point along any path.

As a matter of simplification, we set upS(z) := S[x, y]; the stationarity condition of the
internal entropy condition,δ(dSi

dt ) = 0 , is finally expressed into the condensed form [7]

∫

�

Gi (x, y)dy
∫

y∈∂�

Fi (y)Vi (y)dy
∑

S(z)

∫

γ∈∂S(z)

Gi (x, γ )
Gi (γ, y)

Ci (γ )
dγ

(20) −
∫

y∈∂�

Gi (x, y)dy
∫

�

{Fi (y)Vi (y)Gi (x, y)} dy = 0
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which appears as a mixture of boundary and volume terms. Expression (20) is compacted as

(21)
φ [∂Vr (x)]∫

∂�

G(x, y)dy
= φ [�]∫
�

G(x, y)dy

with self-explanatory notations. The left-hand side represents the average flux of internal en-
tropy through the boundary of� (due to the normalisation coefficient 1/

∫
∂�

Gi (x, y)dy), and

the right-hand side is the average internal entropy produced in the volume� (according to the
normalisation coefficient 1/

∫
�

Gi (x, y)dy).

The concept of representative volume at the material pointx, Vr (x), arises from the set of
all pointsz enclosed within the volume delimited by the boundary∂S(z) in (4.9): equality (21)
then defines implicitly the representative volume as the setof points interacting with the point
x, such that the internal entropy produced withinVr (x) is equilibrated by an equal and opposite
flux of internal entropy across the boundary∂Vr (x). Thus, we further rewrite (21) a

(22)
φ [∂Vr (x)]∫

γ∈∂Vr (x)
G(x, γ )dγ

= φ [Vr (x)]∫
y∈Vr (x)

G(x, y)dy
.

Since only the contribution to the dissipation due to non-local variables intervene in (21), equality
(22) can be rewritten :

∫
γ∈∂Vr (x)

{Fd(γ )Vd} exp

{
−1

2

[
k(x−γ )
l(x,γ )

]2
}

dγ

∫
γ∈∂Vr (x)

exp

{
−1

2

[
k(x−γ )
l(x,γ )

]2
}

dγ
=(23)

∫
y∈Vr (x)

{Fd(y)Vd} exp

{
−1

2

[
k(x−y)
l(x,y)

]2
}

dy

∫
y∈Vr (x)

exp

{
−1

2

[
k(x−γ )
l(x,γ )

]2
}

dy

with the non-local damage driving forceFd(y) defined at the beginning of previous section.

The concept of arepresentative volumeis then defined via the internal lengthl (x, dist(x, y))
which connects the pointx - centre of the representative volume - and the pointy on its boundary,
as the following set of points :

Vr (x) := {y ∈ �/dist(x, y) ≤ l (x, y)}

which is not necessarily a sphere. The internal length is an unknown that is determined from
equation (23).

The evaluation of the internal length at each time step is then done in a two-step uncoupled
procedure : in the first step, equation (23) is solved, using the value of the damage and rate of
damage at previous time step. In the second step, the local and nonlocal damage variables are
updated, according to the return mapping algorithm described in [6].

4. Geometrisation of the interaction

The path selection rule has been obtained under the assumption that the metric(gi j ) of this space
is given; in fact, the influence functionG(x, y) is a function of the metric, via the internal length.
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We want to reflect the fact that the forces responsible for thenonlocal interaction can be included
into the geometry of the interaction, thus we envisage a situation in which the metric is coupled
to the internal variable distribution.

As a matter of simplification, define the coefficients

Axy(z) := G(x, z)G(z, y)

C(z)
,

that intervene in equation (20). The coefficientAxy depends on the metric, and possibly on
the first order spatial gradient of the metric, thus we use thenotationAxy(gi j (z), gi j ,l (z)); the
differential element of lengthds(z) involves the metric tensor according to the relation (15).
Latin indices take their values in the set{1,2, 3}. We now perform the variation in the path
integral (18) with respect to the metric, which gives the variation of the term

δ





∫

S[x,y]

Axy(gi j (z), gi j ,l (z))ds(z)





=

∫

S[x,y]

[
δAxy(gi j (z), gi j ,l (z))+ Axyδds(z)

]
ds(z).

We introduce the energy-momentum tensorTi j , see [8], defined as

Ti j :=
∂Axy

∂gi j
− ∂l (

∂Axy

∂(∂lgi j )
)

and the Christoffel symbols

0k
i j := 1

2
gkm(g jm,l + gim, j − gi j ,m)

such that the covariant derivativeDu j of the contravariant vectoru := dx j

ds ej , locally tangent to
the path, expresses as

Du j := du j + 0
j
r t ur utds.

