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THE STRUCTURE OF MATERIAL FORCES IN

ELECTROMAGNETIC MATERIALS

Abstract. Material forces govern the behaviour and the evolution of a defect or
of an inhomogeneity in a solid material. In elastic materials these forces are as-
sociated with the Eshelby tensor, as is known. In structuredor micro-structured
materials, an Eshelby–like stress can be assembled by following a simple rule. By
appealing to this rule, one is able to propose an expression for the Eshelby tensor
in electromagnetism.

A variational procedure is hereby expounded, from which an expression for
the classical electromagnetic stress tensor, whose form isotherwise controversial,
stems straightforwardly. The electromagnetic Eshelby–like tensor is derived on
this base.

1. Introduction

Material forces and configurational forces are customarilyunderstood as two synonymous which
label the same notion. In the continuum framework, the configurational forces are usually associ-
ated with the energy–stress tensor and they acquire a special importance in structured materials.
Most people, who are concerned with materials with an internal structure or with microstruc-
tures, are familiar with the notion of energy–stress. Such an energy–stress naturally appears in
the theory whenever the material response depends on the gradient of the fields or of the micro-
fields of interest. We shall stress out that there are two kinds (at least) of configurational forces
and only one of the two is related to the notion of material force. The latter governs the behaviour
of material defects or inhomogeneities [1, 2].

The Maxwell electromagnetism can be viewed as one of the firsttheories of a material
endowed with a structure (i.e.the electromagnetic fields),although the Maxwell–Faraday’s elec-
tromagnetic fields are defined also out of a body of finite extent. As the electromagnetic fields
pervade the whole physical space, the mathematical problemfor the electromagnetic materials
has to be formulated not only in the domain occupied by the body, but also in the exterior do-
main, accordingly. The electromagnetic fields obey a set of differential equations that are in
general coupled with the mechanical equations [3, 4]. Should the Maxwell equations possibly
decouple from the mechanical ones, one could think to solve them first and afterward to look for
the associated stress tensor, in order to enquire about the mechanical behaviour of the material.

Some people who are interested in liquid crystals share thisattitude with those who deal
with electromagnetic materials or with other sort of structured materials. However, in most of
the cases, the form of the mechanical stress to associate with a structured material may be a
controversial matter [5, 6, 7]. This is the case for electromagnetic materials [4]. It is worth to
recalling that the quarrel, about the proper form the stress(and the momentum) should have in
electromagnetic materials, is still unsettled [8]. As there is not a general agreement on the form
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of the electromagnetic stress, a challenge for new proposals is open.

Here, we discuss this point basing on a variational approach. In this approach, the Maxwell
electromagnetic stress tensor will naturally stem from a Hamilton-like principle for a Lagrangian
that we are going also to introduce. Along with the electromagnetic stress, other electromagnetic
quantities of interest are derived. These quantities are useful for recovering the final form of the
energy–stress tensor which is related to thematerial forces[9, 10]. This energy-stress definitely
differs from the Maxwell energy–stress. Maxwell introduced, in his treatise, the electromagnetic
stress tensor in order to evaluate the electromagnetic force acting over a body [11]. Thus, the
Maxwell tensor is an energy-stress tensor that it is relatedto the classical notion of force,not to
thematerial forces, as we will try to show in evidence.

Nonetheless, the procedure suggested by Maxwell in establishing the stress and the force
acting on a material body is appealing, as it can be re–proposed in other fields of Continuum
Mechanics or Continuum Physics. Eshelby [1] was the first whoproposed to apply the Maxwell’s
procedure to elasticity, in order to evaluate the force acting upon a point-wise defect. In this
respect, Eshelby introduced the notion of material force.

2. Maxwell equations in material form

Hereafter, we consider a solid body of infinite extent, whichfills the whole physical space. This
space is here represented by the Euclidean spaceE3. The classical Maxwellian fieldsE, D, B,
H, P andM (the electric field, the electric displacement, the magnetic induction, the magnetic
field, the polarisation and the magnetisation, respectively) aretransformedin a suitable chosen
reference configuration of the deformable body, in the following fashion:

(1)

�
= FT(E + v ∧ B) = FT� ;�
= JF−1D;�
= JF−1B;�
= FT� ≡ FTH + V ∧ D;�
= JF−1P;�
= FTM

The introduction of the following auxiliary fields will be also useful:

(2)

�
∗ = FTE ≡

�
+ V ∧

�
;�

∗ = JF−1� = JF−1[B − (1/c2)v ∧ E]
≡

�
+ (1/c2)C−1(V ∧ ε0JC−1�∗

);�
∗ = FT	 ≡

�
− (V ∧

�
).

The transformation has to be understood as through the mapping χ : (X, t) → x, which is
assumed here to be regular enough for our purposes.

