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A. Arsie - S. Brangani ∗

ON NON-RIGID PROJECTIVE CURVES

Abstract. In this note, we consider the natural functorial rational map
φ from the (restricted) Hilbert schemeHilb(d, g, r ) to the moduli space
Mg, associating the nondegenerate projective modelp(C) of a smooth
curveC to its isomorphism class [C]. We prove thatφ is non constant in
a neighbourhood ofp(C), for any [C] ∈ U ⊂ Mg (whereg ≥ 1 and
U is a dense open subset ofMg), providedp(C) is a smooth point or a
reducible singularity ofHilb(d, g, r )red, the (restricted) Hilbert scheme
with reduced structure.

1. Introduction

Let k be any algebraically closed field of characteristic zero and, as usual, letPr :=
Proj (k[x0, . . . , xr ]) be the associated projective space. Inside the Hilbert scheme
H (d, g, r ), parametrizing closed subschemes of dimension 1, arithmetic genusg, de-
greed in P

r , let us consider the so calledrestrictedHilbert schemeHilb(d, g, r ),
which is the subscheme ofH (d, g, r ), consisting of those pointsp(C), such that every
irreducible componentK of H (d, g, r ) containingp(C) has smooth, non degenerate
and irreducible general element (see Definition 1.31 of [12]).

The aim of the present note is to get some insight in the behaviour of the ratio-
nal functorial mapφ : Hilb(d, g, r ) → Mg, which associates to each pointp(C)

in Hilb(d, g, r ) representing a smooth non degenerate irreducible curveC the corre-
sponding isomorphism class [C] ∈ Mg. In particular, we study in which cases the
image ofφ has positive dimension.

Any non degenerate smooth integral subschemeC of dimension 1 inPr determines
a pointp(C) ∈ Hilb(d, g, r ). We give the following:

DEFINITION 1. The projective curve C⊂ P
r admits non-trivial first order defor-

mations if the image of the map Dφ : Tp(C)Hilb(d, g, r ) → T[C]Mg has positive
dimension (or equivalently if Dφ 6= 0). In this case we say that the corresponding
curve is non-rigid at the first order, for the given embedding.

DEFINITION 2. The projective curve C⊂ P
r admits non-trivial deformations if

there exists at least a curveγ ⊂ Hilb(d, g, r ), through p(C), which is not contracted
to a point viaφ. Equivalently, if there exists an irreducible component ofH ilb(d, g, r )
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containing p(C), such that its image inMg throughφ has positive dimension. In this
case we say that the curve is non-rigid for the given embedding.

We can somehow get rid of the fixed embedding in some projective space taking
into accountall possible nondegenerate embeddings, as in the following:

DEFINITION 3. The (abstract) smooth curve C is non-rigid at the first order,as a
smooth non degenerate projective curve, if foranynon degenerate projective embed-
ding j : C ↪→ P

r , the corresponding map Dφ : Tp(C)Hilb(d, g, r ) → T[C]Mg is non
zero.

Analogously, one has the following:

DEFINITION 4. The (abstract) smooth curve C is non-rigid as a smooth non de-
generate projective curve if, for any non degenerate projective embedding j: C ↪→ P

r ,
there exists an irreducible component of the associated Hilb(d, g, r ) containing p(C),
such that its image inMg throughφ has positive dimension.

In this paper, we prove that there exists a dense open subsetU ⊂ Mg (g ≥ 1), such
that anyC, with [C] ∈ U , is non rigid at the first order as a smooth non degenerate
projective curve in the sense of Definition 3; moreover, we prove that these curves are
non-rigid (not only at the first order) under the additional assumption thatp(C) is a
smooth point ofHilb(d, g, r )red (the restricted Hilbert scheme with reduced scheme
structure) or at worst it is a reducible singularity ofHilb(d, g, r )red (see Definition 5
in section 3).

2. First order deformations

First of all we deal with the case of smooth projective curvesof genusg ≥ 2 in P
r . We

will prove that there exists a dense open subsetU0
BN ⊂ Mg such that for any [C] ∈

U0
BN and for any non degenerate smooth embedding ofC in P

r the corresponding
projective curve is non-rigid at the first order (in the senseof Definition 3).

From the fundamental exact sequence:

(1) 0 → T C → TP
r
|C → NC/Pr → 0,

taking the associated long exact cohomology sequence, since H 0(T C) = H 0(K −1
C ) =

0 (genusg ≥ 2), we get:

0 → H 0(TP
r
|C) → H 0(NC/Pr )

Dφ
→ H 1(T C) →(2)

→ H 1(TP
r
|C) → H 1(NC/Pr ) → 0.