A set of elementary calculation [7] renders the variation

δ

{∫

S[x,y]
Axy(gi j (z), gi j ,l (z))ds(z)

}
=(24)

−
∫

S[x,y]

[
Tik,l + δil

Duk

ds
Axy

]
gikδx

l (z)ds(z).

Since the variationsδxl (z) in (24) are arbitrary, we get the following condition, validat each
point z ∈ S[x, y] :

(25)

(
Tik,l + δil

Duk

Ds
Axy

)
gi j = 0, ∀l .

Equation (25) is the sum of one term that contains the energy content of the nonlocal interaction
(due to the energy-momentum tensor) and of a second term thataccounts for the geometric part
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of the interaction (via the metric tensor and the covariant derivative of the vector tangent to the
path).

The energy-momentum tensor reflects the strength of the nonlocal interaction, and we see
from the structure of (25) that the induced curvature also has the meaning of a field strength. The
Christoffel symbols0k

i j that intervene in the covariant derivativeDu j are indeed directly related
to the - contracted twice - curvature tensor (Ricci tensor),defined as

Rik := 0l
ik,l − 0l

il ,k + 0l
ik0

m
lm − 0m

il 0
l
km.

The scalar obtained by the contractiongik Rik represents the scalar measure of the curvature of
space. The higher the strength of the nonlocal interaction,the higher the curvature; this idea is
supported by the well-known case of plasticity within solidmaterials, where a high density of
dislocations at a place curves the space around. Therefore,the physical meaning of relation (25)
is that the strength of the interaction is incorporated intothe geometry of the space. We follow
thereby a trend which is nowadays classical in physics, which started with general relativity (the
metric tensor plays there the role of the gravitation potential).

The fact that the nonlocal interaction shall follow certainpaths in space can be under-
stood from qualitative micromechanical arguments : when these defects are not isotropically
distributed in space, but along certain lines instead, their mutual interaction will follow these
lines. As a perspective of development of the present work, we can mention the involvement
of such a formalism to treat the more general case of a tensorial-like internal variable, having
plasticity in mind.

Figure 1: Splitting up of all spatial paths fromx to y.
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Figure 2: Space slicing. A continuous path fromd(x) to d(z) can be approximated
by a sequence of valuesd(z1),d(z2), . . . ,d(zn). This approximation becomes exact if
d(zi−1, zi ) → 0.
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GENERIC∗, AN ALTERNATIVE FORMULATION OF

NONEQUILIBRIUM CONTINUUM MECHANICS?

Abstract.
During the last 15 years a bracket formalism of dissipative continuum physics

has been developed which resulted in a formulation which is shortly denoted as
GENERIC. GENERIC has been applied to different problems of continuum ther-
modynamics, often in this way, that a well-known problem wasreformulated in
GENERIC formalism. So in 1997 the GENERIC form of the equations of motion
of a Navier-Stokes fluid was formulated. To learn some more about the GENERIC
procedure we consider here a general 5-field theory of fluids.Usually GENERIC is
formulated for an isolated system, but here we will discuss the facility to formulate
GENERIC for an open system.

1. Introduction

The phenomenological theories of thermodynamics are divided into continuumtheoretical ones
and into those of discrete systems. There is a variety of phenomenological non-equilibrium
continuum theories which are similar, but differ in basic concepts [10]. These are the Linear
Irreversible Thermodynamics [2], Rational and Extended Thermodynamics ([14] to [7]), Non-
Classical Thermodynamics [9], and theories using evolution criteria [11] and variational prin-
ciples [6]. These well-known thermodynamical theories arenow added by a special dissipative
continuum procedure which was developped during the last 15years starting out with a bracket
formalism originated by an extension of Hamiltonian mechanics [3]. One result of this bracket
approach is the GENERIC formalism [4, 5] which is totally different from the theories men-
tioned above, but is claimed by its investigators to be generally valid for all discrete systemsall
theories in field formulation. In GENERIC the balance equations are generated by total energy
and total entropy both acting as potentials and being only dependent on the wanted fields and
not on the state space. The GENERIC balances are splitted additively into a reversible and an
irreversible part. Beyond the balance equations there are so-called degeneracy conditions which
are unknown in conventional, rational, and extended thermodynamics. Jacobi identities stem-
ming from the antisymmetric bracket of the reversible part of the balance equations and calling
to mind the Hamiltonian mechanics background of the GENERICformalism are also unknown
in the other approaches [1].

