A. Arsie - S. Brangani *

## ON NON-RIGID PROJECTIVE CURVES


#### Abstract

In this note, we consider the natural functorial rational map $\phi$ from the (restricted) Hilbert scheme $\operatorname{Hilb}(d, g, r)$ to the moduli space $\mathcal{M}_{g}$, associating the nondegenerate projective model $p(C)$ of a smooth curve $C$ to its isomorphism class [ $C$ ]. We prove that $\phi$ is non constant in a neighbourhood of $p(C)$, for any $[C] \in U \subset \mathcal{M}_{g}$ (where $g \geq 1$ and $U$ is a dense open subset of $\mathcal{M}_{g}$ ), provided $p(C)$ is a smooth point or a reducible singularity of $\operatorname{Hilb}(d, g, r)_{\text {red }}$, the (restricted) Hilbert scheme with reduced structure.


## 1. Introduction

Let $k$ be any algebraically closed field of characteristic zero and, as usual, let $\mathbb{P}^{r}:=$ $\operatorname{Proj}\left(k\left[x_{0}, \ldots, x_{r}\right]\right)$ be the associated projective space. Inside the Hilbert scheme $H(d, g, r)$, parametrizing closed subschemes of dimension 1 , arithmetic genus $g$, degree $d$ in $\mathbb{P}^{r}$, let us consider the so called restricted Hilbert scheme $\operatorname{Hilb}(d, g, r)$, which is the subscheme of $H(d, g, r)$, consisting of those points $p(C)$, such that every irreducible component $K$ of $H(d, g, r)$ containing $p(C)$ has smooth, non degenerate and irreducible general element (see Definition 1.31 of [12]).

The aim of the present note is to get some insight in the behaviour of the rational functorial map $\phi: \operatorname{Hilb}(d, g, r) \rightarrow \mathcal{M}_{g}$, which associates to each point $p(C)$ in $\operatorname{Hilb}(d, g, r)$ representing a smooth non degenerate irreducible curve $C$ the corresponding isomorphism class $[C] \in \mathcal{M}_{g}$. In particular, we study in which cases the image of $\phi$ has positive dimension.

Any non degenerate smooth integral subscheme $C$ of dimension 1 in $\mathbb{P}^{r}$ determines a point $p(C) \in \operatorname{Hilb}(d, g, r)$. We give the following:

DEFINITION 1. The projective curve $C \subset \mathbb{P}^{r}$ admits non-trivial first order deformations if the image of the map $D \phi: T_{p(C)} \operatorname{Hilb}(d, g, r) \rightarrow T_{[C]} \mathcal{M}_{g}$ has positive dimension (or equivalently if $D \phi \neq 0$ ). In this case we say that the corresponding curve is non-rigid at the first order, for the given embedding.

DEFINITION 2. The projective curve $C \subset \mathbb{P}^{r}$ admits non-trivial deformations if there exists at least a curve $\gamma \subset \operatorname{Hilb}(d, g, r)$, through $p(C)$, which is not contracted to a point via $\phi$. Equivalently, if there exists an irreducible component of Hilb( $d, g, r$ )

[^0]containing $p(C)$, such that its image in $\mathcal{M}_{g}$ through $\phi$ has positive dimension. In this case we say that the curve is non-rigid for the given embedding.

We can somehow get rid of the fixed embedding in some projective space taking into account all possible nondegenerate embeddings, as in the following:

DEFINITION 3. The (abstract) smooth curve $C$ is non-rigid at the first order, as a smooth non degenerate projective curve, if for any non degenerate projective embedding $j: C \hookrightarrow \mathbb{P}^{r}$, the corresponding map $D \phi: T_{p(C)} \operatorname{Hilb}(d, g, r) \rightarrow T_{[C]} \mathcal{M}_{g}$ is non zero.

Analogously, one has the following:
DEFINITION 4. The (abstract) smooth curve $C$ is non-rigid as a smooth non degenerate projective curve if, for any non degenerate projective embedding j:C $\hookrightarrow \mathbb{P}^{r}$, there exists an irreducible component of the associated $\operatorname{Hilb}(d, g, r)$ containing $p(C)$, such that its image in $\mathcal{M}_{\mathrm{g}}$ through $\phi$ has positive dimension.

In this paper, we prove that there exists a dense open subset $U \subset \mathcal{M}_{g}(g \geq 1)$, such that any $C$, with $[C] \in U$, is non rigid at the first order as a smooth non degenerate projective curve in the sense of Definition 3; moreover, we prove that these curves are non-rigid (not only at the first order) under the additional assumption that $p(C)$ is a smooth point of $\operatorname{Hilb}(d, g, r)_{\text {red }}$ (the restricted Hilbert scheme with reduced scheme structure) or at worst it is a reducible singularity of $\operatorname{Hilb}(d, g, r)_{\text {red }}$ (see Definition 5 in section 3).

## 2. First order deformations

First of all we deal with the case of smooth projective curves of genus $g \geq 2$ in $\mathbb{P}^{r}$. We will prove that there exists a dense open subset $U_{B N}^{0} \subset \mathcal{M}_{g}$ such that for any $[C] \in$ $U_{B N}^{0}$ and for any non degenerate smooth embedding of $C$ in $\mathbb{P}^{r}$ the corresponding projective curve is non-rigid at the first order (in the sense of Definition 3).

From the fundamental exact sequence:

$$
\begin{equation*}
0 \rightarrow T C \rightarrow T \mathbb{P}_{\mid C}^{r} \rightarrow N_{C / \mathbb{P}^{r}} \rightarrow 0 \tag{1}
\end{equation*}
$$

taking the associated long exact cohomology sequence, since $H^{0}(T C)=H^{0}\left(K_{C}^{-1}\right)=$ 0 (genus $g \geq 2$ ), we get:

$$
\begin{gather*}
0 \rightarrow H^{0}\left(T \mathbb{P}_{\mid C}^{r}\right) \rightarrow H^{0}\left(N_{\left.C / \mathbb{P}^{r}\right)} \xrightarrow{D \phi} H^{1}(T C) \rightarrow\right.  \tag{2}\\
\rightarrow H^{1}\left(T \mathbb{P}_{\mid C}^{r}\right) \rightarrow H^{1}\left(N_{\left.C / \mathbb{P}^{r}\right)}\right) \rightarrow 0 .
\end{gather*}
$$

In sequence (2), as usual, we identify $H^{0}\left(N_{C / \mathbb{P} r}\right)$ with the tangent space $T_{p(C)} \operatorname{Hilb}(d, g, r)$ to the Hilbert scheme at the point $p(C)$ representing $C$, and
$H^{1}(T C)$ with $T_{[C]} \mathcal{M}_{g}$ (see for example [11] and [12]). Thus the coboundary map $D \phi$ represents the differential of the map $\phi: \operatorname{Hilb}(d, g, r) \rightarrow \mathcal{M}_{g}$ we are interested in. If $D \phi=0$ (i.e. the corresponding curve is rigid also at the first order) the sequence above splits and in particular $h^{0}\left(T \mathbb{P}_{\mid C}^{r}\right)=h^{0}\left(N_{C / \mathbb{P}^{r}}\right)$; thus imposing $h^{0}\left(T \mathbb{P}_{\mid C}^{r}\right)<h^{0}\left(N_{C / \mathbb{P}^{r}}\right)$ and estimating the dimension of the cohomology groups, we get a relation involving $d, g, r$, which, if it is fulfilled implies that the corresponding curve is not rigid (at least at the first order). This is the meaning of the following:

Proposition 1. Let $C \subset \mathbb{P}^{r}$ a smooth non-degenerate curve of genus $g \geq 2$ and degree d. If $d>\frac{2}{r+1}[g(r-2)+3]$, or $\mathcal{O}_{C}(1)$ is non special (this holds if $d>2 g-2$ ), then $D \phi \neq 0$. Furthermore, if $C \subset \mathbb{P}^{r}$ is linearly normal, then $D \phi \neq 0$ provided that

$$
\begin{equation*}
d>\frac{(r-2) g+r(r+1)+3}{r+1} . \tag{3}
\end{equation*}
$$

Proof. It is clear from the exactness of (2) that if $h^{0}\left(N_{C / \mathbb{P} r}\right)>h^{0}\left(T \mathbb{P}_{\mid C}^{r}\right)$, then $D \phi \neq$ 0 . On the other hand, $h^{0}\left(N_{C / \mathbb{P} r}\right)=\operatorname{dim}\left(T_{p(C)} \operatorname{Hilb}(d, g, r)\right) \geq \operatorname{dim}(\operatorname{Hilb}(d, g, r))$ and $\operatorname{dim}(\operatorname{Hilb}(d, g, r)) \geq(r+1) d-(r-3)(g-1)$, where the last inequality always holds at points of $\operatorname{Hilb}(d, g, r)$ parametrizing locally complete intersection curves (in particular smooth curves), see for example ([12]). Thus $h^{0}\left(N_{C / \mathbb{P}^{r}}\right) \geq(r+1) d-$ $(r-3)(g-1)$. Now, applying Riemann-Roch to the vector bundle $T \mathbb{P}^{r}$ on $C$, we get $h^{0}\left(T \mathbb{P}_{\mid C}^{r}\right)=(r+1) d-r(g-1)+h^{1}\left(T \mathbb{P}_{\mid C}^{r}\right)$. On the other hand, from the Euler sequence (twisted with $\mathcal{O}_{C}$ ):

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{C} \rightarrow(r+1) \mathcal{O}_{C}(1) \rightarrow T \mathbb{P}_{\mid C}^{r} \rightarrow 0 \tag{4}
\end{equation*}
$$

we get immediately $h^{1}\left(T \mathbb{P}_{\mid C}^{r}\right) \leq(r+1) h^{1}\left(\mathcal{O}_{C}(1)\right)$ and by Riemann-Roch the latter is equal to $(r+1)\left(h^{0}\left(\mathcal{O}_{C}(1)\right)-d+g-1\right)$. Now, if $\mathcal{O}_{C}(1)$ is non special (i.e. if $d>2 g-2)$, then $h^{1}\left(T \mathbb{P}_{\mid C}^{r}\right)=0$, so that, imposing $h^{0}\left(N_{C / \mathbb{P}_{r} r}\right)>h^{0}\left(T \mathbb{P}_{\mid C}^{r}\right)$, we get $3(g-1)>0$, which is always satisfied (if $g \geq 2$ ). This means that a smooth curve of genus $g \geq 2$, which is embedded via a non special linear system, is always non-rigid at least at the first order.

If instead $\mathcal{O}_{C}(1)$ is special, by Clifford's theorem we have $h^{0}\left(\mathcal{O}_{C}(1)\right) \leq d / 2+1$, so that $h^{1}\left(T \mathbb{P}_{\mid C}^{r}\right) \leq(r+1)(g-d / 2)$. Imposing again $h^{0}\left(N_{C / \mathbb{P}^{r}}\right)>h^{0}\left(T \mathbb{P}_{\mid C}^{r}\right)$, that is $(r+1) d-(r-3)(g-1)>(r+1) d-r(g-1)+(r+1)(g-d / 2)$, we get the relation $d>\frac{2}{r+1}[g(r-2)+3]$.

Finally, if $C \subset \mathbb{P}^{r}$ is linearly normal and non degenerate, then $h^{0}\left(\mathcal{O}_{C}(1)\right)=r+1$. Substituting in $h^{1}\left(T \mathbb{P}_{\mid C}^{r}\right) \leq(r+1) h^{1}\left(\mathcal{O}_{C}(1)\right)=(r+1)\left(h^{0}\left(\mathcal{O}_{C}(1)\right)-d+g-\right.$ 1) and imposing the fundamental inequality $h^{0}\left(N_{C / \mathbb{P}^{r}}\right)>h^{0}\left(T \mathbb{P}_{\mid C}^{r}\right)$, we get $d>$ $\frac{(r-2) g+r(r+1)+3}{r+1}$.

Since the bound (3) is particularly good, but it holds only for linearly normal curves and since any curve can be obtained via a series of (generic) projections from a linearly normal curve, we are going to study what is the relation among first order deformations
of a linearly normal curve and the first order deformations of its projections. This is the aim of the following:

Proposition 2. Let $C \subset \mathbb{P}^{r}$ a smooth curve of genus $g \geq 2$ which is non-rigid at the first order. Then any of its smooth projections $C^{\prime}:=\pi_{q}(C) \subset \mathbb{P}^{r-1}$ from a point $q \in \mathbb{P}^{r}$ is non-rigid at the first order ( $q$ is a point chosen out of the secant variety of $C$, $\operatorname{Sec}(C)$ ).

Proof. First of all, let us remark that the proposition states that in the following diagram:

$$
\begin{array}{cc}
T_{p(C)} H i l b(d, g, r) \\
\downarrow & \stackrel{D \phi}{\longrightarrow} \\
T_{p\left(C^{\prime}\right)} H i l b(d, g, r-1) & \\
\hline D \phi^{‘} & \\
\hline[C] & \mathcal{M}_{g} \\
\end{array}
$$

if $\operatorname{Im}(D \phi) \neq 0$, then $\operatorname{Im}\left(D \phi^{`}\right) \neq 0$. Now consider the following commutative diagram:

$$
\begin{array}{cccccccccc} 
& & & 0 & \rightarrow & \operatorname{ker}(a) & \rightarrow & \operatorname{ker}(b) & & \\
& & \downarrow & & \downarrow & & \downarrow \\
0 & \rightarrow & T C & \rightarrow & T \mathbb{P}_{\mid C}^{r} & \rightarrow & N_{C / \mathbb{P}^{r}} & \rightarrow & 0 \\
& & \downarrow \cong & & \downarrow a & & \downarrow b & & \\
0 & \rightarrow & T C^{\prime} & \rightarrow & T \mathbb{P}_{\mid C^{\prime}}^{r-1} & \rightarrow & N_{C^{\prime} / \mathbb{P}^{r}} & \rightarrow & 0 \\
& & \downarrow & & & \downarrow & & \downarrow & & \\
& & 0 & \rightarrow & 0 & \rightarrow & 0 & & & \\
& & & & & & & & &
\end{array}
$$

where the morphisms $a$ and $b$ are induced by the projection of $C$ to $C^{\prime}$. Clearly $T C \cong$ $T C^{\prime}$, because $C$ and $C^{\prime}$ are isomorphic curves and moreover $a$ and $b$ are surjective by construction. Applying the snake lemma to the previous diagram, we see that $\operatorname{ker}(a) \cong$ $\operatorname{ker}(b)$ and since $a$ and $b$ are surjective morphisms of vector bundles, it turns out that $\operatorname{ker}(a)=\operatorname{ker}(b)=\mathcal{L}$, where $\mathcal{L}$ is a line bundle on $C$. Restricting the attention to the last column of the previous diagram, it is clear from a geometric reasoning that the line bundle $\mathcal{L}$ can be identified with the ruling of the projective cone, with vertex $q$ through which we project. Indeed, it is sufficient to look at the induced projection map $b$ at a point $x \in C: b: N_{C / \mathbb{P}^{r}}, x \rightarrow N_{C^{\prime} / \mathbb{P}^{r} r}, \pi(x)$; the kernel is always the line on the cone with vertex $q$ going trough $x$ and this is never a subspace of $T C$, because $q \notin \operatorname{Sec}(C)$. Clearly, we can identify the projective cone with vertex $q$ through which we project, with the line bundle $\mathcal{L}$, since we can consider instead of just $\mathbb{P}^{r}$, the blowing-up $B l_{q}\left(\mathbb{P}^{r}\right)$ in $q$ in such a way to separate the ruling of the cone (this however does not affect our reasoning since we are dealing with line bundles over $C$ and $q \notin C$ ).