In sequence (2), as usual, we identifyH 0(NC/Pr ) with the tangent space
Tp(C)Hilb(d, g, r ) to the Hilbert scheme at the pointp(C) representingC, and
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H 1(T C) with T[C]Mg (see for example [11] and [12]). Thus the coboundary mapDφ

represents the differential of the mapφ : Hilb(d, g, r ) → Mg we are interested in. If
Dφ = 0 (i.e. the corresponding curve is rigid also at the first order) the sequence above
splits and in particularh0(TP

r
|C) = h0(NC/Pr ); thus imposingh0(TP

r
|C) < h0(NC/Pr )

and estimating the dimension of the cohomology groups, we get a relation involving
d, g, r , which, if it is fulfilled implies that the corresponding curve is not rigid (at least
at the first order). This is the meaning of the following:

PROPOSITION1. Let C ⊂ P
r a smooth non-degenerate curve of genus g≥ 2 and

degree d. If d> 2
r+1 [g(r − 2)+ 3], or OC(1) is non special (this holds if d> 2g− 2),

then Dφ 6= 0. Furthermore, if C⊂ P
r is linearly normal, then Dφ 6= 0 provided that

(3) d >
(r − 2)g + r (r + 1) + 3

r + 1
.

Proof. It is clear from the exactness of (2) that ifh0(NC/Pr ) > h0(TP
r
|C), thenDφ 6=

0. On the other hand,h0(NC/Pr ) = dim(Tp(C)Hilb(d, g, r )) ≥ dim(Hilb(d, g, r ))

anddim(Hilb(d, g, r )) ≥ (r + 1)d − (r − 3)(g− 1), where the last inequality always
holds at points ofHilb(d, g, r ) parametrizing locally complete intersection curves (in
particular smooth curves), see for example ([12]). Thush0(NC/Pr ) ≥ (r + 1)d −

(r − 3)(g − 1). Now, applying Riemann-Roch to the vector bundleTP
r on C, we get

h0(TP
r
|C) = (r + 1)d − r (g − 1) + h1(TP

r
|C). On the other hand, from the Euler

sequence (twisted withOC):

(4) 0 → OC → (r + 1)OC(1) → TP
r
|C → 0,

we get immediatelyh1(TP
r
|C) ≤ (r + 1)h1(OC(1)) and by Riemann-Roch the latter

is equal to(r + 1)(h0(OC(1)) − d + g − 1). Now, if OC(1) is non special (i.e. if
d > 2g − 2), thenh1(TP

r
|C) = 0, so that, imposingh0(NC/Pr ) > h0(TP

r
|C), we get

3(g − 1) > 0, which is always satisfied (ifg ≥ 2). This means that a smooth curve of
genusg ≥ 2, which is embedded via a non special linear system, is always non-rigid
at least at the first order.

If insteadOC(1) is special, by Clifford’s theorem we haveh0(OC(1)) ≤ d/2 + 1,
so thath1(TP

r
|C) ≤ (r + 1)(g − d/2). Imposing againh0(NC/Pr ) > h0(TP

r
|C), that

is (r + 1)d − (r − 3)(g − 1) > (r + 1)d − r (g − 1) + (r + 1)(g − d/2), we get the
relationd > 2

r+1 [g(r − 2) + 3].

Finally, if C ⊂ P
r is linearly normal and non degenerate, thenh0(OC(1)) = r + 1.

Substituting inh1(TP
r
|C) ≤ (r + 1)h1(OC(1)) = (r + 1)(h0(OC(1)) − d + g −

1) and imposing the fundamental inequalityh0(NC/Pr ) > h0(TP
r
|C), we getd >

(r−2)g+r (r+1)+3
r+1 .

Since the bound (3) is particularly good, but it holds only for linearly normal curves
and since any curve can be obtained via a series of (generic) projections from a linearly
normal curve, we are going to study what is the relation amongfirst order deformations
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of a linearly normal curve and the first order deformations ofits projections. This is
the aim of the following:

PROPOSITION2. Let C ⊂ P
r a smooth curve of genus g≥ 2 which is non-rigid

at the first order. Then any of its smooth projections C′ := πq(C) ⊂ P
r−1 from a point

q ∈ P
r is non-rigid at the first order (q is a point chosen out of the secant variety of C,

Sec(C)).

Proof. First of all, let us remark that the proposition states that in the following dia-
gram:

Tp(C)Hilb(d, g, r )
Dφ
→ T[C]Mg

↓ ↗ Dφ‘
Tp(C′)Hilb(d, g, r − 1)

if Im(Dφ) 6= 0, thenIm(Dφ‘ ) 6= 0. Now consider the following commutative dia-
gram:

0 → ker(a) → ker(b)

↓ ↓ ↓

0 → T C → TP
r
|C → NC/Pr → 0

↓∼= ↓ a ↓ b
0 → T C′ → TP

r−1
|C′ → NC′/Pr → 0

↓ ↓ ↓

0 → 0 → 0

where the morphismsa andb are induced by the projection ofC to C′. ClearlyT C ∼=

T C′, becauseC andC′ are isomorphic curves and moreovera andb are surjective by
construction. Applying the snake lemma to the previous diagram, we see thatker(a) ∼=

ker(b) and sincea andb are surjective morphisms of vector bundles, it turns out that
ker(a) = ker(b) = L, whereL is a line bundle onC. Restricting the attention to the
last column of the previous diagram, it is clear from a geometric reasoning that the line
bundleL can be identified with the ruling of the projective cone, withvertexq through
which we project. Indeed, it is sufficient to look at the induced projection mapb at a
point x ∈ C: b : NC/Pr , x → NC′/Pr , π(x); the kernel is always the line on the cone
with vertexq going troughx and this is never a subspace ofT C, becauseq /∈ Sec(C).
Clearly, we can identify the projective cone with vertexq through which we project,
with the line bundleL, since we can consider instead of justP

r , the blowing-upBlq(Pr )

in q in such a way to separate the ruling of the cone (this however does not affect our
reasoning since we are dealing with line bundles overC andq /∈ C).

