Rend. Sem. Mat. Univ. Pol. Torino Vol. 1, 60 (2002)

P. Codeca - N. Taddia

L² EXPANSIONS IN SERIES OF FRACTIONAL PARTS

Abstract. In this paper we consider the problem of L^2 expansions in series of fractional parts for functions $f \in L^2([0, 1], \mathbb{R})$ which are odd with respect to the point $\frac{1}{2}$. Sufficient conditions are given, but we also prove by the Banach-Steinhaus theorem that this is not always possible.

1. Introduction

Let :

(1)
$$P(x) = -\frac{1}{\pi} \sum_{m \ge 1} \frac{\sin(2\pi mx)}{m} = \begin{cases} x - [x] - \frac{1}{2} & \text{if } x \notin Z \\ 0 & \text{if } x \in Z \end{cases}$$

In a paper of 1936 [5] H. Davenport considered the formal identity

(2)
$$\sum_{n\geq 1} \alpha(n) P(nx) = -\frac{1}{\pi} \sum_{n\geq 1} \frac{\sum_{d/n} d\alpha(d)}{n} \sin(2\pi nx)$$

which is obtained by substituting into (2) the expansion of *P* given in (1) and collecting together the terms for which the product *mn* has the same value. Davenport considered the cases in which $\alpha(n)$ has the values $\frac{\mu(n)}{n}$, $\frac{\lambda(n)}{n}$ and $\frac{\Lambda(n)}{n}$, where, as usual, μ, λ and Λ denote, respectively, the Möbius, Liouville and Von Mangoldt functions. In [5] Davenport proved the following results:

- i) The functions $\sum_{n=1}^{N} \frac{\mu(n)}{n} P(nx)$ and $\sum_{n=1}^{N} \frac{\lambda(n)}{n} P(nx)$ are uniformly bounded in *N* and *x*.
- ii) The identities

$$\sum_{n \ge 1} \frac{\mu(n)}{n} P(nx) = -\frac{1}{\pi} \sin(2\pi x)$$
$$\sum_{n \ge 1} \frac{\lambda(n)}{n} P(nx) = -\frac{1}{\pi} \sum_{n \ge 1} \frac{\sin(2\pi n^2 x)}{n^2}$$

hold almost everywhere.

In a subsequent paper [6], Davenport, using Vinogradov's method and the Siegel-Walfisz theorem, showed that the identities ii) hold everywhere and that the two series converge uniformly in \mathbb{R} . The proof of the weaker properties ii) (the almost everywhere convergence) depends on L^2 convergence, namely on the estimate [5]:

$$|| R_N ||^2 = \int_0^1 |\sum_{n=1}^N \frac{\mu(n)}{n} P(nx) + \frac{1}{\pi} \sin(2\pi x)|^2 dx = O(\frac{\log(N)}{N})$$

The aim of the present paper is just to consider the formal identity (2) for general $\alpha(n)$ and from the point of view of L^2 -convergence. In order to state in a more precise way the problems studied and the results obtained we give the following definitions. Le us define:

$$L_0^2 = \{ f \in L^2([0, 1], \mathbb{R}), f(x) = -f(1-x) \text{ a.e. on } [0, 1] \}$$

that is L_0^2 is the subspace of the functions $f \in L^2([0, 1], \mathbb{R})$ which are odd with respect to the point $\frac{1}{2}$. It is easy to see that L_0^2 is a closed subspace of $L^2([0, 1], \mathbb{R})$ and so it is a Hilbert space.

Moreover, if *n* is a nonnegative integer, we denote with $M^+(n)$ the greatest prime which divides *n* and, as usual, we set $\Psi(x, y) = \sum_{\{n \le x, M^+(n) \le y\}} 1$. We shall consider the following problems:

 α) Is it possible to apply the Gram-Schimdt procedure to the functions P(nx) and, if $(\varphi_n(x))_n$ is the resulting orthonormal system, is it true that

$$f(x) = \sum_{n \ge 1} b(n)\varphi_n(x)$$

in the L^2 sense for every $f \in L_0^2$?