Applying the cohomology functor to the previous commutative diagram and recall-
ing that $h^{0}(T C)=0$ since $g \geq 2$ we get the following diagram:

$$
\begin{aligned}
& \begin{array}{cccccccl} 
& H^{0}(\mathcal{L}) & \cong & H^{0}(\mathcal{L}) & \rightarrow & 0 & & \\
& & \downarrow & & \downarrow & & \downarrow & \\
& & & & & & \\
0 & \rightarrow & H^{0}\left(T \mathbb{P}_{\mid C}^{r}\right) & \rightarrow & H^{0}\left(N_{\left.C / \mathbb{P}^{r}\right)}\right. & \xrightarrow{D \phi} & H^{1}(T C) & \rightarrow \\
& \downarrow \alpha & & \downarrow \beta & & & & \\
& & & & & & & \\
& & & & & & &
\end{array} \\
& \begin{array}{ccccccccc}
0 & \rightarrow & H^{0}\left(T \mathbb{P}_{\mid C^{\prime}}^{r-1}\right) & \rightarrow & H^{0}\left(N_{C^{\prime} / \mathbb{P}^{r-1}}\right) & \xrightarrow{D \phi^{\prime}} & H^{1}\left(T C^{\prime}\right) & \rightarrow & \ldots \\
& & \downarrow & & \downarrow & & \downarrow & & \\
0 & \rightarrow & \operatorname{coker}(\alpha) & \rightarrow & \operatorname{coker}(\beta) & \rightarrow & 0 & \rightarrow & 0
\end{array}
\end{aligned}
$$

Now, $\operatorname{Im}(D \phi) \subset H^{1}(T C)$ and via the isomorphism $\gamma$ it is mapped inside $H^{1}\left(T C^{\prime}\right)$. On the other hand, by commutativity of the square having as edges the maps $\beta, \gamma, D \phi$ and $D \phi^{\prime}$ it is clear that $\operatorname{Im}(D \phi) \subseteq \operatorname{Im}\left(D \phi^{\prime}\right)$ so that if $D \phi \neq 0$, then a fortiori $D \phi^{\prime} \neq$ 0 .

The following corollary gives two simple sufficient conditions for having $\operatorname{Im}(D \phi) \cong \operatorname{Im}\left(D \phi^{\prime}\right)$.

Corollary 1. Let $C, C^{\prime}, D \phi$ and $D \phi^{\prime}$ as in Proposition 2. Then if $\mathcal{O}_{C}(1)$ is non special or if $h^{1}\left(T \mathbb{P}_{\mid C}^{r}\right)=0$, then $\operatorname{Im}(D \phi) \cong \operatorname{Im}\left(D \phi^{\prime}\right)$.

Proof. Rewrite the previous diagram as:


Observe that $\operatorname{coker}(\alpha) \subseteq H^{1}(\mathcal{L})$ and the same is true for $\operatorname{coker}(\beta)$. So if $H^{1}(\mathcal{L})=0$, then $\operatorname{Im}(D \phi)=\operatorname{Im}\left(D \phi^{\prime}\right)$. On the other hand, from the exact sequence $0 \rightarrow \mathcal{L} \rightarrow$ $T \mathbb{P}_{\mid C}^{r} \rightarrow T \mathbb{P}_{\left.\right|^{\prime}}^{r-1} \rightarrow 0$, taking Chern polynomials, we get that $\mathcal{L}$ is a line bundle of degree $d$ (and one can identify $\mathcal{L}$ with $\mathcal{O}_{C}(1) \otimes \mathcal{L}^{\prime}$ for some $\mathcal{L}^{\prime} \in \operatorname{Pic}^{0}(C)$ ). Thus, if $\mathcal{O}_{C}(1)$ is non special we conclude. If instead $h^{1}\left(T \mathbb{P}_{\mid C}^{r}\right)=0$, then $\operatorname{coker}(\alpha)=H^{1}(\mathcal{L})$ and $\operatorname{coker}(\alpha) \subseteq \operatorname{coker}(\beta) \subseteq H^{1}(\mathcal{L})$ so that $\operatorname{coker}(\alpha)=\operatorname{coker}(\beta)$ and we conclude again.

Now we deal with the much simpler case of curves of genus $g=1$.
PROPOSITION 3. For any smooth curve $[C] \in \mathcal{M}_{1}$ and for any non degenerate projective embedding of $C \hookrightarrow \mathbb{P}^{r}$, the corresponding projective curve is non-rigid at the first order.

Proof. From the fundamental exact sequence:

$$
0 \rightarrow T_{C} \rightarrow T \mathbb{P}_{\mid C}^{r} \rightarrow N_{C / \mathbb{P}^{r}} \rightarrow 0
$$

since $T_{C} \cong \mathcal{O}_{C}(g=1)$, we obtain the long exact cohomology sequence:

$$
\begin{equation*}
0 \rightarrow H^{0}\left(\mathcal{O}_{C}\right) \rightarrow H^{0}\left(T \mathbb{P}_{\mid C}^{r}\right) \rightarrow H^{0}\left(N_{C / \mathbb{P}^{r}}\right) \xrightarrow{D \phi} H^{1}\left(\mathcal{O}_{C}\right) \rightarrow H^{1}\left(T \mathbb{P}_{\mid C}^{r}\right) \ldots \tag{5}
\end{equation*}
$$

Twisting the Euler sequence with $\mathcal{O}_{C}$ and taking cohomology, we have that $h^{1}\left(T \mathbb{P}_{\mid C}^{r}\right) \leq(r+1) h^{1}\left(\mathcal{O}_{C}(1)\right)$, but $\mathcal{O}_{C}(1)$ is always non special for a curve of genus $g=1$ since $d>2 g-2=0$. Thus $H^{1}\left(T \mathbb{P}_{\mid C}^{r}\right)=0$ and being $h^{1}\left(\mathcal{O}_{C}\right) \neq 0$, from (5) we have that $D \phi \neq 0$ and it is even always surjective.

We conclude this section with the following theorem, which is the analogue of Proposition 3 for curves of genus $g \geq 2$ (in this case we do not work over all $\mathcal{M}_{g}$, but just on an open dense subset).

THEOREM 1. For any $g \geq 2$, there exists a dense open subset $U_{B N} \subset \mathcal{M}_{g}$ such that for any $[C] \in U_{B N}$ and for any non degenerate projective embedding of $C \hookrightarrow \mathbb{P}^{r}$, the corresponding projective curve is non-rigid at the first order.

Proof. According to theorem 1.8, page 216 of [1], there exists a dense open subset $U_{B N} \subset \mathcal{M}_{g}$ such that any $[C] \in U_{B N}$ can be embedded in $\mathbb{P}^{r}$ as a smooth non degenerate curve of degree $d$ if and only if $\rho \geq 0$, where $\rho(d, g, r):=g-(r+1)(g-$ $d+r)$ is the Brill-Noether number. Now we consider a curve $[C] \in U_{B N}$ and we embed it as a linerly normal curve $\bar{C}$ of degree $d$ in some $\mathbb{P}^{r}$. Since $[C] \in U_{B N}$, we have that $\rho \geq 0$; on the other hand, $\bar{C}$ is linearly normal and the fundamental inequality (3) is satisfied since $\rho \geq 0$ (indeed, it is just a computation to see that (3) is equivalent to $\rho \geq-\epsilon$ for some $\epsilon>0$ ). Thus, by Proposition $1 \bar{C}$ is non-rigid at the first order, and moreover by Propositon 2 all of its smooth projections are non-rigid at the first order. To conclude, observe that any smooth non degenerate projective curve $C$ such that $[C] \in U_{B N}$ can be obtained via a series of smooth projections from a linearly normal projective curve $\bar{C}$ with corresponding $\rho \geq 0$ (since for the curves in $U_{B N}$ the Brill-Noether condition is necessary and sufficient).

## 3. Finite deformations

Our problem is now to extend the first order deformations studied in the previous section to finite deformations. By Theorem 1, we know that, for the curves $C$ such that $[C] \in U_{B N}(g \geq 2)$, the corresponding $\operatorname{Im}(D \phi) \neq 0$ and an even stronger result holds for curves of genus $g=1$. We need to prove that there exists a vector $v \in T_{p(C)} \operatorname{Hilb}(d, g, r)$, corresponding to a smooth curve $\gamma \subset \operatorname{Hilb}(d, g, r)$ through $p(C)$ such that the image of the curve via $\phi$ has positive dimension. To this aim, observe that if $[C] \in U_{B N}$ is not a smooth point of $\mathcal{M}_{g}$, then there are $w \in T_{[C]} U_{B N}$
which are obstructed deformations, that is which do not correspond to any curve in $U_{B N}$ through [ $C$ ]. We can easily get rid of this problem, just by restricting further the open subset $U_{B N}$. Indeed, for $g \geq 1$, there is a dense open subset $U^{0} \subset \mathcal{M}_{g}$ such that any $[C] \in U^{0}$ is a smooth point (see for example [12]). Thus, for curves of genus $g \geq 2$ we consider the dense open subset $U_{B N}^{0}:=U_{B N} \cap U^{0}$ and for any $w \in T_{[C]} U_{B N}^{0}$, the corresponding first order deformations are unobstructed, while for curves of genus $g=1$ we just restrict to the smooth part of $\mathcal{M}_{1}$, that we denote as $U_{1}^{0}$.