Applying the cohomology functor to the previous commutative diagram and recall-
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ing thath0(T C) = 0 sinceg ≥ 2 we get the following diagram:

H 0(L) ∼= H 0(L) → 0
↓ ↓ ↓

0 → H 0(TP
r
|C) → H 0(NC/Pr )

Dφ
→ H 1(T C) → . . .

↓ α ↓ β ↓ γ

0 → H 0(TP
r−1
|C′ ) → H 0(NC′/Pr−1)

Dφ′

→ H 1(T C′) → . . .

↓ ↓ ↓

0 → coker(α) → coker(β) → 0 → 0

Now, Im(Dφ) ⊂ H 1(T C) and via the isomorphismγ it is mapped insideH 1(T C′).
On the other hand, by commutativity of the square having as edges the mapsβ, γ, Dφ

andDφ′ it is clear thatIm(Dφ) ⊆ Im(Dφ′) so that ifDφ 6= 0, then a fortioriDφ′ 6=

0.

The following corollary gives two simple sufficient conditions for having
Im(Dφ) ∼= Im(Dφ′).

COROLLARY 1. Let C, C′, Dφ and Dφ′ as in Proposition 2. Then ifOC(1) is non
special or if h1(TP

r
|C) = 0, then Im(Dφ) ∼= Im(Dφ′).

Proof. Rewrite the previous diagram as:

H 0(L) ∼= H 0(L) → 0
↓ ↓ ↓

0 → H 0(TP
r
|C) → H 0(NC/Pr ) → Im(Dφ) → 0

↓ α ↓ β ↓

0 → H 0(TP
r−1
|C′ ) → H 0(NC′/Pr−1) → Im(Dφ′) → 0

↓ ↓ ↓

0 → coker(α) → coker(β) → coker(α)/coker(β) → 0

Observe thatcoker(α) ⊆ H 1(L) and the same is true forcoker(β). So if H 1(L) = 0,
then Im(Dφ) = Im(Dφ′). On the other hand, from the exact sequence 0→ L →

TP
r
|C → TP

r−1
|C′ → 0, taking Chern polynomials, we get thatL is a line bundle of

degreed (and one can identifyL with OC(1) ⊗ L′ for someL′ ∈ Pic0(C)). Thus, if
OC(1) is non special we conclude. If insteadh1(TP

r
|C) = 0, thencoker(α) = H 1(L)

andcoker(α) ⊆ coker(β) ⊆ H 1(L) so thatcoker(α) = coker(β) and we conclude
again.

Now we deal with the much simpler case of curves of genusg = 1.

PROPOSITION3. For any smooth curve[C] ∈ M1 and for any non degenerate
projective embedding of C↪→ P

r , the corresponding projective curve is non-rigid at
the first order.
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Proof. From the fundamental exact sequence:

0 → TC → TP
r
|C → NC/Pr → 0,

sinceTC ∼= OC (g = 1), we obtain the long exact cohomology sequence:

(5) 0 → H 0(OC) → H 0(TP
r
|C) → H 0(NC/Pr )

Dφ
→ H 1(OC) → H 1(TP

r
|C) . . .

Twisting the Euler sequence withOC and taking cohomology, we have that
h1(TP

r
|C) ≤ (r + 1)h1(OC(1)), butOC(1) is always non special for a curve of genus

g = 1 sinced > 2g − 2 = 0. ThusH 1(TP
r
|C) = 0 and beingh1(OC) 6= 0, from (5)

we have thatDφ 6= 0 and it is even always surjective.

We conclude this section with the following theorem, which is the analogue of
Proposition 3 for curves of genusg ≥ 2 (in this case we do not work over allMg, but
just on an open dense subset).

THEOREM 1. For any g ≥ 2, there exists a dense open subset UBN ⊂ Mg such
that for any[C] ∈ UBN and for any non degenerate projective embedding of C↪→ P

r ,
the corresponding projective curve is non-rigid at the firstorder.

Proof. According to theorem 1.8, page 216 of [1], there exists a dense open subset
UBN ⊂ Mg such that any [C] ∈ UBN can be embedded inPr as a smooth non
degenerate curve of degreed if and only if ρ ≥ 0, whereρ(d, g, r ) := g− (r +1)(g−

d + r ) is the Brill-Noether number. Now we consider a curve [C] ∈ UBN and we
embed it as a linerly normal curvēC of degreed in someP

r . Since [C] ∈ UBN, we
have thatρ ≥ 0; on the other hand,̄C is linearly normal and the fundamental inequality
(3) is satisfied sinceρ ≥ 0 (indeed, it is just a computation to see that (3) is equivalent
to ρ ≥ −ε for someε > 0). Thus, by Proposition 1̄C is non-rigid at the first order,
and moreover by Propositon 2 all of its smooth projections are non-rigid at the first
order. To conclude, observe that any smooth non degenerate projective curveC such
that [C] ∈ UBN can be obtained via a series of smooth projections from a linearly
normal projective curvēC with correspondingρ ≥ 0 (since for the curves inUBN the
Brill-Noether condition is necessary and sufficient).