- β) Is it possible to give sufficient conditions for expanding (in the L^2 sense) in series of fractional parts the functions belonging to certain subsets of L_0^2 ?
- γ) Is it possible to expand (in the L^2 sense) every $f \in L_0^2$ in series of fractional parts ?

Theorem 1 below answers positively to question α), while in Theorem 2 we show that it is possible to give a positive answer to question β).

On the contrary, the answer to question γ) is negative. This is proved in Theorem 3, whose proof depends on the Banach-Steinhaus theorem and on an asymptotic formula with an estimate of the error term (see Lemma 1) for the difference $\Psi(x, y) - \Psi(\frac{x}{2}, y)$ with *y* fixed.

REMARK 1. The identity

(3)
$$\sum_{n\geq 1} \frac{\mu(n)}{n} P(nx) = -\frac{1}{\pi} \sin(2\pi x) \quad x \in \mathbb{R}$$

has interesting applications. For example, it was used in [4] to prove a result of linear independence for the fractional parts, namely the fact that the determinant:

(4)
$$\det(P(\frac{md}{q})) \neq 0 \quad 0 \le d \le m \le \frac{q-1}{2}$$

Actually, for the proof of (4), it is enough to know that (3) holds for rational x and this, in turn, is equivalent to the result $L(1, \chi) \neq 0$ (here χ is a caracter *mod* q and $L(s, \chi)$ is the corresponding L function). Moreover it can be shown that also the weaker result that (3) holds in the L^2 sense can be used to prove results like the following one. Let $h : [0, 1] \rightarrow \mathbb{R}$ be continuous and of bounded variation. Let us also suppose that

 $h(x) = h(1-x), \ \forall x \in [0, 1] \text{ and that } \int_0^1 f(x) dx = 0.$ Then the following implication holds:

$$\sum_{a=1}^{a} h(\frac{a}{d}) = 0 \quad \forall d \ge 1 \Rightarrow h(x) = 0, \quad \forall x \in [0, 1]$$

It is well known (see [3] and [2]) that this property is false if we drop the bounded variation condition.

2. Notation and results

If *a* and *b* are positive integers (a, b) will denote the greatest common divisor of *a* and *b*, and d|n means that *d* divides *n*. With $\tau(n)$ we will indicate the number of divisors of *n*, as usual.

We have obtained the following results.

THEOREM 1. The following properties hold:

- *i)* The functions $f_n(x) = P(nx)$, n = 1, 2, ..., are linearly independent.
- *ii)* The set of functions $f_n(x) = P(nx)$, n = 1, 2, ... is complete in L^2_0 .
- *iii)* Let $(\varphi_n(x))$ be the orthonormal system obtained from $f_n(x) = P(nx)$ by the *Gram-Schmidt procedure. Then we have*

(5)
$$\|\sum_{n=1}^{N} b(n)\varphi_n(x) - f(x)\|_{L^2} \to 0 \quad when \ N \to +\infty$$

for every $f \in L_0^2$, where the (b(n)) are the Fourier coefficients of f(x) with respect to the system $(\varphi_n(x))$.

P. Codeca - N. Taddia

Theorem 1 solves the problem of expanding every function $f \in L_0^2$ in series of linear combination of fractional parts, since we have

$$\varphi_n(x) = \sum_{h=1}^n \gamma_{h,n} P(hx)$$

where the $\gamma_{h,n}$ are suitable coefficients ([8], p.305). As for the problem of the expansion of functions $f \in L_0^2$ in series of fractional parts we have the following theorems.

THEOREM 2. Let $f(x) \sim \sum_{k\geq 1} a(k) \sin(2\pi kx)$ be the Fourier series of $f \in L^2_0$. Set Ν

$$R_N(x) = \sum_{n=1}^{N} \alpha(n) P(nx) - f(x)$$

with $\alpha(n) \in \mathbb{R}$. Then we have

(6)
$$|| R_N ||^2 = \frac{1}{2} \sum_{m \ge 1} |\frac{1}{\pi} \sum_{\substack{n \mid m \\ n \le N}} \alpha(n) \frac{n}{m} + \alpha(m) |^2$$