The distinctions between GENERIC and the usual approach demand for a possibility to
compare them in a way as general as possible. Here a general 5-field formulation for fluids
is considered in GENERIC treatment. First of all we report ongeneral the GENERIC setting
which is independent of special constitutive assumptions.Then we will extend the GENERIC

∗General Equation for the NonEquilibrium Reversible-Irreversible Coupling
†Finacial support by the VISMAI Company, D-95085 Selb, Germany.
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formalism to open systems. The structure of GENERIC can be motivated by a microscopic
foundation [12],[13].

2. GENERIC setting

The fundamental structure of GENERIC is determined by six building blocks [3] to [12].

1. The set of the basic or wanted fieldsZ of the system which is presupposed to be open,

2. the total energyEtot(Z) of the open system and

3. its total entropyS(Z), as two global potentials which depend only of the basic fields

4. two, in general operator-valued matricesL(Z) and

5. the dissipation operatorM(Z) which depend on the state spaceZ which is not identical
to the basic fieldsZ,

6. the supply of the wanted fieldsfe wich is vanishing for an isolated system.

Theequations of motionof the basic fieldsZ have the special GENERIC form

∂t Z = L · δEtot

δZ
+ M · δS

δZ
+ fe,(1)

which always can be split into its reversible, its irreversible and its supply part

∂t Zrev := L · δEtot

δZ
, ∂t Z irr := M · δS

δZ
, ∂t Zsup := fe.(2)

Hereδ/δ is the functional derivative which maps global quantities to local ones, as we will see
in the GENERIC treatment.

Beyond the equations of motion (1) the complementary degeneracy conditions

L · δS(Z)
δZ

= 0, M · δEtot(Z)
δZ

= 0(3)

are satisfied byL andM. Therefore the degeneracy conditions (3) describe the reversible-
irreversible coupling which is meant in the name of GENERIC.The two contributions (3) to the
time evolution ofZ generated by the total energyEtot and by the total entropyS are called the
reversible and irreversible contributions to dynamics, respectively.

General properties ofL andM are discussed easily in terms of two brackets, one is anti-
symmetric, the other one symmetric

[ A, B] :=
〈
δA

δZ
,L · δB

δZ

〉
.= −[B, A] + 1

2
(Orev(A, B)+ Orev(B, A)),

[ A, A] = Orev(A, A),(4)

{A, B} :=
〈
δA

δZ
,M · δB

δZ

〉
.= {B, A} + 1

2
(Oirr (B, A)− Oirr (A, B)),(5)

{A, A} + Oirr (A, A)
·
≥ 0.(6)
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Here〈 , 〉 denotes a scalar product, especially

〈
δA

δZ
,L · δB

δZ

〉
:=
∫

G

[
δA

δZ
· L · δB

δZ

]
d3x,(7)

A andB are sufficiently regular and real-valued functionals onZ ,Orev is the reversible part, and
Oirr is the irreversible part of the flux through the surface of theVolumeG. From the setting (4)
follows, thatL is antisymmetric, whereas we have to demand the symmetry ofM which cannot
be concluded from (5). Now we can express the degeneracy conditions (3) with the brackets, we
find

[S, Etot] − Orev(Etot, S) = 0, {Etot, S} + Oirr (Etot, S) = 0(8)

The antisymmetric bracket is presupposed to satisfy the Jacobi identity for closed systems, i.e
all the surface terms vanish

[ A, [B,C]] + [B, [C, A]] + [C, [ A, B]]
.= 0.(9)

According to (1), (4) and (5) we can write the time evolution of A as

A =
∫

a(Z) d3x, −→ δA

δZ
= ∂a

∂Z
,(10)

and because the system is an open one, we obtain

d

dt
A =

∫
∂ta(Z) d3x = [ A, Etot] + {A, S} +

∫
∂a

∂Z
· fe d3x.(11)

According to (11), (8), (4) and (5) we obtain the time rate of the total energy and that of the total
entropy of the isolated system

d

dt
Etot = [Etot, Etot] + {Etot, S} +

∫
∂etot

∂Z
· fe d3x

= Orev(Etot, Etot)− Oirr (Etot, S)+
∫
∂etot

∂Z
· fe d3x,(12)

d

dt
S = [S, Etot] + {S, S} +

∫
∂%s

∂Z
· fe d3x

= Orev(Etot, S)+ {S, S} +
∫
∂%s

∂Z
· fe d3x.(13)

with the entropy production

σ = {S, S} + Oirr (S, S) ≥ 0.