3. Finite deformations

Our problem is now to extend the first order deformations studied in the previous
section to finite deformations. By Theorem 1, we know that, for the curvesC such
that [C] ∈ UBN (g ≥ 2), the correspondingIm(Dφ) 6= 0 and an even stronger re-
sult holds for curves of genusg = 1. We need to prove that there exists a vector
v ∈ Tp(C)Hilb(d, g, r ), corresponding to a smooth curveγ ⊂ Hilb(d, g, r ) through
p(C) such that the image of the curve viaφ has positive dimension. To this aim, ob-
serve that if [C] ∈ UBN is not a smooth point ofMg, then there arew ∈ T[C]UBN
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which are obstructed deformations, that is which do not correspond to any curve in
UBN through [C]. We can easily get rid of this problem, just by restricting further the
open subsetUBN. Indeed, forg ≥ 1, there is a dense open subsetU0 ⊂ Mg such
that any [C] ∈ U0 is a smooth point (see for example [12]). Thus, for curves of genus
g ≥ 2 we consider the dense open subsetU0

BN := UBN∩U0 and for anyw ∈ T[C]U0
BN,

the corresponding first order deformations are unobstructed, while for curves of genus
g = 1 we just restrict to the smooth part ofM1, that we denote asU0

1 .

We can draw a first conclusion of such an argument via the following:

PROPOSITION4. Let [C] ∈ U0
BN or [C] ∈ U0

1 and let C ↪→ P
r any projective

embedding such that the corresponding point p(C) ∈ Hilb(d, g, r ) is a smooth point
of the restricted Hilbert scheme. Then the projective curveC ⊂ P

r is non rigid.

Proof. By Theorem 1 or Proposition 3, the associated mapDφ 6= 0, so that there ex-
ists aw ∈ Tp(C)Hilb(d, g, r ) such thatDφ(w) 6= 0. Sincep(C) is a smooth point of
Hilb(d, g, r ), the tangent vectorw corresponds to a smooth curveγ ⊂ Hilb(d, g, r ),
throughp(C), such thatTp(C)γ = w. Now consider the imageZ of this curve inU0

BN
via φ. SinceMg exists as a quasi-projective variety, in particular we can represent
a neighbourhood of [C] ∈ Mg, asSpec(B), for some finitely generatedk-algebraB.
This implies that the mapφ can be viewed locally aroundp(C) as a morphism of affine
schemes. Thus the image of the curveγ (which is a reduced scheme) via the morphism
of affine schemesφ is the subschemeZ in Spec(B). Then eitherZ is positive dimen-
sional and in this case we are done, or it is a zero dimensionalsubscheme, supported
at the point [C]; observe that this zero dimensional subschemeZ can not be the re-
duced point [C], otherwise we would certainly haveDφ(w) = 0. So let us consider
the case in whichZ is a zero dimensional subscheme, supported at the point [C], with
non-reduced scheme structure: this case is clearly impossible since the imageZ of a
reduced subscheme (the curveγ ) via the morphism of affine schemesφ can not be a
non-reduced subscheme. Indeed, if it were the case, consider the rectriction ofφ to γ :
φγ , Zred = [C]; thenφ−1

γ ([C]) is a reduced subscheme, which coincides withγ , since
γ is reduced. But this would imply thatφ(γ ) = [C] andDφ(w) = 0.

Thus, it turns out thatZ has necessarily positive dimension and we conclude.

The hypothesis of Proposition 4, according to whichp(C) is a smooth point of
Hilb(d, g, r ) is extremely strong. Ideally, one would like to extend the result of Propo-
sition 4 toany non degenerate projective embedding for curves [C] ∈ U0

BN. Before
giving a partial extension of Proposition 4 (Theorem 2), letus give the following:

DEFINITION 5. A point p(C) ∈ Hilb(d, g, r )red is called a reducible singularity
if it is in the intersection of two or more irreducible components of H ilb(d, g, r )red,
each of which is smooth in p(C).

THEOREM 2. Let [C] ∈ U0
BN or [C] ∈ U0

1 and let C ↪→ P
r any projective em-

bedding such that the corresponding point p(C) ∈ Hilb(d, g, r ) is a smooth point of
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Hilb(d, g, r )red (restricted Hilbert scheme with reduced structure) or suchthat p(C)

is a reducible singularity of H ilb(d, g, r )red. Then the projective curve C⊂ P
r is non

rigid.