We can draw a first conclusion of such an argument via the following:
Proposition 4. Let $[C] \in U_{B N}^{0}$ or $[C] \in U_{1}^{0}$ and let $C \hookrightarrow \mathbb{P}^{r}$ any projective embedding such that the corresponding point $p(C) \in \operatorname{Hilb}(d, g, r)$ is a smooth point of the restricted Hilbert scheme. Then the projective curve $C \subset \mathbb{P}^{r}$ is non rigid.

Proof. By Theorem 1 or Proposition 3, the associated map $D \phi \neq 0$, so that there exists a $w \in T_{p(C)} \operatorname{Hilb}(d, g, r)$ such that $D \phi(w) \neq 0$. Since $p(C)$ is a smooth point of $\operatorname{Hilb}(d, g, r)$, the tangent vector $w$ corresponds to a smooth curve $\gamma \subset \operatorname{Hilb}(d, g, r)$, through $p(C)$, such that $T_{p(C)} \gamma=w$. Now consider the image $Z$ of this curve in $U_{B N}^{0}$ via $\phi$. Since $\mathcal{M}_{g}$ exists as a quasi-projective variety, in particular we can represent a neighbourhood of $[C] \in \mathcal{M}_{g}$, as $\operatorname{Spec}(B)$, for some finitely generated $k$-algebra $B$. This implies that the map $\phi$ can be viewed locally around $p(C)$ as a morphism of affine schemes. Thus the image of the curve $\gamma$ (which is a reduced scheme) via the morphism of affine schemes $\phi$ is the subscheme $Z$ in $\operatorname{Spec}(B)$. Then either $Z$ is positive dimensional and in this case we are done, or it is a zero dimensional subscheme, supported at the point [ $C$ ]; observe that this zero dimensional subscheme $Z$ can not be the reduced point [C], otherwise we would certainly have $D \phi(w)=0$. So let us consider the case in which $Z$ is a zero dimensional subscheme, supported at the point [ $C$ ], with non-reduced scheme structure: this case is clearly impossible since the image $Z$ of a reduced subscheme (the curve $\gamma$ ) via the morphism of affine schemes $\phi$ can not be a non-reduced subscheme. Indeed, if it were the case, consider the rectriction of $\phi$ to $\gamma$ : $\phi_{\gamma}, Z_{\text {red }}=[C]$; then $\phi_{\gamma}^{-1}([C])$ is a reduced subscheme, which coincides with $\gamma$, since $\gamma$ is reduced. But this would imply that $\phi(\gamma)=[C]$ and $D \phi(w)=0$.

Thus, it turns out that $Z$ has necessarily positive dimension and we conclude.

The hypothesis of Proposition 4, according to which $p(C)$ is a smooth point of $\operatorname{Hilb}(d, g, r)$ is extremely strong. Ideally, one would like to extend the result of Proposition 4 to any non degenerate projective embedding for curves $[C] \in U_{B N}^{0}$. Before giving a partial extension of Proposition 4 (Theorem 2), let us give the following:

DEFINITION 5. A point $p(C) \in \operatorname{Hilb}(d, g, r)_{\text {red }}$ is called a reducible singularity if it is in the intersection of two or more irreducible components of $\operatorname{Hilb}(d, g, r)_{\text {red }}$, each of which is smooth in $p(C)$.

THEOREM 2. Let $[C] \in U_{B N}^{0}$ or $[C] \in U_{1}^{0}$ and let $C \hookrightarrow \mathbb{P}^{r}$ any projective embedding such that the corresponding point $p(C) \in \operatorname{Hilb}(d, g, r)$ is a smooth point of

Hilb $(d, g, r)_{\text {red }}$ (restricted Hilbert scheme with reduced structure) or such that $p(C)$ is a reducible singularity of $\operatorname{Hilb}(d, g, r)_{\text {red }}$. Then the projective curve $C \subset \mathbb{P}^{r}$ is non rigid.

Proof. Let us consider the exact sequence:

$$
\begin{equation*}
0 \rightarrow H^{0}\left(T \mathbb{P}_{\mid C}^{r}\right) \rightarrow T_{p(C)} \operatorname{Hilb}(d, g, r) \xrightarrow{D \phi} T_{[C]} \mathcal{M}_{g} \tag{6}
\end{equation*}
$$

from which $\operatorname{ker}(D \phi) \cong H^{0}\left(T \mathbb{P}_{\mid C}^{r}\right)$. Take the reduced scheme $\operatorname{Hilb}(d, g, r)_{\text {red }}$ and consider the induced morphism of schemes $r: \operatorname{Hilb}(d, g, r)_{r e d} \rightarrow \operatorname{Hilb}(d, g, r)$ (see for example [13], exercise 2.3, page 79). If $p(C)$ is a smooth point of $\operatorname{Hilb}(d, g, r)_{\text {red }}$, then we have that $\operatorname{dim}(\operatorname{Hilb}(d, g, r))=\operatorname{dim}\left(T_{p(C)} \operatorname{Hilb}(d, g, r)_{r e d}\right)$. On the other hand, to prove that there are first order deformations we have just imposed $h^{0}\left(T \mathbb{P}_{\mid C}^{r}\right)<$ $\operatorname{dim}(\operatorname{Hilb}(d, g, r))$. Now, we want to prove that in the following diagram
the map $D r$ is injective, so that since $h^{0}\left(T \mathbb{P}_{\mid C}^{r}\right)<\operatorname{dim}(\operatorname{Hilb}(d, g, r))=$ $\operatorname{dim}\left(T_{p(C)} \operatorname{Hilb}(d, g, r)_{r e d}\right)$, we can find a $w \in T_{p(C)} \operatorname{Hilb}(d, g, r)_{r e d}$ whose image in $T_{[C]} \mathcal{M}_{g}$ is non zero and then we can argue as in the proof of Proposition 4. Setting $\operatorname{Hilb}(d, g, r)_{\text {red }}=X_{\text {red }}, p(C)=x$ and $\operatorname{Hilb}(d, g, r)=X$, we have to prove that given $r: X_{\text {red }} \rightarrow X$, the associated morphism on tangent spaces is injective $D r: T_{x} X_{\text {red }} \rightarrow T_{x} X$. Since $X_{\text {red }}$ is a scheme, we can always find an open affine subscheme $U_{\text {red }}$ of $X_{\text {red }}$ containing $x$ such that $U_{\text {red }}=\operatorname{Spec}\left(A_{\text {red }}\right)$, where $A_{\text {red }}$ is a finitely generated $k$-algebra without nilpotent elements and the closed point $x$ corresponds to a maximal ideal $m_{x}$. Recall that, from the point of view of the functor of points, the closed point $x$ corresponds to a morphism $\lambda: \operatorname{Spec}(k) \rightarrow \operatorname{Spec}\left(A_{\text {red }}\right)$ (which is induced by $A_{\text {red }} \rightarrow A_{\text {red }, m_{x}} \rightarrow A_{\text {red }, m_{x}} / m_{x} A_{\text {red, } m_{x}}=k(x)=k$, where $A_{\text {red }, m_{x}}$ is the localization of $A_{\text {red }}$ at the maximal ideal $m_{x}$ ). Recall also that via the algebra map $k[\epsilon] / \epsilon^{2} \rightarrow k$ and the corresponding inclusion of schemes $i: \operatorname{Spec}(k) \rightarrow$ $\operatorname{Spec}\left(k[\epsilon] / \epsilon^{2}\right), T_{x} X_{\text {red }}$ can be identified with $\left\{u \in \operatorname{Hom}\left(\operatorname{Spec}\left(k[\epsilon] / \epsilon^{2}, \operatorname{Spec}\left(A_{\text {red }}\right)\right)\right)\right.$ such that $u \circ i=\lambda\}$, (see for example [8]). Clearly, an analogous description holds for $X$ and $T_{x} X$, (we denote the corresponding neighbourhood of $x$ in $X$ as $\operatorname{Spec}(A)$ ). From the description of $T_{x} X_{\text {red }}$ just given, it turns out any $w \in T_{x} X_{\text {red }}, w \neq 0$, corresponds to a unique (non-zero) ring homomorphism $u^{\natural}: A_{\text {red }} \rightarrow k[\epsilon] /(\epsilon)^{2}$, such that the following diagram is commutative:

$$
\begin{array}{llc}
A_{\text {red }} & \xrightarrow{u^{\natural}} & k[\epsilon] / \epsilon^{2} \\
& \lambda^{\natural} \searrow & \downarrow i^{\natural} \\
& k(x)=k
\end{array}
$$