If $|| R_N || \to 0$ when $N \to \infty$ we must have

(7)
$$\alpha(n) = -\pi \sum_{d|n} \frac{\mu(d)}{d} a(\frac{n}{d})$$

Finally, let

$$a^*(n) = \sum_{\substack{h \ge 1 \\ h \equiv 0(n)}} |a(h)|^2.$$

If the condition

(8)
$$\sum_{n\geq 1}\tau(n)\sqrt{a^*(n)}\,\frac{1}{n}<+\infty$$

holds then

(9)
$$|| R_N || = || f - \sum_{n=1}^N \alpha(n) P(nx) || \to 0$$

when $N \to +\infty$, with $\alpha(n)$ as in (7).

THEOREM 3. There exist functions $f \in L_0^2$ such that

(10)
$$\sup_{N} || R_{N} || = +\infty$$

where $R_N(x) = \sum_{n=1}^N \alpha(n) P(nx) - f(x)$ and the $\alpha(n)$ are given by (7).

20

REMARK 2. Condition (8) of Theorem 2 is not a very restrictive one. It is certainly satisfied, for instance, if there exists $(b(n)) \subset \ell^2$ such that $b(n + 1) \leq b(n)$, $|a(n)| \leq b(n)$, $\forall n \geq 1$, since in this case we have

$$a^*(n) = \sum_{h \ge 1} |a(hn)|^2 \le \sum_{h \ge 1} \left(\frac{1}{n} \sum_{r=1}^n b^2 ((h-1)n+r) \right) = \frac{\|b\|^2}{n}$$

This means that (8) holds in particular for all bounded variation functions, since in this case we have $a(n) = O(\frac{1}{n})$ ([1], vol.I, p. 72).

Another example is given by the class Λ_{β} of functions which satisfy a Lipschitz condition of order $\beta > 0$: in this case we have ([1], vol.I, p.215)

$$(\sum_{k \ge n} |a_k|^2)^{\frac{1}{2}} = O(\frac{1}{n^{\beta}})$$

which gives $a^*(n) = O(\frac{1}{n^{2\beta}})$ and (8) holds again.

It should be noted that under condition (8) we can assert that the formal identity (2) holds almost everywhere for a subsequence. This is an obvious corollary of (9), (7) and Möbius inversion formula.

REMARK 3. The proof of Theorem 3 is based on Banach-Steinhaus theorem and so we do not give an explicit example.

The contrast between (5) of Theorem 1 and (10) of Theorem 3 can be explained as follows.

If $f \in L_0^2$, the minimum value of the difference

$$\parallel f - \sum_{n=1}^{N} c_n P(nx) \parallel$$

can be obtained directly by solving the linear system ([10], p. 83)

(11)
$$\sum_{n=1}^{N} a_{m,n} c_n = b_m , \quad m = 1, ..., N$$

where

$$a_{m,n} = \int_0^1 P(nx)P(mx)dx = \frac{1}{12} \frac{(n,m)^2}{nm}$$

and

$$b_m = \int_0^1 P(mx) f(x) dx$$

or equivalently by considering the sum

$$\sigma_N(x) = \sum_{n=1}^N b(n)\varphi_n(x) = \sum_{n=1}^N b(n)(\sum_{h=1}^n \gamma_{h,n} P(hx)) = \sum_{n=1}^N c_n P(nx)$$

P. Codeca - N. Taddia

which appears in (5) of Theorem 1. Generally the $\alpha(n)$ given by (7) of Theorem 2 are not the solution of system (11): for example it is easy to check directly that when $f(x) = -\frac{1}{\pi} \sin(2\pi x)$ we have

$$\alpha(n) = \frac{\mu(n)}{n}$$
, $b_m = \begin{cases} \frac{1}{2\pi^2} & \text{if } m = 1\\ 0 & \text{otherwise} \end{cases}$

and the numbers $\mu(n)/n$ do not satisfy condition (11), and consequently the difference $\| f - \sum_{n=1}^{N} \alpha(n) P(nx) \|$ is not the minimal one.