Proof. Let us consider the exact sequence:

(6) 0 → H 0(TP
r
|C) → Tp(C)Hilb(d, g, r )

Dφ
→ T[C]Mg

from which ker(Dφ) ∼= H 0(TP
r
|C). Take the reduced schemeHilb(d, g, r )red and

consider the induced morphism of schemesr : Hilb(d, g, r )red → Hilb(d, g, r ) (see
for example [13], exercise 2.3, page 79). Ifp(C) is a smooth point ofHilb(d, g, r )red,
then we have thatdim(Hilb(d, g, r )) = dim(Tp(C)Hilb(d, g, r )red). On the other
hand, to prove that there are first order deformations we havejust imposedh0(TP

r
|C) <

dim(Hilb(d, g, r )). Now, we want to prove that in the following diagram

0 → H 0(TP
r
|C) → Tp(C)Hilb(d, g, r )

Dφ
→ T[C]Mg

↑ Dr ↗

Tp(C)Hilb(g, d, r )red

the map Dr is injective, so that sinceh0(TP
r
|C) < dim(Hilb(d, g, r )) =

dim(Tp(C)Hilb(d, g, r )red), we can find aw ∈ Tp(C)Hilb(d, g, r )red whose image
in T[C]Mg is non zero and then we can argue as in the proof of Proposition4. Set-
ting Hilb(d, g, r )red = Xred, p(C) = x and Hilb(d, g, r ) = X, we have to prove
that givenr : Xred → X, the associated morphism on tangent spaces is injective
Dr : Tx Xred → Tx X. SinceXred is a scheme, we can always find an open affine
subschemeUred of Xred containingx such thatUred = Spec(Ared), whereAred is
a finitely generatedk-algebra without nilpotent elements and the closed pointx cor-
responds to a maximal idealmx. Recall that, from the point of view of the functor
of points, the closed pointx corresponds to a morphismλ : Spec(k) → Spec(Ared)

(which is induced byAred → Ared,mx → Ared,mx /mx Ared,mx = k(x) = k, where
Ared,mx is the localization ofAred at the maximal idealmx). Recall also that via the
algebra mapk[ε]/ε2 → k and the corresponding inclusion of schemesi : Spec(k) →

Spec(k[ε]/ε2), Tx Xred can be identified with{u ∈ Hom(Spec(k[ε]/ε2, Spec(Ared)))

such thatu ◦ i = λ}, (see for example [8]). Clearly, an analogous description holds
for X andTx X, (we denote the corresponding neighbourhood ofx in X asSpec(A)).
From the description ofTx Xred just given, it turns out anyw ∈ Tx Xred, w 6= 0, corre-
sponds to a unique (non-zero) ring homomorphismu\ : Ared → k[ε]/(ε)2, such that
the following diagram is commutative:

Ared
u\

→ k[ε]/ε2

λ\ ↘ ↓ i \

k(x) = k

On the other hand, saying thatDr (w) 6= 0 is equivalent to say that we can lift the
non zero ring homomorphismu\ : Ared → k[ε]/ε2 to a non zero ring homomorphism
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ũ\ : A → k[ε]/ε2 such that the following diagram is commutative:

A
λ̃\

→ k(x) = k

r \ ↓ ũ\ ↘ ↑ i \

Ared
u\

→ k[ε]/ε2

λ\ ↘ ↓ i \

k(x) = k

It is clear that we can always do such a lifting, since the homomorphismsũ\ and λ̃\

are just given precomposing the corresponding homomorphisms from Ared, with r \.
Moreover, sincer \ is a non zero ring homorphism, it turns out that ifu\ 6= 0, then also
ũ\ 6= 0 and the previous diagram is commutative. This implies thatDr (w) 6= 0 and
thus thatDr : Tp(C)Hilb(d, g, r )red ↪→ Tp(C)Hilb(d, g, r ) is injective. Reasoning
as in the proof of Proposition 4, we can find a curveγ ⊂ Hilb(d, g, r )red through
p(C) in such a way thatDφ ◦ Dr (Tp(C)γ ) 6= 0. Thus the image of this curve viaφ ◦ r
contains the point [C] in U0

BN and a tangent direction. On the other hand the image
via φ ◦ r of a reduced scheme can not be a non reduced point (always because we can
represent a neighbourhood of [C] in Mg as an affine scheme and considerφ ◦ r locally
as a morphism of affine schemes). Thus the image ofγ throughφ◦r must have positive
dimension and in this way we conclude ifp(C) is a smooth point ofHilb(d, g, r )red.

Finally, if p(C) is a reducible singularity ofHilb(d, g, r )red, it will be sufficient
to repeat the previous reasoning, substitutingTp(C)Hilb(d, g, r )red, with Tp(C)H ,
where H is an irreducible component ofHilb(d, g, r )red through p(C), smooth at
p(C) and of maximal dimension, so thatdimp(C)H = dimp(C)Hilb(d, g, r )red =

dimp(C)Hilb(d, g, r ). In the same way, one can find a smooth curveγ ⊂ H , through
p(C), such that its image inMg is positive dimensional, arguing again as in the proof
of Proposition 4 (the image ofγ has to be a reduced scheme, hence necessarily positive
dimensional, in order to haveDφ 6= 0).

REMARK 1. If p(C) is a reducible singularity ofHilb(d, g, r )red, for the Theo-
rem 2 to work, it is not necessary thatall irreducible components ofHilb(d, g, r )red

through p(C) are smooth in a neighbourhood ofp(C). Indeed, from the proof of
Theorem 2, it is clear that it is sufficient that there exists an irreducible component of
maximal dimensionH of Hilb(d, g, r )red, which is smooth atp(C).