On the other hand, saying that $\operatorname{Dr}(w) \neq 0$ is equivalent to say that we can lift the non zero ring homomorphism $u^{\natural}: A_{\text {red }} \rightarrow k[\epsilon] / \epsilon^{2}$ to a non zero ring homomorphism
$\tilde{u}^{\natural}: A \rightarrow k[\epsilon] / \epsilon^{2}$ such that the following diagram is commutative:

$$
\begin{array}{ccc}
A & \xrightarrow{\tilde{\lambda}^{\natural}} & k(x)=k \\
r^{\natural} \downarrow & \tilde{u}^{\natural} \searrow & \uparrow i^{\natural} \\
A_{\text {red }} & \xrightarrow{u^{\natural}} & k[\epsilon] / \epsilon^{2} \\
& \lambda^{\natural} & \searrow \\
& & \downarrow i^{\natural} \\
& & k(x)=k
\end{array}
$$

It is clear that we can always do such a lifting, since the homomorphisms $\tilde{u}^{\natural}$ and $\tilde{\lambda}^{\natural}$ are just given precomposing the corresponding homomorphisms from $A_{\text {red }}$, with $r^{\natural}$. Moreover, since $r^{\natural}$ is a non zero ring homorphism, it turns out that if $u^{\natural} \neq 0$, then also $\tilde{u}^{\natural} \neq 0$ and the previous diagram is commutative. This implies that $\operatorname{Dr}(w) \neq 0$ and thus that $\operatorname{Dr}: T_{p(C)} \operatorname{Hilb}(d, g, r)_{r e d} \hookrightarrow T_{p(C)} \operatorname{Hilb}(d, g, r)$ is injective. Reasoning as in the proof of Proposition 4, we can find a curve $\gamma \subset \operatorname{Hilb}(d, g, r)_{\text {red }}$ through $p(C)$ in such a way that $D \phi \circ \operatorname{Dr}\left(T_{p(C)} \gamma\right) \neq 0$. Thus the image of this curve via $\phi \circ r$ contains the point [ $C$ ] in $U_{B N}^{0}$ and a tangent direction. On the other hand the image via $\phi \circ r$ of a reduced scheme can not be a non reduced point (always because we can represent a neighbourhood of $[C]$ in $\mathcal{M}_{g}$ as an affine scheme and consider $\phi$ or locally as a morphism of affine schemes). Thus the image of $\gamma$ through $\phi \circ r$ must have positive dimension and in this way we conclude if $p(C)$ is a smooth point of $\operatorname{Hilb}(d, g, r)_{r e d}$.

Finally, if $p(C)$ is a reducible singularity of $\operatorname{Hilb}(d, g, r)_{\text {red }}$, it will be sufficient to repeat the previous reasoning, substituting $T_{p(C)} \operatorname{Hilb}(d, g, r)_{r e d}$, with $T_{p(C)} H$, where $H$ is an irreducible component of $\operatorname{Hilb}(d, g, r)_{\text {red }}$ through $p(C)$, smooth at $p(C)$ and of maximal dimension, so that $\operatorname{dim}_{p(C)} H=\operatorname{dim}_{p(C)} \operatorname{Hilb}(d, g, r)_{\text {red }}=$ $\operatorname{dim}_{p(C)} \operatorname{Hilb}(d, g, r)$. In the same way, one can find a smooth curve $\gamma \subset H$, through $p(C)$, such that its image in $\mathcal{M}_{g}$ is positive dimensional, arguing again as in the proof of Proposition 4 (the image of $\gamma$ has to be a reduced scheme, hence necessarily positive dimensional, in order to have $D \phi \neq 0$ ).

REMARK 1. If $p(C)$ is a reducible singularity of $\operatorname{Hilb}(d, g, r)_{r e d}$, for the Theorem 2 to work, it is not necessary that all irreducible components of $\operatorname{Hilb}(d, g, r)_{\text {red }}$ through $p(C)$ are smooth in a neighbourhood of $p(C)$. Indeed, from the proof of Theorem 2, it is clear that it is sufficient that there exists an irreducible component of maximal dimension $H$ of $\operatorname{Hilb}(d, g, r)_{\text {red }}$, which is smooth at $p(C)$.

In the light of the previous theorem, let us discuss Mumford's famous example of a component of the restricted Hilbert scheme which is non reduced (see [15]). He considered smooth curves $C$ on smooth cubic surfaces $S$ in $\mathbb{P}^{3}$, belonging to the complete linear system $|4 H+2 L|$, where $H$ is the divisor class of a hyperplane section of $S$ and $L$ is the class of a line on $S$. It is immediate to see that the degree of such
a curve is $d=14$ and that its genus is $g=24$. Therefore we are working with $\operatorname{Hilb}(14,24,3)$. In [15], it is proved that the sublocus $J_{3}$ of $\operatorname{Hilb}(14,24,3)$ cut out by curves $C$ of this type, is dense in a component of the Hilbert scheme. Moreover, it turns out that this component is non reduced. Indeed, Mumford showed that the dimension of $\operatorname{Hilb}(14,24,3)$ at the point $p(C)$ representing a curve $C$ of the type just described, is 56 , while the dimension of the tangent space to $\operatorname{Hilb}(14,24,3)$ at $p(C)$ is 57 . On the other hand, in [7] it is proved that for the points of type $p(C)$ an infinitesimal deformation (i.e. a deformation over $\operatorname{Spec}\left(k[\epsilon] / \epsilon^{2}\right)$ ) is either obstructed at the second order (i.e. you can not lift the deformation to $\operatorname{Spec}\left(k[\epsilon] / \epsilon^{3}\right)$ ), or at no order at all. This implies that the corresponding component of $\operatorname{Hilb}(14,24,3)_{\text {red }}$ is smooth. Since for curves of this type, we have that $d>\frac{g+3}{2}$, by Proposition 1 we know that $D \phi \neq 0$. If $[C] \in \mathcal{M}_{g}$ is a smooth point, then by Theorem 2, being $\operatorname{Hilb}(14,24,3)_{\text {red }}$ smooth at $p(C) \in J_{3}$, we have that the curve $C \hookrightarrow \mathbb{P}^{3}$ is non rigid for the given embedding.

For other interesting examples of singularities of Hilbert schemes of curves and related constructions, see [9], [14], [5] and [17].

In the light of Theorem 2, it would be extremely interesting to give an example of a smooth curve of genus $g \geq 2$, which is rigid for some embedding. Unfortunately, this is a difficult task; indeed, one of the main motivation for this paper was to prove that no such a curve exists. However, we did not succeed in proving this, and we prove a weaker statement (essentially Thoerem 2). This is strictly related to a question posed by Ellia: is there any component of the Hilbert scheme of curves of genus $g>0$ in $\mathbb{P}^{n}$, which is the closure of the action of $\operatorname{Aut}\left(\mathbb{P}^{n}\right)$ ? For this and related question see: [3], [4], [6] and [2].

