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NOTES ON STRESSES FOR MANIFOLDS

Abstract. The geometric structure of stress theory on differentiablemanifolds
is considered. Mechanics is assumed to take place on anm-dimensional and no
additional metric or parallelism structure is assumed. Twodifferent approaches are
described. The first is a generalisation of the traditional Cauchy approach where
the resulting stresses are represented mathematically as vector valued(m − 1)-
forms. The second approach is variational and stresses are represented by densities
valued in the dual of the first jet bundle. It is shown how a variational stress induces
a Cauchy stress.

1. Introduction

This work describes some issues related to the formulation of stress theory on manifolds. In pre-
vious works (see [1, 2, 3, 4]), stress theory for the case where both body and space are modeled
by differentiable manifolds rather the traditional Euclidean spaces was developed. In [1] a gen-
eral weak formulation of stress theory was presented. On thebasis of some general guidelines
(see the motivation for the introduction of variational stresses below), stresses were presented as
measures on the body manifold valued in the dual of a jet bundle. Such a stress measure repre-
sents a force using a representation theorem for the force functional. In that work, assuming that
the stress measures may be represented by smooth densities,the additional geometric structure
of a connection was used in order to allow the representationof a force by a body force field and
a surface force field. In the sequel, we will refer to this approach as the variational approach. In
the more recent works, [2, 3] stress theory was presented on manifolds without any additional
geometric structure (e.g., a connection) from a point of view that is analogous to the classical
Cauchy theory of stresses. In [2] the theory was presented for the case of scalar valued quantities
and in [3] the theory was extended to forces. We will refer to this method as the generalized
Cauchy approach. In [4], some aspects of the relation between the Cauchy approach and the
variational approach were considered.

After a presentation of the generalized Cauchy approach in Section 2, Section 3 is con-
cerned with the Cauchy postulates given in [3]. It is shown that the boundedness postulate in
[3], that is a generalization of the balance of momentum in the traditional formulation, is not
general enough. A revised version of the boundedness postulate is suggested and it is shown
that the weaker assumption does not alter the proof of the generalized Cauchy theorem in the
aforementioned paper.

Sections 4 and 5 review the variational approach and its relation to the generalized Cauchy
approach presented in [4]. Section 6 extends this relation and shows how the representation of
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forces by body forces and surface forces in the Cauchy approach is completely equivalent to the
representation of forces by variational stress densities in the variational approach.

2. Cauchy’s stress theory for manifolds

Let π : W →
�

be a vector bundle over them-dimensional orientable manifold
�

. It is assumed
that a particular orientation is chosen on

�
. The vector bundle is interpreted as the bundle of

generalized velocities over
�

. The manifold
�

is interpreted as the universal body and the vector
bundle is interpreted as the bundle of generalized velocities over

�
. Cauchy’s stress theory

for manifolds, presented in [3], considers for each compactm-dimensional submanifold with
boundary� of

�
linear functionals of the generalized velocity fields containing a volume term

and a boundary term of the form

F� (w) =

∫

�
b� (w) +

∫

∂
�

t� (w).

Here, using the notation
∧p(T∗X) for the bundle ofp-forms on a manifoldX, w is a section of

W, b� , thebody force, is a section ofL
(
W,

∧m(T∗� )
)

andt� theboundary forceis a section

of L
(
W,

∧m−1(T∗∂� )
)
. The functionalF� is interpreted as the force, or power, functional and

the valueF� (w) is classically interpreted as the power of the force for the generalized velocity
field w.

Cauchy’s postulates for the force system{F� = (b� , t� )} presented in [3] may be sum-
marized as follows.

(i) For everyx ∈
�

and every body� , b� (x) = b(x), that is, the value of the body force at
a point is independent of the body containing it. Accordingly, we will omit the subscript
� .