Usually, if the function is not a very irregular one (see condition (8) of Theorem 2) the sum $S_N(x) = \sum_{n=1}^N \alpha(n) P(nx)$ will be a good approximation to $\sigma_N(x)$ and it will happen that $|| S_N - \sigma_N || \to 0$ when $N \to +\infty$. But there exist very irregular functions $f \in L_0^2$ for which we have

$$\sup_{N} \parallel R_{N} \parallel = \sup_{N} \parallel S_{N} - \sigma_{N} \parallel = +\infty$$

although we think that is not easy to give an explicit example. Let us now prove the results stated.

Proof of Theorem 1. Proof of property *i*). We want to prove that the relation

(12)
$$\sum_{k=1}^{n} c_k P(kx) = 0 \quad a.e. \text{ on } [0,1] \quad c_k \in \mathbb{R}$$

implies $c_k = 0 \quad \forall k = 1, ..., n$. If n = 1 the implication is obviously true. Suppose now that the equality (12) holds with $n \ge 2$.

If $0 \le x < \frac{1}{n}$ we have [kx] = 0 for every $k \le n$ and from (12) follows

$$\sum_{k=1}^{n} c_k (kx - \frac{1}{2}) = 0 \quad a.e. \ on \ [0, \frac{1}{n})$$

from which we obtain

(13)
$$\sum_{k=1}^{n} c_k = 0$$

If $\frac{1}{n} \le x < \frac{1}{n-1}$ we have

$$[kx] = \begin{cases} 1 & \text{if } k = n \\ 0 & \text{if } k \le n - 1 \end{cases}$$

and so from (12) follows

$$\sum_{k=1}^{n-1} c_k (kx - \frac{1}{2}) + c_n (nx - \frac{3}{2}) = 0 \quad a.e. \text{ on } [\frac{1}{n}, \frac{1}{n-1})$$

which in turn implies

(14)
$$\sum_{k=1}^{n-1} c_k + 3c_n = 0$$

Relations (13) and (14) give $c_n = 0$ and the desidered implication follows by induction. This gives property *i*).

Proof of property *ii*).

Take $f \in L_0^2$ and set $\delta(n) = \int_0^1 f(x) P(nx) dx$. Since

$$P(x) = -\frac{1}{\pi} \sum_{k \ge 1} \frac{\sin(2\pi kx)}{k}$$

we have

(15)
$$\delta(n) = -\frac{1}{\pi} \sum_{k \ge 1} \frac{1}{k} \int_0^1 \sin(2\pi knx) f(x) dx = -\frac{1}{2\pi} \sum_{k \ge 1} \frac{c(kn)}{k}$$

where the c(n) are the Fourier coefficients of f. The relation (15) can be inverted and we have

(16)
$$c(n) = -2\pi \sum_{k\geq 1} \mu(k) \frac{\delta(nk)}{k}$$

provided the sufficient condition

(17)
$$\sum_{k\geq 1} \frac{\tau(k)|c(nk)|}{k} < +\infty \quad \forall n \geq 1$$

is satisfied ([7], Theorem 270). But (17) is certainly true by Schwarz inequality, and so (16) holds. If we suppose $\delta(n) = 0 \quad \forall n \ge 1$ from (16) follows $c(n) = 0 \quad \forall n \ge 1$, but this means that $f \in L_0^2$ has all the Fourier coefficients equal to zero. The completeness of the trigonometrical system implies f(x) = 0 *a.e.* and property *ii*) follows.

Proof of property *iii*).

If $(\varphi_n(x))$ is the orthonormal system obtained from P(nx) by the Gram-Schmidt procedure we have ([8], p. 305)

$$\varphi_n(x) = \sum_{h=1}^n \gamma_{h,n} P(hx)$$

and viceversa

$$P(nx) = \sum_{k=1}^{n} \gamma'_{h,n} \varphi_k(x)$$

where the $\gamma_{h,n}$ and $\gamma'_{h,n}$ are suitable coefficients. This implies, by property *ii*), that the orthonormal system ($\varphi_n(x)$) is complete in L_0^2 and so Parseval identity holds. This proves (5) and concludes the proof of Theorem 1. Let us now prove Theorem 2.