## 4. Some special classes of curves in $\mathbb{P}^{3}$

In this section, we take into account some special classes of curves and prove that they are non-rigid at the first order or even non-rigid for the given embedding. As a first example, let us consider a projectively normal curve $C$ in $\mathbb{P}^{3}$, which does not sit on a quadric or on a cubic. We prove that the curves of this class are non-rigid at the first order. Their ideal sheaf has a resolution of the type (with $a_{j} \geq 4$ and consequently $b_{j} \geq 5$ ):

$$
0 \rightarrow \oplus_{j=1}^{s} \mathcal{O}_{\mathbb{P}^{3}}\left(-b_{j}\right) \rightarrow \oplus_{j=1}^{s+1} \mathcal{O}_{\mathbb{P}^{3}}\left(-a_{j}\right) \rightarrow \mathcal{I}_{C} \rightarrow 0
$$

from which, twisting with $T \mathbb{P}^{3}$, we get:

$$
\begin{equation*}
0 \rightarrow \oplus_{j=1}^{s} T \mathbb{P}^{3}\left(-b_{j}\right) \rightarrow \oplus_{j=1}^{s+1} T \mathbb{P}^{3}\left(-a_{j}\right) \rightarrow T_{\mathbb{P}^{3}} \otimes \mathcal{I}_{C} \rightarrow 0 \tag{7}
\end{equation*}
$$

On the other hand, from the Euler sequence (suitably twisted) we have that $h^{0}\left(T \mathbb{P}^{3}(-k)\right)=0$ and $h^{1}\left(T \mathbb{P}^{3}(-k)\right)=0$ for $k \geq 4$. Thus, from (7) it follows that $h^{0}\left(T \mathbb{P}^{3} \otimes \mathcal{I}_{C}\right)=0$. Moreover, $H^{2}\left(T \mathbb{P}^{3}\left(-b_{j}\right)\right)$ is equal by Serre duality to $H^{1}\left(\Omega_{\mathbb{P}^{3}}^{1}\left(b_{j}-4\right)\right)^{*}$ and this is zero by Bott formulas (see for example [16]), since we assumed $b_{j} \geq 5$. Therefore, again from (7), it follows that $h^{1}\left(T \mathbb{P}^{3} \otimes \mathcal{I}_{C}\right)=0$. Finally, from the defining sequence of $C$, twisting by $T \mathbb{P}^{3}$, we get that $H^{0}\left(T \mathbb{P}^{3}\right) \cong$ $H^{0}\left(\left.T \mathbb{P}^{3}\right|_{C}\right)$. Now, $h^{0}\left(T \mathbb{P}^{3}\right)=15$, so that $D \phi \neq 0$ as soon as $15<4 d$ (recall
that $h^{0}\left(N_{C / \mathbb{P}^{3}}\right) \geq 4 d$, that this $D \phi \neq 0$ for $d \geq 4$. Now, recall the important fact that if $C$ is a projectively normal curve, then $\operatorname{Hilb}\left(\mathbb{P}^{3}\right)$ is smooth at the corresponding point $p(C)$ (see [10]) and this implies that the projectively normal curve is non rigid (Theorem 2) as soon as it does not sit on a quadric or a cubic surface.

Now we consider a projectively normal curve which sits on a smooth cubic surface $S$ in $\mathbb{P}^{3}$ and prove that this curve is non-rigid at the first order and hence non-rigid always by Theorem 2 and by the result of [10]. From the exact sequence:

$$
\begin{equation*}
\left.0 \rightarrow N_{C / S} \rightarrow N_{C / \mathbb{P}^{3}} \rightarrow N_{S}\right|_{C} \rightarrow 0, \tag{8}
\end{equation*}
$$

since $\left.N_{S}\right|_{C} \cong \mathcal{O}_{C}(3)$ and $N_{C / S} \cong \omega_{C} \otimes \omega_{S}^{-1} \cong \omega_{C}(1) \cong \mathcal{O}_{C}(C)$, we get $\chi\left(N_{C / \mathbb{P}^{3}}\right)=$ $\chi\left(\omega_{C}(1)\right)+\chi\left(\mathcal{O}_{C}(3)\right)$. By Riemann-Roch $\chi\left(\mathcal{O}_{C}(3)\right)=3 d-g+1$ and by Serre duality $h^{1}\left(\omega_{C}(1)\right)=h^{0}\left(\mathcal{O}_{C}(1)\right)=0$, so that $\chi\left(\omega_{C}(1)\right)=C^{2}+1-g$ and $\chi\left(N_{C / \mathbb{P}^{3}}\right)=$ $3 d-g+1+h^{0}\left(\omega_{C}(1)\right)=3 d-2 g+2+C^{2}$. Again from the sequence (8), taking cohomology, we have that $h^{1}\left(N_{C / \mathbb{P}^{3}}\right)=h^{1}\left(\mathcal{O}_{C}(3)\right)$. On the other hand, from the exact sequence:

$$
0 \rightarrow \mathcal{I}_{C}(3) \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(3) \rightarrow \mathcal{O}_{C}(3) \rightarrow 0
$$

assuming that $C$ is projectively normal and that it sits on a unique cubic, we have $1-20+h^{1}\left(\mathcal{O}_{C}(3)\right)+3 d-g+1=0$, so that $h^{1}\left(N_{C / \mathbb{P}^{3}}\right)=18-3 d+g$. Thus $h^{0}\left(N_{C / \mathbb{P}^{3}}\right)=\chi\left(N_{C / \mathbb{P}^{3}}\right)+h^{1}\left(N_{C / \mathbb{P}^{3}}\right)=20-g+C^{2}$. As a remark, notice that since $h^{0}\left(N_{C / \mathbb{P}^{3}}\right) \geq 4 d$, we obtain the inequality $4 d \leq 20-g+C^{2}$ for curves of this type. To give an estimate of $h^{0}\left(T \mathbb{P}_{\mid C}^{3}\right)$, we use as before the Riemann-Roch Theorem and the Euler sequence, so that $h^{0}\left(T \mathbb{P}_{\mid C}^{3}\right) \leq 4 d+3(1-g)+4 h^{1}\left(\mathcal{O}_{C}(1)\right)$. On the other hand, from the defining sequence of $C$ twisted by $\mathcal{O}_{\mathbb{P}^{3}}(1)$, assuming $C$ projectively normal and nondegenerate, we get $h^{1}\left(\mathcal{O}_{C}(1)\right)=g-d+3$, so that $h^{0}\left(T \mathbb{P}_{\mid C}^{3}\right) \leq g+15$. Thus $D \phi \neq 0$ as soon as $g+15<20-g+C^{2}$. Using adjunction formula, i.e. $C .\left(C+K_{S}\right)=2 g-2$, we can rewrite this as $C . K_{S}<3$. Now, since $S$ is a smooth cubic $K_{S} \equiv-H$ where $H$ is an effective divisor representing a hyperplane section. Moreover any $C$ is linearly equivalent to $a l-\sum b_{i} e_{i}$ and $h \equiv 3 l-\sum e_{i}$ (we identify $S$ with $\mathbb{P}^{2}$ blown-up at 6 points in general position, i.e. no 3 on a line and no 6 on a conic), so that $D \phi \neq 0$ as soon as $3 a-\sum b_{i}>3$, but $3 a-\sum b_{i}=d$, and so we get the condition $d \geq 4$.

Finally, as an example we consider the case of projectively normal curves on a smooth quadric $Q$, proving that these curves are non-rigid (indeed it is sufficient to assume that $\left.h^{1}\left(\mathcal{I}_{C}(2)\right)=0\right)$. First of all, from the sequence:

$$
\left.0 \rightarrow N_{C / Q} \rightarrow N_{C / \mathbb{P}^{3}} \rightarrow N_{Q}\right|_{C} \rightarrow 0
$$

being $N_{C / Q} \cong \omega_{C}(2)$ and $\left.N_{Q}\right|_{C} \equiv \mathcal{O}_{C}(2)$, we have that $h^{1}\left(N_{C / \mathbb{P}^{3}}\right)=h^{1}\left(\mathcal{O}_{C}(2)\right)$; from the defining sequence $0 \rightarrow \mathcal{I}_{C}(2) \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(2) \rightarrow \mathcal{O}_{C}(2) \rightarrow 0$, since we assumed $h^{1}\left(\mathcal{I}_{C}(2)\right)=0$, we have $1-10+h^{1}\left(\mathcal{O}_{C}(2)\right)+2 d-g+1=0$. Moreover, by Serre duality and Kodaira vanishing $h^{1}\left(\omega_{C}(2)\right)=h^{1}\left(N_{C / Q}\right)=0$ so that $h^{0}\left(N_{C / \mathbb{P}^{3}}\right)=$ $\chi\left(\omega_{C}(2)\right)+\chi\left(\mathcal{O}_{C}(2)\right)+h^{1}\left(N_{C / \mathbb{P}^{3}}\right)$ and this is equal to $10-g+C^{2}$. The previous
estimate for $h^{0}\left(T \mathbb{P}_{\mid C}^{3}\right)$ works also in this case (we just used the fact that $C$ is linearly normal and non degenerate), so that $D \phi \neq 0$ as soon as $g+15<10-g+C^{2}$. By adjunction $2 g-2=C .\left(C+K_{Q}\right)$, and by the fact that $K_{Q} \equiv-2 H$, the inequality $g+15<10-g+C^{2}$ can be rewritten as $2 C . H>7$, so that, for $d \geq 4, C$ is non rigid at the first order for the given embedding and so they are non-rigid (Theorem 2 and [10]).