X belongs to the reference configuration andx to the actual configuration of a body.t ∈ IR
represents the time.F = ∇Rχ , where∇R stands for the spatial gradient in the referential frame.
J = detF. FT denotes the transpose ofF. v = ẋ andV = −F−1v. We also assume, as usual,
that J > 0.

The fields introduced in (1) satisfy the Maxwell equations inthe following form:

(3)

divR
�

= Jρe
divR

�
= 0

rotR
�

+ (∂
�

/∂t)|X = 0
rotR

�
− (∂

�
/∂t)|X = g.
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divR represents the divergence operator androtR the curl operator in the reference configura-
tion; g is defined as follows:

(4) g = JF−1j + JρeV.

ρe and j are the free charge and the free current densities, respectively, per unit volume of the
current configuration.

The transformations of the electromagnetic fields, such as given by the relationships (1)
and (2), provide the Maxwell equations (3) in the referential frame. These equations are clearly
form–invariant.
The reader is referred to [10] for further details on this point.
For future use, we will introduce the following relationships:

(5)
�

=
�

− ε0JC−1�∗

and

(6)
�

∗ = µ0J−1C
�

−
�

.

whereC ≡ FTF. ε0 andµ0 are the electric permittivity and the magnetic permeability of a
vacuum, respectively.

2.1. The material electromagnetic potentials

The classical electrodynamical potentials, namely the scalar potential8 and the vector potential
A are also transformed in two analogous fieldsφ and� , respectively, in such a way that they are
consistent with the equations (3) [10, 11, 12, 13]. More specifically, one introduces the vector
field � , (the vector potential in the material form) as follows:

(7) rotR� =
�

so that the equation (3)2 is identically satisfied. It is worth to mentioning that� is uniquely
defined, provided that the quantitydivR� is specified.
Basing on the equations (3)3 and (7), one also introduces the material scalar potentialφ, so that

(8)
�

= −∇Rφ − �̇
The superposed dot on� denotes the total time derivative of� .

The equations (3) can be now written in terms ofφ,� ,
�

and
�

∗, by taking into account
the equations (1), (4), (5), (6), (7) and (8). Hereafter, we will be concerned with this form of the
Maxwell equations, which is known as the Lorentz form [4, 12].

It is worth to recalling that, had we dealt with bounded domains, the fields
�

and
�

∗ would
have been identically vanishing out of these domains.

3. A Lagrangian approach

Motivations for introducing the Lagrangian density in the material form, such as written be-
low, will not be reported here as they are illustrated in [10]. Here, we only remark that such a
Lagrangian provides the equations (3), in the Lorentz form.This Lagrangian reads:

L =
1

2
{ε0J

�
∗ · C−1�∗ − (µ0J)−1� · C

�
} +

�
·
�

+
�

∗ ·
�

+
ρ0v

2

2
(9)

− W(F, F
�

, JF−1T� ∗
, X).
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L is a Lagrangian density per unit volume of the reference configuration and possibly is of the
following form:

(10) L = L̂(φ, φ̇,∇Rφ,� , �̇ , ∇R� ,
�

,
�̇

,∇R
�

,
�

∗
,
�̇ ∗

,∇R
�

∗
, x, ẋ, F, X) .

The corresponding Lagrange equations read:

d

dt

∂L

∂φ̇
−

∂L

∂φ
+ div R

∂L

∂∇Rφ
= 0,

d

dt

∂L

∂ �̇
−

∂L

∂� + div R
∂L

∂∇R�
= 0,

d

dt

∂L

∂ ẋ
−

∂L

∂x
+ div R

∂L

∂F
= 0,(11)

d

dt

∂L

∂
�̇ −

∂L

∂
� + div R

∂L

∂∇R
� = 0,

d

dt

∂L

∂
�̇

∗
−

∂L

∂
�

∗
+ div R

∂L

∂∇R
�

∗
= 0.

With reference to the expression (9), one notes that:

∂L

∂φ
= 0,

∂L

∂� = 0,(12)

∂L

∂φ̇
= 0.

The equations (11)1 and (11)2 simplify accordingly and provide, as a final result, two of the
Maxwell equations of interest, in the Lorentz form.

For sake of simplicity, we also assume that

(13)

∂L

∂

�̇ = 0,

∂L

∂

�̇ ∗ = 0,

∂L
∂∇R

� = 0,

∂L
∂∇R

�
∗ = 0.