This inequality represents the second law of thermodynamics of an open system in global formu-
lation, where the surface term represents the flux of the entropy through the surface of the system.
It is also clear, that all the surface terms have to vanish, ifwe want to describe an isolated system.

To go on with the GENERIC treatment we now have to introduce constitutive assumptions,
that means, we have to proceed beyond the general setting of GENERIC.
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3. GENERIC treatment

We consider an one-component simple fluid which is decribed by five basic fields: Mass density
%, material velocityv, and specific internal energyε. Therefore is the set of the wanted field
given by

(14) Z(x, t) = (%, p := %v, η := %ε)(x, t).

Then we can introduce the global potentials, as the total energy of the system

(15) Etot(Z) =
∫ [

p2(x, t)
2%(x, t)

+ η(x, t)

]
d3x,

and the global entropy of the system is by setting a functional on Z

(16) S(Z) =
∫
%s(%,p, η) d3x.

More over, we know about a five field theorie, that the fields have to satisfy the following balance
equation for the wanted fields

reversible part irreversible part supply
∂tρ = −∇ · ρv +0 +0
∂t p = −∇ · pv − ∇ P +∇ · V +f
∂tη = −∇ · ηv − P∇ · v +∇v : V − ∇ · q +r

(17)

whereP is the pressure,V is the traceless viscous pressure tensor,q is the heat flux density,f is
the supply of the momentum andr is the supply of the internal energy. We have also performed
a split into a reversible and an irreversible part, respectively. But this is an unsolved problem in
GENERIC, how to do the right split. Until now it is only possible to see that the split has been
found correct, if the resulting entropy production is the right one. But for knowing the entropy
production you have to treat the five field theory by another theory, for example by Rational
Thermodynamics and by exploiting the Liu-procedure [9].

3.1. State space

In 5-field theory the wanted basic fields (14) are those of a fluid and because we consider dissi-
pative fluids, we choose as a state space one includes the gradients of the basic fields

Z+ := (%, η, v,∇%,∇η,∇v).(18)

Taking into account, that state spaces are spanned by objective quantities we have to change (18)
into

Z := (%, η,∇%,∇η, (∇v)s).(19)

Here ()s is the symmetric part of a tensor. Because of (14) the constitutive quantities in the
balances (17) are

V = V(Z(x, t)), q(x, t) = Q(Z(x, t)).(20)

(21)

The viscous pressure tensor is symmetric

V(x, t) = V>(x, t),(22)

because we only consider fluids without internal spin.
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3.2. Reversible part

Because in GENERIC the equations of motions for the basic fields (1) can be split into their
reversible and irreversible part (2), we start out with the reversible part of (1) which is as rep-
resented in the first column in (17). The first step is that we have to calculate the functional
derivative from the global total energy (15). According to (14) the functional derivative in (2)1
generates from (15) the local fields

(
δEtot

δZ

)T

=
(

−1

2
v2(x, t), v(x, t), 1

)
,(23)

which inserted in (2)1 result in the reversible part of the equations of motion


∂t%

∂tp
∂tη




rev

= L ·




−1
2v2

v
1


 =




−∇ · (v%)
−∇ · (vp)− ∇ P

−∇ · (vη)− P∇ · v


 .(24)

These five equations are not sufficient to determine the 13 components of the antisymmetricL.
Concerning the balances (17) this undetermination is not important, because all the differentL
result in the same balances. Concerning the degeneracy conditions (3)1 it is not evident that all
these differentL have the same kernel. On the other handL is also not determined by the kernel
δS/δZ. The consequences of this undetermination ofL are not fully discussed up to now.

Now we can show, that one operator-valued matrix satisfying(24) is the following one

L = −




0 ∇%· 0
%∇ [∇p + p∇]>· ∇ P + η∇
0 (P∇ + ∇η)· 0


 .(25)

The degeneracy conditions (3)1 are now used to determine the kernelδS/δZ of L. As already
remarked, it is not evident, that this kernel is unique. The global entropy of the system depending
only onZ is given by (16) and the functional derivative ofSgenerates local quantities

(
δS

δZ

)T
=
(
∂(%s)

∂%
=: − g

T
(x, t),

∂(%s)

∂p
(x, t),

∂(%s)

∂η
=:

1

T
(x, t)

)
.(26)

Here the usual abbreviationsspecific free enthalpy gandabsolute equilibrium temperature T
for the derivatives of the entropy are introduced. The degeneracy condition (3)1 results in the
following equations

∂%s

∂p
= 0,(27)

−%∇ g

T
+ ∇ P

T
+ η∇ 1

T
= 0.(28)

As (27) shows, the GENERIC setting allows to derive that the entropy density does not depend
on the velocityv. From (28) follows immediately by use of (26) and (27) that the following
equation yields

−%s = 1

T
(%g − P − η)+ const −→(29)

−→ g = ε + P

%
− T s , const= 0,(30)

because (30) is the definition of the specific free enthalpyg.