Let us take into account the wider class of curves of maximal rank in $\mathbb{P}^{3}$. By definition a curve $C$ is of maximal rank iff $h^{0}\left(\mathcal{I}_{C}(k)\right) h^{1}\left(\mathcal{I}_{C}(k)\right)=0$ for any $k \in \mathbb{Z}$. Since we have already dealt with projectively normal curves, from now on we assume that $C$ is a smooth irreducible curve of maximal rank in $\mathbb{P}^{3}$, which is not projectively normal. As usual, let $s:=\min \left\{k / h^{0}\left(\mathcal{I}_{C}(k)\right) \neq 0\right\}$ be the postulation index of $C$. Observe that $h^{1}\left(\mathcal{I}_{C}(k)\right)=0$ for any $k \geq s$, since $C$ is of maximal rank. Thus, having set $c(C):=\max \left\{k / h^{1}\left(\mathcal{I}_{C}(k)\right) \neq 0\right\}$, we have that $c(C) \leq s-1(c(C)$ is called the completeness index).

As a first case, let us consider $c=s-2$ and assume $h^{1}\left(\mathcal{O}_{C}(s-2)\right)=0$ (which is certainly satisfied if $d(2-s)+2 g-2<0$ or equivalently $\left.d>\frac{2 g-2}{s-2}, s \geq 3\right)$. Observe that in this case, $C$ is s-regular, i.e. $h^{i}\left(\mathcal{I}_{C}(s-i)\right)=0$ for any $i>0$. Indeed, from the defining sequence of $C$, we have that $h^{1}\left(\mathcal{O}_{C}(k)\right)=h^{2}\left(\mathcal{I}_{C}(k)\right)$ and since $h^{1}\left(\mathcal{O}_{C}(s-2)\right)=0$, we are done. Set $u:=h^{0}\left(\mathcal{I}_{C}(s)\right)$. Then, if

$$
0 \rightarrow \oplus \mathcal{O}_{\mathbb{P}^{3}}\left(-n_{3 i}\right) \rightarrow \oplus \mathcal{O}_{\mathbb{P}^{3}}\left(-n_{2 i}\right) \rightarrow \oplus \mathcal{O}_{\mathbb{P}^{3}}\left(-n_{1 i}\right) \rightarrow \mathcal{I}_{C} \rightarrow 0
$$

is the minimal free resolution of $\mathcal{I}_{C}$, setting $n_{j}^{+}:=\max \left\{n_{j i}\right\}$ and $n_{j}^{-}:=\min \left\{n_{j i}\right\}$, it is easy to see that $n_{3}^{+}=c+4=s+2$. Moreover, we have $n_{3}^{+}>n_{2}^{+}>n_{1}^{+}$, $n_{3}^{-}>n_{2}^{-}>n_{1}^{-}$and also $n_{3}^{+}=s+2>n_{2}^{+} \geq n_{2}^{-}>n_{1}^{-}=s$. From these we get $n_{2}^{+}=n_{2}^{-}=s+1$, that is $n_{2 i}=s+1$ for any $i$. Analogously, one gets $n_{3 i}=s+2$ for any $i$. Thus, in this case, the minimal free resolution is

$$
\begin{equation*}
0 \rightarrow y \mathcal{O}_{\mathbb{P}^{3}}(-s-2) \rightarrow x \mathcal{O}_{\mathbb{P}^{3}}(-s-1) \rightarrow u \mathcal{O}_{\mathbb{P}^{3}}(-s) \rightarrow \mathcal{I}_{C} \rightarrow 0 \tag{9}
\end{equation*}
$$

(resolution of the first kind), where $y=h^{1}\left(\mathcal{I}_{C}(c)\right)=h^{1}\left(\mathcal{I}_{C}(s-2)\right.$ ). If we have a resolution of the first kind, we can split it as follows:

$$
\begin{align*}
& 0 \rightarrow y \mathcal{O}_{\mathbb{P}^{3}}(-s-2) \rightarrow x \mathcal{O}_{\mathbb{P}^{3}}(-s-1) \rightarrow E \rightarrow 0,  \tag{10}\\
& 0 \rightarrow E \rightarrow u \mathcal{O}_{\mathbb{P}^{3}}(-s) \rightarrow \mathcal{I}_{C} \rightarrow 0 \tag{11}
\end{align*}
$$

where $E$ is only a locally free sheaf (indeed, if it were free, then $C$ would be projectively normal by (11)). Twisting (10) and (11) by $T \mathbb{P}^{3}$ and taking cohomology, we get:

$$
\begin{align*}
& 0 \rightarrow u H^{0}\left(T \mathbb{P}^{3}(-s)\right) \rightarrow H^{0}\left(\mathcal{I}_{C} \otimes T \mathbb{P}^{3}\right) \rightarrow H^{1}\left(E \otimes T \mathbb{P}^{3}\right) \rightarrow \ldots  \tag{12}\\
& \ldots \rightarrow x H^{1}\left(T \mathbb{P}^{3}(-s-1)\right) \rightarrow H^{1}\left(E \otimes T \mathbb{P}^{3}\right) \rightarrow y H^{2}\left(T \mathbb{P}^{3}(-s-2)\right) \rightarrow \ldots
\end{align*}
$$

On the other hand, in the sequence (13), $h^{1}\left(T \mathbb{P}^{3}(-s-1)\right)=h^{2}\left(\Omega_{\mathbb{P} 3}^{1}(s-3)\right)=0$ by Serre duality and Bott formulas, while $h^{2}\left(T \mathbb{P}^{3}(-s-2)\right)=h^{1}\left(\Omega_{\mathbb{P}^{3}}^{1}(s-2)\right)=0$,
if $s \geq 3$. Thus, we get that if $s \geq 3$, then $H^{1}\left(E \otimes T \mathbb{P}^{3}\right)=0$. Moreover, twisting the Euler sequence with $\mathcal{O}_{\mathbb{P}^{3}}(-s)$, we obtain that $h^{0}\left(T \mathbb{P}^{3}(-s)\right)=0$ as soon as $s \geq 2$. Therefore, from the sequence (12), we have that $h^{0}\left(\mathcal{I}_{C} \otimes T \mathbb{P}^{3}\right)=0$ as soon as $s \geq 3$.

Now, twisting the defining sequence of $C$ by $T \mathbb{P}^{3}$ and taking cohomology, we get (assuming $s \geq 3$ ):

$$
\begin{equation*}
0 \rightarrow H^{0}\left(T \mathbb{P}^{3}\right) \rightarrow H^{0}\left(T \mathbb{P}_{\mid C}^{3}\right) \rightarrow H^{1}\left(\mathcal{I}_{C} \otimes T \mathbb{P}^{3}\right) \rightarrow 0 \tag{14}
\end{equation*}
$$

We want to give an estimate to $h^{1}\left(\mathcal{I}_{C} \otimes T \mathbb{P}^{3}\right)$. Continuing the long exact cohomology sequence (12), using again Serre duality and Bott formulas and assuming $s \geq 5$, we get that $h^{1}\left(\mathcal{I}_{C} \otimes T \mathbb{P}^{3}\right)=h^{2}\left(E \otimes T \mathbb{P}^{3}\right)$. Moreover, going on with the sequence (13), applying Serre duality and Bott formulas ( $s \geq 5$ ), we obtain $h^{2}\left(E \otimes T \mathbb{P}^{3}\right) \leq$ $y h^{3}\left(T \mathbb{P}^{3}(-s-2)\right)=\frac{y s(s-1)(s-3)}{2}$. Hence $h^{1}\left(\mathcal{I}_{C} \otimes T \mathbb{P}^{3}\right)=\frac{y s(s-1)(s-3)}{2}$ and from (14) we get $h^{0}\left(T \mathbb{P}^{3}\right) \leq 15+\frac{y s(s-1)(s-3)}{2}, s \geq 5$. Thus, if $4 d>15+\frac{y s(s-1)(s-3)}{2}$, or equivalently $d \geq 4+\frac{y s(s-1)(s-3)}{8}, s \geq 5$, then a curve $C$ of maximal rank, with a resolution of the first kind and with $h^{1}\left(\mathcal{O}_{C}(s-2)\right)=0$, is non rigid at the first order for the given embedding.