(ii ) Let us consider the Grassmann bundle of hyperplanesGm−1(T
�

) →
�

whose fiber
Gm−1(Tx

�
) at any pointx ∈

�
is the Grassmann manifold of hyperplanes, i.e.,(m− 1)-

dimensional subspaces of the tangent spaceTx
�

. Let

L
(
W,

m−1∧
Gm−1(T

�
)∗

)
→ Gm−1(T

�
)

be the vector bundle overGm−1(T
�

) whose fiber over a hyperplaneH ⊂ Tx
�

is the
vector space of linear mappingsL

(
Wx,

∧m−1 H∗
)
. Then, the dependence oft� on� is

via a smooth section

Σ : Gm−1(T
�

) → L
(
W,

m−1∧
Gm−1(T

�
)∗

)
,

theCauchy section, such thatt� = Σ(H) whereH = Tx∂� .

(iii ) The Cauchy sectionΣ is continuous.

(iv) There is a sectionζ of L
(
W,

∧m(T∗� )
)

such that

∣∣F� (w)
∣∣ =

∣∣∣∣
∫

�
b(w) +

∫

∂
�

t� (w)

∣∣∣∣ ≤

∫

�
ζ(w)

for every body� .
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Using the results of [2], it is shown in [3] that there is a unique sectionσ of L
(
W,

∧m−1(T∗� )
)

called theCauchy stresssuch that

t� (w)(v1, . . . , vm−1) = σ(w)(v1, . . . , vm−1),

for any collection ofm−1 vectors(v1, . . . , vm−1) ∈ Tx∂� , x ∈ ∂� , where the dependence on
x was omitted in order to simplify the notation. Using the notation ι : ∂� →

�
for the natural

inclusion mapping, so thatι∗ :
∧m−1(T∗� ) →

∧m −1
(
T∗∂�

)
is the restriction of forms, we

may writet� (w) = ι∗
(
σ(w)

)
which we will also write ast� = ι∗(σ )—the generalized Cauchy

formula. We will refer to this result as thegeneralized Cauchy theorem.

Assume that(xi , wα) are local vector bundle coordinates in a neighborhoodπ−1(U) ⊂ W,
U ⊂

�
with local basis elements{Wαeα} so a section ofW is represented locally bywαWαeα .

Then, denoting the dual base vectors by{Wαeα} a stressσ is represented locally by

σ
α1...k̂...mWαeα ⊗ dx1∧ . . . ∧d̂xk∧ . . . ∧dxm,

where a “hat” indicates the omission of an item (an index or a factor). The value ofσ(w) is
represented locally by

σ
α1...k̂...mwαdx1∧ . . . ∧d̂xk∧ . . . ∧dxm.

3. The revised boundedness postulate

If we substitute the generalized Cauchy formula into the expression forF� (w) we obtain

F� (w) =

∫

�
b� (w) +

∫

∂
�

t� (w)

=

∫

�
b� (w) +

∫

∂
�

ι∗
(
σ(w)

)

=

∫

�
b� (w) +

∫

�
d
(
σ(w)

)
,

where Stokes’ theorem was used in the last line. It is clear form the local expression forσ(w)

that the exterior derivativedσ(w) depends on the derivative ofw an not only on the local value
of w. In other words,F� (w) is a local linear functional on the first order jetj 1(w).

Using the observation thatF� should be a local linear functional on the first jet ofw, we
replace the boundedness postulate (iv) by the following

Revised boundedness postulate

There is a sectionSof L
(
J1(W),

∧m(T∗� )
)

such that

∣∣F� (w)
∣∣ =

∣∣∣∣
∫

�
b(w) +

∫

∂
�

t� (w)

∣∣∣∣ ≤

∫

�

∣∣∣S
(

j 1(w)
)∣∣∣,

where the absolute value of anm-form θ , S
(

j 1(w)
)

in this case, is given as

|θ(x)| =

{
θ(x) if θ(x) is positively oriented,

−θ(x) if θ(x) is negatively oriented
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relatively to the orientation chosen on
�

.