In the light of the previous theorem, let us discuss Mumford’s famous example
of a component of the restricted Hilbert scheme which is non reduced (see [15]). He
considered smooth curvesC on smooth cubic surfacesS in P

3, belonging to the com-
plete linear system|4H + 2L|, whereH is the divisor class of a hyperplane section
of S and L is the class of a line onS. It is immediate to see that the degree of such
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a curve isd = 14 and that its genus isg = 24. Therefore we are working with
Hilb(14, 24, 3). In [15], it is proved that the sublocusJ3 of Hilb(14, 24, 3) cut out by
curvesC of this type, is dense in a component of the Hilbert scheme. Moreover, it turns
out that this component is non reduced. Indeed, Mumford showed that the dimension
of Hilb(14, 24, 3) at the pointp(C) representing a curveC of the type just described,
is 56, while the dimension of the tangent space toHilb(14, 24, 3) at p(C) is 57. On
the other hand, in [7] it is proved that for the points of typep(C) an infinitesimal de-
formation (i.e. a deformation overSpec(k[ε]/ε2)) is either obstructed at the second
order (i.e. you can not lift the deformation toSpec(k[ε]/ε3)), or at no order at all. This
implies that the corresponding component ofHilb(14, 24, 3)red is smooth. Since for
curves of this type, we have thatd >

g+3
2 , by Proposition 1 we know thatDφ 6= 0. If

[C] ∈ Mg is a smooth point, then by Theorem 2, beingHilb(14, 24, 3)red smooth at
p(C) ∈ J3, we have that the curveC ↪→ P

3 is non rigid for the given embedding.

For other interesting examples of singularities of Hilbertschemes of curves and
related constructions, see [9], [14], [5] and [17].

In the light of Theorem 2, it would be extremely interesting to give an example of a
smooth curve of genusg ≥ 2, which is rigid for some embedding. Unfortunately, this
is a difficult task; indeed, one of the main motivation for this paper was to prove that
no such a curve exists. However, we did not succeed in provingthis, and we prove a
weaker statement (essentially Thoerem 2). This is strictlyrelated to a question posed
by Ellia: is there any component of the Hilbert scheme of curves of genusg > 0 in P

n,
which is the closure of the action ofAut(Pn)? For this and related question see: [3],
[4], [6] and [2].

4. Some special classes of curves inP3

In this section, we take into account some special classes ofcurves and prove that they
are non-rigid at the first order or even non-rigid for the given embedding. As a first
example, let us consider a projectively normal curveC in P

3, which does not sit on a
quadric or on a cubic. We prove that the curves of this class are non-rigid at the first
order. Their ideal sheaf has a resolution of the type (witha j ≥ 4 and consequently
b j ≥ 5):

0 → ⊕s
j =1OP3(−b j ) → ⊕s+1

j =1OP3(−a j ) → IC → 0,

from which, twisting withTP
3, we get:

(7) 0 → ⊕s
j =1TP

3(−b j ) → ⊕s+1
j =1TP

3(−a j ) → TP3 ⊗ IC → 0.

On the other hand, from the Euler sequence (suitably twisted) we have that
h0(TP

3(−k)) = 0 andh1(TP
3(−k)) = 0 for k ≥ 4. Thus, from (7) it follows

that h0(TP
3 ⊗ IC) = 0. Moreover,H 2(TP

3(−b j )) is equal by Serre duality to
H 1(�1

P3(b j − 4))∗ and this is zero by Bott formulas (see for example [16]), since

we assumedb j ≥ 5. Therefore, again from (7), it follows thath1(TP
3 ⊗ IC) = 0.

Finally, from the defining sequence ofC, twisting by TP
3, we get thatH 0(TP

3) ∼=

H 0(TP
3|C). Now, h0(TP

3) = 15 , so thatDφ 6= 0 as soon as 15< 4d (recall
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that h0(NC/P3) ≥ 4d), that thisDφ 6= 0 for d ≥ 4. Now, recall the important fact

that if C is a projectively normal curve, thenHilb(P3) is smooth at the corresponding
point p(C) (see [10]) and this implies that the projectively normal curve is non rigid
(Theorem 2) as soon as it does not sit on a quadric or a cubic surface.

Now we consider a projectively normal curve which sits on a smooth cubic surface
S in P

3 and prove that this curve is non-rigid at the first order and hence non-rigid
always by Theorem 2 and by the result of [10]. From the exact sequence:

(8) 0 → NC/S → NC/P3 → NS|C → 0,

sinceNS|C ∼= OC(3) andNC/S ∼= ωC ⊗ω−1
S

∼= ωC(1) ∼= OC(C), we getχ(NC/P3) =

χ(ωC(1)) + χ(OC(3)). By Riemann-Rochχ(OC(3)) = 3d − g + 1 and by Serre
dualityh1(ωC(1)) = h0(OC(1)) = 0, so thatχ(ωC(1)) = C2 +1− g andχ(NC/P3) =

3d − g + 1 + h0(ωC(1)) = 3d − 2g + 2 + C2. Again from the sequence (8), taking
cohomology, we have thath1(NC/P3) = h1(OC(3)). On the other hand, from the exact
sequence:

0 → IC(3) → OP3(3) → OC(3) → 0,

assuming thatC is projectively normal and that it sits on a unique cubic, we have
1 − 20 + h1(OC(3)) + 3d − g + 1 = 0, so thath1(NC/P3) = 18 − 3d + g. Thus

h0(NC/P3) = χ(NC/P3) + h1(NC/P3) = 20− g + C2. As a remark, notice that since

h0(NC/P3) ≥ 4d, we obtain the inequality 4d ≤ 20− g + C2 for curves of this type.