The exploitation of the reversible part of the GENERIC equations of motion (1) results in
(25), (27), and (28). Now we investigate its irreversible part in the next section.
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3.3. Irreversible part

We now have to generate oneM by use of the irreversible part of the equations of motion (2)2
and by the degeneracy condition (3)2

M · δS(Z)
δZ

= M ·




− g
T

0
1
T


 =




0
∇ · V

∇v : V − ∇ · q


 ,(31)

M · δEtot(Z)
δZ

= M ·




−(1/2)v2

v
1


 =




0
0
0


 .(32)

From (6) and (31) we can immediately read off the entropy production without any knowl-
edge ofM

σ =
〈
δS(Z)
δZ

,M · δS(Z)
δZ

〉
+
∫

∇ · q
T

d3x

=
∫ (

1

T
[∇v : V − ∇ · q] + ∇ · q

T

)
d3x

=
∫

[
1

T
∇v : V + q · ∇ 1

T
] d3x =

∫
πs d3x ≥ 0(33)

Because the last equal sign is valid for all domains of integration, we obtain for the local entropy
production density

πs = 1

T
∇v : V + q · ∇ 1

T
.(34)

This is the same result as in the conventional procedure likein rational thermodynamics [9] and
has the usual form of a product between fluxes and forces.

For the sake of simplicity, we set here the first column and rowequal to zero. Consequently
we are looking for a symmetric matrix of the form

M =




0 0 0
0 M22 M23

0 M32 M33


 .(35)

Now we can show, that one of the possible choice of the operator-valued matrix elements of the
dissipation operatorM have the following form due to the conditions (31) and (32)

M22[∗] = −∇ · VT
1

(∇ · v)
∇ ∗(36)

M23
k [∗] = ∇ · VT ∗(37)

M32
k [∗] = −(VT · ∇)T · ∗(38)

M33[∗] = ∇ · λ · ∇ + (∇v : V)T∗
with

λi j :=
qi (∂ j T)

(∇T)2
T2.

The exploitation of the irrversible part results in (34) and(36) - (39).More over, we see that the
generalized transport coefficients in (36) - (39) are not independent of each other. This is a result
what is analogue to the Casimir Onsager recriprocal relations in TIP.
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3.4. Balance equation for the global potentials

The last point, we have to discuss are the dynamic equations for both global potentials. The
supply vector of the wanted fields is according to the last column in (15) is

fTe = (0, f, r ),(39)

and thus we get immediately from (13) using (29) and (33)

d

dt
S(Z) = [S, Etot] + {S, S} +

∫
∂%s

∂Z
· fe d3x(40)

=
∫ [

−∇ · v%s(Z)+ πs − ∇ · q
T

+ r

T

]
d3x.(41)

Similiar we get from (12) using (4), (5) and (3)2 the balance equation of the total energy

d

dt
Etot(Z) = [Etot, Etot] + {Etot, S} +

∫
∂etot

∂Z
· fe d3x

=
∫ {

−∇ · [(vetot(Z)+ vP)+ (VT · v − q)] + v · fe + r
}

d3x

= Ẇ + Q̇(42)

with the work

Ẇ :=
∫ [

−∇ · (vetot(Z)+ vP)+ ∇ · (VT · v)+ v · fe + r
]

d3x(43)

and the heat exchange

Q̇ :=
∫

∇ · qd3x.(44)

4. Conclusion

An important statement of GENERIC is the fact, that the generalized transport coefficients of the
dissipation operator are not independent. In GENERIC one derive a generalisation of Casimir-
Onsager recriprocal relations. The structure of GENERIC provides, that the dissipation operator
is positive definit and thus that a closed system decays to equilibrium.

It is also possible to give a microscopic foundation of the GENERIC formalism [12], [13]
which gives us a powerfull argument for the validity of this structure. But nevertheless, we
have the unsolved problem in GENERIC, that is a correct splitinto a reversible and an irre-
versible part is not achieved up to now. Although it seems to be possible to transform the whole
GENERIC structure to open systems which was demonstrated here. Another important statement
of GENERIC is, that we have to preassume local equilibrium, i.e the global potentials depend
only on the wanted fields.
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