It is noted that the revised boundedness postulate may also be written as
∣∣∣∣
∫

∂
�

t� (w)

∣∣∣∣ ≤

∫

�

∣∣∣S0
(

j 1(w)
)∣∣∣,

for some sectionS0 of L
(
J1(W),

∧m(T∗� )
)
. This follows from

−

∣∣∣∣
∫

�
b(w)

∣∣∣∣ +

∣∣∣∣
∫

∂
�

t� (w)

∣∣∣∣ ≤

∣∣∣∣
∫

�
b(w) +

∫

∂
�

t� (w)

∣∣∣∣ ≤

∫

�

∣∣∣S
(

j 1(w)
)∣∣∣

so
∣∣∣∣
∫

∂
�

t� (w)

∣∣∣∣ ≤

∫

�

∣∣∣S
(
j 1(w)

)∣∣∣ +

∣∣∣∣
∫

�
b(w)

∣∣∣∣

≤

∫

�

∣∣∣S
(
j 1(w)

)∣∣∣ +

∫

�

∣∣∣b(w)

∣∣∣

=

∫

�

(∣∣∣S
(

j 1(w)
)∣∣∣ +

∣∣∣b(w)

∣∣∣
)

≤

∫

�

∣∣∣S0
(

j 1(w)
)∣∣∣,

for someS0.

For an arbitraryx ∈
�

we want to show that

t� (w) = Σ(Tx∂� )(w) = ι∗
(
σ(w)

)
,

for a unique element ofL
(
Wx,

∧m −1(Tx
�

)
)
, where in the equation above we omitted the

dependence onx.

Just as in [3], the proof the generalized Cauchy theorem is based on the following points:

(a) The assertion is local and written in an invariant form and hence it may be proved in any
vector bundle chart.

(b) Using a local basis{Wαeα} for the neighbohood where the vector bundle chart is used,
any vectorw ∈ Wx may be expressed in the formw = wαWαeα , sot� (w) = wατ�α ,
where,τ�α = t� (Wαeα).

(c) For the local vector fieldWαeα in the chart neighborhood ofx, the scalar valued exten-
sive property given by the volume termβα = b(Wαeα), the flux density termτ�α =

t� (Wαeα), and the source termsα =
∣∣S

(
j 1(Waseα )

)∣∣ satisfies the generalized Cauchy

postulates for scalar valued quantities (see [2]). In particular, it is noted that ifS
(

j 1(w)
)

is represented locally by

S
(

j 1(w)
)
α1...mdx1∧ . . . ∧dxm =

(
Sα1...mwα + Si

α1...mwα
,i
)
dx1∧ . . . ∧dxm

(the components dual towα and those dual towα
i differ in notation only by the number

of indices), then,sα = |Sα1...m|. Hence, by the Cauchy theorem for scalars [2], there is a
unique collection of(dim Wx) (m − 1)-formsσα such thatτ�α = ι∗(σα). These forms
representσ(x) ∈ L

(
Wx,

∧m−1 Tx∂�
)

in the given chart.
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4. Variational stress densities

Let π : W →
�

be a vector bundle as in the previous section. Avariational stress densityis a
section ofL(J1(W)1

∧m(T∗� )
)
, whereJ1(W) is the first jet bundle associated withW.

For the vector bundle coordinate system(xi , wα), i = 1, . . . , m, α = 1, . . . , dim(Wx), the

jet of a section is represented locally by the functions{wα(xi ), w
β
, j (x

k)}, where a subscript fol-
lowing a comma indicates partial differentiation. A variational stress density will be represented

locally by the functions{Sα1...m, Sj
β1...m} so that the single component of them-form S

(
j 1(w)

)

in this coordinate system is

S
(

j 1(w)
)
1...m = Sα1...mwα + Sj

β1...mw
β
, j .

Note that the notation distinguishes between the components of S that are dual to the values
of the section and those dual to the derivatives by the numberof indices only. The next few
paragraphs motivate the introduction of variational stress densities.

The rational behind the generalized variational formulation of stress theory is the frame-
work for mechanical theories where a configuration manifoldis constructed for the system under
consideration, generalized velocities are defined as elements of the tangent bundle to the con-
figuration manifold, and generalized forces are defined as elements of the cotangent bundle of
the configuration space. For the mechanics of continuous bodies, a configuration is an embed-
ding of the body� in space� . The natural topology for the collection of embeddings is the
C

1
-topology for which the collection of embeddings is open in the collection of allC

1
-mappings

of the body into space. Using this topology, the tangent space to the configuration manifold at
the configurationκ : � →� is C

1(
κ∗(T� )

)
, the Banachable space ofC

1
-sections of the pull-

backκ∗(T� ). Thus forces in continuum mechanics are elements ofC
1(
κ∗(T� )

)∗ – linear

functionals on the space of differentiable vector fields equipped with theC
1
-topology.