To give an estimate ofh0(TP
3
|C), we use as before the Riemann-Roch Theorem and the

Euler sequence, so thath0(TP
3
|C) ≤ 4d + 3(1− g) + 4h1(OC(1)). On the other hand,

from the defining sequence ofC twisted byOP3(1), assumingC projectively normal
and nondegenerate, we geth1(OC(1)) = g − d + 3, so thath0(TP

3
|C) ≤ g + 15.

Thus Dφ 6= 0 as soon asg + 15 < 20 − g + C2. Using adjunction formula, i.e.
C.(C + KS) = 2g − 2, we can rewrite this asC.KS < 3. Now, sinceS is a smooth
cubic KS ≡ −H whereH is an effective divisor representing a hyperplane section.
Moreover anyC is linearly equivalent toal −

∑
bi ei andh ≡ 3l −

∑
ei (we identify

S with P
2 blown-up at 6 points in general position, i.e. no 3 on a line and no 6 on a

conic), so thatDφ 6= 0 as soon as 3a −
∑

bi > 3, but 3a −
∑

bi = d, and so we get
the conditiond ≥ 4.

Finally , as an example we consider the case of projectively normal curves on a
smooth quadricQ, proving that these curves are non-rigid (indeed it is sufficient to
assume thath1(IC(2)) = 0). First of all, from the sequence:

0 → NC/Q → NC/P3 → NQ|C → 0,

being NC/Q ∼= ωC(2) and NQ|C ≡ OC(2), we have thath1(NC/P3) = h1(OC(2));
from the defining sequence 0→ IC(2) → OP3(2) → OC(2) → 0, since we assumed
h1(IC(2)) = 0, we have 1− 10 + h1(OC(2)) + 2d − g + 1 = 0. Moreover, by
Serre duality and Kodaira vanishingh1(ωC(2)) = h1(NC/Q) = 0 so thath0(NC/P3) =

χ(ωC(2)) + χ(OC(2)) + h1(NC/P3) and this is equal to 10− g + C2. The previous



12 A. Arsie - S. Brangani

estimate forh0(TP
3
|C) works also in this case (we just used the fact thatC is linearly

normal and non degenerate), so thatDφ 6= 0 as soon asg + 15 < 10− g + C2. By
adjunction 2g − 2 = C.(C + KQ), and by the fact thatKQ ≡ −2H , the inequality
g + 15 < 10− g + C2 can be rewritten as 2C.H > 7, so that, ford ≥ 4, C is non
rigid at the first order for the given embedding and so they arenon-rigid (Theorem 2
and [10]).

Let us take into account the wider class of curves of maximal rank in P
3. By

definition a curveC is of maximal rank iffh0(IC(k))h1(IC(k)) = 0 for anyk ∈ Z.
Since we have already dealt with projectively normal curves, from now on we assume
thatC is a smooth irreducible curve of maximal rank inP

3, which is not projectively
normal. As usual, lets := min{k/h0(IC(k)) 6= 0} be the postulation index ofC.
Observe thath1(IC(k)) = 0 for anyk ≥ s, sinceC is of maximal rank. Thus, having
setc(C) := max{k/h1(IC(k)) 6= 0}, we have thatc(C) ≤ s − 1 (c(C) is called the
completeness index).

As a first case, let us considerc = s − 2 and assumeh1(OC(s − 2)) = 0 (which
is certainly satisfied ifd(2 − s) + 2g − 2 < 0 or equivalentlyd >

2g−2
s−2 , s ≥ 3).

Observe that in this case,C is s-regular, i.e.hi (IC(s − i )) = 0 for anyi > 0. Indeed,
from the defining sequence ofC, we have thath1(OC(k)) = h2(IC(k)) and since
h1(OC(s − 2)) = 0, we are done. Setu := h0(IC(s)). Then, if

0 → ⊕OP3(−n3i ) → ⊕OP3(−n2i ) → ⊕OP3(−n1i ) → IC → 0

is the minimal free resolution ofIC, settingn+
j := max{n j i } andn−

j := min{n j i },

it is easy to see thatn+
3 = c + 4 = s + 2. Moreover, we haven+

3 > n+
2 > n+

1 ,
n−

3 > n−
2 > n−

1 and alson+
3 = s + 2 > n+

2 ≥ n−
2 > n−

1 = s. From these we get
n+

2 = n−
2 = s+ 1, that isn2i = s+ 1 for anyi . Analogously, one getsn3i = s+ 2 for

anyi . Thus, in this case, the minimal free resolution is

(9) 0 → yOP3(−s − 2) → xOP3(−s − 1) → uOP3(−s) → IC → 0

(resolution of the first kind), wherey = h1(IC(c)) = h1(IC(s − 2)). If we have a
resolution of the first kind, we can split it as follows:

0 → yOP3(−s − 2) → xOP3(−s − 1) → E → 0,(10)

0 → E → uOP3(−s) → IC → 0(11)

whereE is only a locally free sheaf (indeed, if it were free, thenC would be projec-
tively normal by (11)). Twisting (10) and (11) byTP

3 and taking cohomology, we
get:

0 → uH0(TP
3(−s)) → H 0(IC ⊗ TP

3) → H 1(E ⊗ TP
3) → . . .(12)

. . . → x H1(TP
3(−s − 1)) → H 1(E ⊗ TP

3) → yH2(TP
3(−s − 2)) → . . .(13)

On the other hand, in the sequence (13),h1(TP
3(−s − 1)) = h2(�1

P3(s − 3)) = 0

by Serre duality and Bott formulas, whileh2(TP
3(−s − 2)) = h1(�1

P3(s − 2)) = 0,
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if s ≥ 3. Thus, we get that ifs ≥ 3, thenH 1(E ⊗ TP
3) = 0. Moreover, twisting

the Euler sequence withOP3(−s), we obtain thath0(TP
3(−s)) = 0 as soon ass ≥ 2.

Therefore, from the sequence (12), we have thath0(IC ⊗ TP
3) = 0 as soon ass ≥ 3.

Now, twisting the defining sequence ofC by TP
3 and taking cohomology, we get

(assumings ≥ 3):

(14) 0→ H 0(TP
3) → H 0(TP

3
|C) → H 1(IC ⊗ TP

3) → 0.

We want to give an estimate toh1(IC ⊗ TP
3). Continuing the long exact cohomol-

ogy sequence (12), using again Serre duality and Bott formulas and assumings ≥ 5,
we get thath1(IC ⊗ TP

3) = h2(E ⊗ TP
3). Moreover, going on with the sequence

(13), applying Serre duality and Bott formulas (s ≥ 5), we obtainh2(E ⊗ TP
3) ≤

yh3(TP
3(−s − 2)) =

ys(s−1)(s−3)
2 . Henceh1(IC ⊗ TP

3) =
ys(s−1)(s−3)

2 and from

(14) we geth0(TP
3) ≤ 15+

ys(s−1)(s−3)
2 , s ≥ 5. Thus, if 4d > 15 +

ys(s−1)(s−3)
2 ,

or equivalentlyd ≥ 4 +
ys(s−1)(s−3)

8 , s ≥ 5, then a curveC of maximal rank, with a
resolution of the first kind and withh1(OC(s − 2)) = 0, is non rigid at the first order
for the given embedding.

As a final example, let us consider a curveC of maximal rank, such that
h0(IC(s)) ≤ 2 andh1(OC(s−3)) = h1(OC(s−2)) = h1(OC(s−1)) = h1(OC(s)) =

0 (this happens for example ifd >
2g−2

s and assumings ≥ 4). In this case, we have
c(C) = s − 1. Indeed, if it werec < s − 2, thenC would be (s-1)-regular and this
would contradict the fact thats is the postulation. Moreover, if it werec = s − 2, then
C would be s-regular and sinceh0(IC(s)) ≤ 2, C would be a complete intersection of
type(s, s), and in particular it would be projectively normal.

Thus,c(C) = s − 1 and from the given hypotheses, the fact thath2(IC(s − 1)) =

h1(OC(s− 1)) = 0, andh1(IC(s)) = 0 (sincec(C) = s− 1), it is easy to see thatC is
(s+1)-regular. This implies that the homogeneous idealI (C) is generated in degree less
or equal tos+ 1. With notation as above, we haven+

3 = c+ 4 = s+ 3 > n+
2 > n+

1 =

s + 1, where the last equality holds sinceI (C) is generated in degree less or equal to
s + 1. From this, we getn+

2 = s + 2 and moreovern−
2 > n−

1 = s so thatn−
2 ≥ s + 1.

On the other hand, we can say more, because the mapH 0(IC(s)) ⊗ H 0(OP3(1)) →

H 0(IC(s + 1)) is injective; indeed,h0(IC(s)) ≤ 2 and from a relation of the form
H1Fs = H2F ′

s between the two generators in degrees, we would have thatH1|F ′
s but

this is clearly impossible. It turns out that we have no relations in degree (s+1) between
the generators ofI (C). Thusn−

2 > s + 1, n−
3 > n−

2 ≥ s + 2, so thatn3i = s + 3 for
anyi and alson2i = s + 2 for anyi .

Hence,in this case, the minimal free resolution ofIC is the following:

0 → vOP3(−s − 3) → xOP3(−s − 2) →(15)

→ wOP3(−s − 1) ⊕ uOP3(−s) → IC → 0,

(resolution of the second kind), wherev = h1(IC(c)) = h1(IC(s − 1)). In this case,
that is under the following hypotheses:s ≥ 5, h1(OC(k)) = 0 for k = s, s − 1, s −

2, s−3 (which is satisfied if for exampled >
2g−2

s , s ≥ 4),h0(IC(s)) ≤ 2 (c = s−1),
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we start from the sequence (15) and we get thatC is non rigid at the first order for the
given embedding as soon asd ≥ 4+ vs(s−2)(s+1)

8 . We leave to the interested reader the
details of this case, which is completely analogous to the previous one.
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Università di Ferrara
Via Machiavelli, 35
44100 Ferrara, ITALY
e-mail:brangani@dm.unife.it

Lavoro pervenuto in redazione il 05.03.2001 e, in forma definitiva, il 30.01.2002.



16 A. Arsie - S. Brangani