As a final example, let us consider a curve $C$ of maximal rank, such that $h^{0}\left(\mathcal{I}_{C}(s)\right) \leq 2$ and $h^{1}\left(\mathcal{O}_{C}(s-3)\right)=h^{1}\left(\mathcal{O}_{C}(s-2)\right)=h^{1}\left(\mathcal{O}_{C}(s-1)\right)=h^{1}\left(\mathcal{O}_{C}(s)\right)=$ 0 (this happens for example if $d>\frac{2 g-2}{s}$ and assuming $s \geq 4$ ). In this case, we have $c(C)=s-1$. Indeed, if it were $c<s-2$, then $C$ would be (s-1)-regular and this would contradict the fact that $s$ is the postulation. Moreover, if it were $c=s-2$, then $C$ would be s-regular and since $h^{0}\left(\mathcal{I}_{C}(s)\right) \leq 2, C$ would be a complete intersection of type $(s, s)$, and in particular it would be projectively normal.

Thus, $c(C)=s-1$ and from the given hypotheses, the fact that $h^{2}\left(\mathcal{I}_{C}(s-1)\right)=$ $h^{1}\left(\mathcal{O}_{C}(s-1)\right)=0$, and $h^{1}\left(\mathcal{I}_{C}(s)\right)=0($ since $c(C)=s-1)$, it is easy to see that $C$ is (s+1)-regular. This implies that the homogeneous ideal $I(C)$ is generated in degree less or equal to $s+1$. With notation as above, we have $n_{3}^{+}=c+4=s+3>n_{2}^{+}>n_{1}^{+}=$ $s+1$, where the last equality holds since $I(C)$ is generated in degree less or equal to $s+1$. From this, we get $n_{2}^{+}=s+2$ and moreover $n_{2}^{-}>n_{1}^{-}=s$ so that $n_{2}^{-} \geq s+1$. On the other hand, we can say more, because the map $H^{0}\left(\mathcal{I}_{C}(s)\right) \otimes H^{0}\left(\mathcal{O}_{\mathbb{P}^{3}}(1)\right) \rightarrow$ $H^{0}\left(\mathcal{I}_{C}(s+1)\right)$ is injective; indeed, $h^{0}\left(\mathcal{I}_{C}(s)\right) \leq 2$ and from a relation of the form $H_{1} F_{s}=H_{2} F_{s}^{\prime}$ between the two generators in degree $s$, we would have that $H_{1} \mid F_{s}^{\prime}$ but this is clearly impossible. It turns out that we have no relations in degree ( $\mathrm{s}+1$ ) between the generators of $I(C)$. Thus $n_{2}^{-}>s+1, n_{3}^{-}>n_{2}^{-} \geq s+2$, so that $n_{3 i}=s+3$ for any $i$ and also $n_{2 i}=s+2$ for any $i$.

Hence, in this case, the minimal free resolution of $\mathcal{I}_{C}$ is the following:

$$
\begin{align*}
0 & \rightarrow v \mathcal{O}_{\mathbb{P}^{3}}(-s-3) \rightarrow x \mathcal{O}_{\mathbb{P}^{3}}(-s-2) \rightarrow  \tag{15}\\
& \rightarrow w \mathcal{O}_{\mathbb{P}^{3}}(-s-1) \oplus u \mathcal{O}_{\mathbb{P}^{3}}(-s) \rightarrow \mathcal{I}_{C} \rightarrow 0,
\end{align*}
$$

(resolution of the second kind), where $v=h^{1}\left(\mathcal{I}_{C}(c)\right)=h^{1}\left(\mathcal{I}_{C}(s-1)\right)$. In this case, that is under the following hypotheses: $s \geq 5, h^{1}\left(\mathcal{O}_{C}(k)\right)=0$ for $k=s, s-1, s-$ $2, s-3$ (which is satisfied if for example $d>\frac{2 g-2}{s}, s \geq 4$ ), $h^{0}\left(\mathcal{I}_{C}(s)\right) \leq 2(c=s-1)$,
we start from the sequence (15) and we get that $C$ is non rigid at the first order for the given embedding as soon as $d \geq 4+\frac{v s(s-2)(s+1)}{8}$. We leave to the interested reader the details of this case, which is completely analogous to the previous one.

## References

[1] Arbarello E., Cornalba M., Griffiths P. and Harris J., Geometry of Algebraic Curves, I, Grundlehren der mathematischen Wissenschaften 267, Springer Verlag, New York 1985.
[2] Ballico E. and Ciliberto C. Algebraic curves and projective geometry, LNM 1389, Springer Verlag, Berlin.
[3] Ballico E. and Ellia Ph., Bonnes petites composantes des schemas de Hilbert de courbes lisses de $\mathbb{P}^{n}$, Comptes Rend. Acad. Sc. Paris, 306, (1988), 187-190.
[4] Ballico E. and Ellia Ph., A program for space curves, Rend. Sem. Mat. Torino 44 (1986), 25-42.
[5] Bolondi G., Kleppe J.O. and Miró-Roig R.M., Maximal rank curves and singular points of the Hilbert scheme, Compositio Math. 773 (1991), 269-291.
[6] Ciliberto C., Curve algebriche proiettive: risultati e problemi, Atti del Convegno GNSAGA del CNR, Torino 1984.
[7] Curtin D., Obstructions to deforming a space curve, Trans. Amer. Math. Soc. 267 (1981), 83-94.
[8] Eisenbud D. and Harris J., The Geometry of Schemes, Springer Verlag 1999.
[9] Ellia Ph., D' autres composantes non réduites de $\operatorname{Hilb}\left(\mathbb{P}^{3}\right)$, Math. Ann. 2773 (1987), 433-446.
[10] Ellingsrud G., Sur le schéma de Hilbert des variétés de codimension 2 dans $\mathbb{P}^{e}$, à cône de Cohen-Macaulay, Ann. Sci. Ecole Normal. Sup. 84 (1975), 423431.
[11] Grothendieck A., Les Schémas de Hilbert, Sem. Bourbaki 221 (1960-61).
[12] Harris J. and Morrison I., Moduli of curves, Springer Verlag 1998.
[13] Hartshorne R., Algebraic Geometry, Springer Verlag 1977.
[14] Kleppe J.O., Nonreduced components of the Hilbert scheme of smooth space curves, Space Curves (Rocca di Papa, 1985), LNM 1266, 181-207, Springer, Berlin 1987.
[15] Mumford D., Further pathologies in algebraic geometry, Amer. J. Math. 84 (1962), 642-648.
[16] Okonek Ch., Schneider M. and Spindler H., Vector bundles on complex projective spaces, Progress in Mathematics, Vol. 3, Birkäuser 1980.
[17] Walter Ch., Some examples of obstructed curves in $\mathbb{P}^{3}$, in: "Complex Projective Geometry", London Mathematical Society, LNS 179 (1992), 324-340, Cambridge University Press.

## AMS Subject Classification: 14H10, 14D22, 14A15.

Alessandro ARSIE
Dipartimento di Matematica
Università di Bologna
Piazza di Porta S. Donato, 5
40127 Bologna, ITALY
e-mail: arsie@dm.unibo.it
Stefano BRANGANI
Dipartimento di Matematica
Università di Ferrara
Via Machiavelli, 35
44100 Ferrara, ITALY
e-mail: brangani@dm.unife.it
Lavoro pervenuto in redazione il 05.03.2001 e, in forma definitiva, il 30.01.2002.


[^0]:    *It is a pleasure to thank Philippe Ellia for having suggested the problem and for stimulating discussions.