The basic representation theorem (see [1]) states that a force functionalF ∈ C
1(
κ∗(T� )

)∗

may be represented by measures on
�

- thevariational stress measures- valued inJ1(κ∗(T� ))∗,
the dual of the first jet bundleJ1(κ∗(T� )) →

�
. Thus, the evaluation of a forceF� on the

generalized velocityw is

F� (w) =

∫

�
dµ

(
j 1(w)

)
,

whereµ is theJ1(κ∗T� )∗-valued measure – a section Schwartz distribution.

Assuming thatκ is defined on all the material universe
�

, we use the notationW for
κ∗(T� ). This vector bundle can be restricted to the individual bodies, and with some abuse
of notation, we use the same notation for both the bundle and its restriction to the individual
bodies.

Thus, in the smooth case, a variational stress measure is given in terms of a sectionSof the
vector bundle of linear mappingsL

(
J1(W),

∧m−1(T∗� )
)

so

F� (w) =

∫

�
S( j 1(w)).

This expression makes sense asS( j 1(w)), is an(m − 1)-form whose value at a pointx ∈ � is
S(x)

(
j 1(w)(x)

)
.
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Since in the sequel we consider only the smooth case, we will use “variational stresses” to
refer to the densities.

5. The Cauchy stress induced by a variational stress

In [4] we defined a canonical mapping

pσ : L
(
J1(W),

m∧
(T∗� )

)
→ L

(
W,

m−1∧
(T∗� )

)
,

that assigns to a variational stress densityS a Cauchy stressσ satisfying the following relation.
At everyx ∈

�
(we suppress the evaluation atx in the notation)

φ ∧ σ(w) = S( jφ⊗w).

Here, jφ⊗w is roughly the jet atx of a section whose value is 0∈ Wx and its derivative is
φ ⊗ w. More precisely, ifu :

�
→ W is the section whose first jet atx is jφ⊗w, then, u

satisfies the following conditions:u(x) = 0; denoting the zero section ofW by 0, Txu −

Tx0 ∈ L
(
Tx
�

, T0(x)Wx
)

induces the linear mappingφ⊗w through the isomorphism ofT0(x)Wx
with Wx. The local representative ofpσ is as follows. Ifσ = pσ (S), then, using the local
representatives ofσ andSas in the previous sections,

σβ1...ı̂ ...m = (−1)i−1S+i
β1...m, (no sum overi ).

The mappingpσ is clearly linear and surjective.

6. The divergence of a variational stress

Given a variational stress densityS its generalized divergence DivS is the section of the bundle
L
(
W,

∧m(T∗� )
)

defined by

DivS(w) = d
(
pσ (S)(w)

)
− S

(
J1(w)

)
.

The local expression for DivS(w) is

(
Si
α1...m,i − Sα1...m

)
wαdx1∧ . . . ∧dxm,

which shows that DivS depends only on the values ofw and not its derivative. With these
definitions one obtains for the case where

F� (w) =

∫

�
S
(
j 1(w)

)

that

F� (w) =

∫

�
b� (w) +

∫

∂
�

t� (w)

wheret� (w) = ι∗�
(
σ(w)

)
and Div S + b� = 0. We conclude that every variational stress

induces a unique force system{(b� , t� )} through the Cauchy stress it induces and its diver-
gence. Actually, we obtained a decomposition ofS

(
j 1(w)

)
into an exact differential and a term
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that is linear in the values ofw. The converse is also true. If we have a force system that sat-
isfies Cauchy’s postulates, then, the induced Cauchy stressenables us to define a sectionS of
L
(
J1(W),

∧m−1(T∗� )
)

by S
(

j 1(w)
)

= b(w) + dσ(w). Clearly, writing the local expression
for S, it is linear in the jet ofw. Hence,

F� (w) =

∫

�
b(w) +

∫

�
dσ(w) =

∫

�
S
(

j 1(w)
)
.

If for a given variational stress DivS= 0, thenS
(

j 1(w)
)

= dσ(w), for σ = pσ ◦ S.
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