In accordance with this assumption, the equations (11)4 and (11)5 reduce to the following alge-
braic equations:

−
∂W

∂
� =

�
,

∂W

∂
�

∗
=
�

,(14)

which happen to correspond to the classical constitutive equations. The equation (11)3 has a
natural mechanical interpretation, according to which thequantity∂L/∂ ẋ represents themomen-
tum.
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4. The electromagnetic stress tensor and momentum

With reference to the expression (9) the momentum density explicitly reads:

(15)
∂L

∂ ẋ
= ρ0v − (F−1T)

∂L

∂V
≡ ρ0v + J(D0 ∧ B),

whereD0 ≡ ε0E. The electromagnetic stress tensor, in the Piola form, has the following explicit
expression

−
∂L

∂F
= E ⊗

�
0 + µ

−1
0 B ⊗

�
−

1

2
J[ε0E2 + µ

−1
0 B2]F−1T − J[D0 ∧ B ⊗ V] +

+
∂W

∂F
+

∂W

∂(F
�

)
⊗
�

− J	 ⊗ F−1
(

∂W

∂ JF−1T� ∗

)

+(16)

+

[

∂W

∂ JF−1T� ∗
· JF−1T� ∗

]

F−1T,

having noted that the dependence ofL onF is throughV ≡ −F−1ẋ and throughW. W, in turn,
depends onF explicitly and throughJ

�
and J

�
∗. The tensor∂L/∂F can be transformed in

theCauchy–formand, if we take into account the equation (11)4, (11)5 and (14), we eventually
write:

−J−1∂L

∂F
FT = [ε0E ⊗ E + µ

−1
0 B ⊗ B] −

1

2
[ε0E2 + µ

−1
0 B2]I +(17)

− [ε0(E ∧ B) ⊗ v] +

+ J−1
(

∂W

∂F

)

FT + � ⊗ P −	 ⊗ B + (	 · B)I .

The expression (17) is consistent with the classical expression of the Maxwell stress tensor in a
vacuum, which reads:

(18) tM = ε0E ⊗ E + µ−1
0 B ⊗ B −

1

2
(ε0E2 + µ−1

0 B2)I ,

having disregarded the velocityv of the material points.

5. The electromagnetic material tensor

The variational procedure which is based on the Lagrangian density L not only provides the
Maxwell equations and the balance of momentum [10, 13]. In fact, along with themomentum
∂L/∂ ẋ, two additional canonical momenta, ∂L/∂φ̇ and∂L/∂�̇ , are also introduced.

In the specific case of electromagnetism, one of these momenta vanishes:

(19)
∂L

∂φ̇
≡ 0,

as remarked previously in (12)3.

The following result holds true for the second canonical momentum:

(20)
∂L

∂�̇
= −

�
,
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taking into account the relationships (2)1, (8), (9) and (10).

Having this remarked, anadditional mechanical quantity, which is a combination of the two
non–vanishing canonical momenta, can be introduced. This mechanical quantity is defined as
follows [10]:

(21) p0 = −FT ∂L

∂ ẋ
− (∇R� )T ∂L

∂�̇
.

The expression (21) is a density per unit volume of the reference configuration and leads to the
definition of thematerial momentumor pseudomomentum[8, 14, 15], which writes as follows:

(22) pR = ρ0CV +
�

∧
�

≡ ρ0CV + J(P∧ B)

or, per unit volume of the current configuration,

(23) p = ρCV + P ∧ B.

This procedure for defining the novel mechanical quantity may not be unfamiliar to people who
work on materials with microstructures, from the viewpointof continuum mechanics. An analo-
gous procedure can be employed for a combination of the quantities ∂L/∂∇Rφ, ∂L/∂∇R� and
∂L/∂F.

This combination defines thematerial energy–stress(an Eshelby–like stress) as follows

(24) b = −L I + FT ∂L

∂F
+ (∇Rφ) ⊗

∂L

∂∇Rφ
+ (∇R�)T ∂L

∂∇R�
.

The expression (24) can be explicitly evaluated by taking into account the equations (11)4, (11)5
and (14). The computations will not reported here as they canbe found in [10].

One of the result of interest is the expression ofb that specialises in the following form, for
the electrostatics of a dielectric material:

(25) bdiel = (W −
�

·
�
)I − FT ∂W

∂F
−
�

⊗
�

.

The corresponding Cauchy–like stress is reported here below for comparison. With reference to
the formula (17), it reads:

(26) Tdiel = −
1

2
ε0E2I + E ⊗ D + J−1∂W

∂F
FT .

where

(27) D = ε0E + P.

6. Comments

By comparing (26) with (25) one can notice the following. First, although the two mentioned
expressions are in the form of energy–stress tensors they completely differ from one another. It
is not possible to transform one into the other by means of a simple rule, like in pure elasticity.

Second, the Cauchy form of the electromagnetic stress tensor reduces to the Maxwell stress
tensor, not only in a vacuum but also in all simple cases that are dealt with in the classical
literature. Third, the electrostatic stress tensor survives also out of the domain occupied by
the material, whereas the correspondingelectrostatic material stress tensorbdiel identically
vanishes in a vacuum.
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