Proof of Theorem 2. Formula (6) is simply Parseval identity for $R_N(x) = \sum_{n=1}^{N} \alpha(n) P(nx) - f(x)$ in fact we have

(18)
$$c_N(m) = \sqrt{2} \int_0^1 R_N(x) \sin(2\pi mx) dx = -\frac{1}{\sqrt{2}} \left(\frac{1}{\pi} (\sum_{\substack{n \mid m \\ n \le N}} \alpha(n) \frac{n}{m}) + \alpha(m) \right)$$

To justify (18) we note that

$$\sqrt{2} \int_0^1 P(nx) \sin(2\pi mx) dx = -\frac{\sqrt{2}}{\pi} \sum_{k \ge 1} \frac{1}{k} \int_0^1 \sin(2\pi knx) \sin(2\pi mx) =$$
$$= \begin{cases} \frac{-n}{\pi\sqrt{2m}} & \text{if } n|m\\ 0 & \text{otherwise} \end{cases}$$

Since we have $|| R_N ||^2 = \sum_{m \ge 1} |c_N(m)|^2$ from (18) we obtain (6). Let us prove (7).

If $|| R_N || \rightarrow 0$ from (6) it follows immediatly that

$$\frac{1}{\pi} (\sum_{n|m} \alpha(n) \frac{n}{m}) = -a(m) \quad \forall m \ge 1$$

from which we obtain (7), since the Dirichlet inverse of $\frac{1}{n}$ is $\frac{\mu(n)}{n}$. Let us now suppose that condition (7) holds: in this case (6) becomes

(19)
$$|| R_N ||^2 = \frac{1}{2} \sum_{m=N+1}^{\infty} |\frac{1}{\pi} \sum_{\substack{n \mid m \\ n \leq N}} \alpha(n) \frac{n}{m} + a(m)|^2$$

when $N \to +\infty$. From (19) it follows

(20)
$$|| R_N || \to 0 \iff \sum_{m=N+1}^{\infty} |\sum_{\substack{n \mid m \\ n \le N}} \alpha(n) \frac{n}{m}|^2 \to 0$$

since $(a(m)) \in \ell^2$. But we also have

(21)
$$-\frac{1}{\pi} \sum_{\substack{n|m\\n \le N}} \alpha(n) \frac{n}{m} = \sum_{\substack{d|m\\d \le N}} a(d) \frac{d}{m} (\sum_{\substack{k \mid (m/d)\\k \le (N/d)}} \mu(k))$$

From (20) and (21) follows

(22)
$$|| R_N || \to 0 \iff \sum_{m=N+1}^{\infty} |a'_N(m)|^2 \to 0$$

when $N \to \infty$, where

$$a'_{N}(m) = \frac{1}{m} \sum_{\substack{d \mid m \\ d \leq N}} da(d) (\sum_{\substack{k \mid (m/d) \\ k \leq (N/d)}} \mu(k)).$$

Let us now prove that (8) implies (9). First we note that

(23)
$$|a'_N(n)| \le \sum_{h|n} |a(h)| \tau(\frac{n}{h}) \frac{h}{n} \equiv \gamma(n)$$

uniformly in N. From the definition of $\gamma(n)$ in (23) follows easily

$$\sum_{n \ge 1} \gamma^{2}(n) = \sum_{n \ge 1} \sum_{\substack{h|n \\ k|n}} |a(h)| |a(k)| \tau(\frac{n}{h}) \tau(\frac{n}{k}) \frac{hk}{n^{2}} \le$$

$$(24) \qquad \le \left(\sum_{m \ge 1} \frac{\tau^{2}(m)}{m^{2}}\right) \left(\sum_{h,k \ge 1} |a(h)| |a(k)| \tau(\frac{k}{(h,k)}) \tau(\frac{h}{(h,k)}) \frac{(h,k)^{2}}{hk}\right) =$$

$$= \left(\sum_{m \ge 1} \frac{\tau^{2}(m)}{m^{2}}\right) \sum$$

say, if we remember that $\tau(nm) \le \tau(n)\tau(m)$. If $(h, k) = \delta$ so that $h = r\delta$, $k = s\delta$, (r, s) = 1 we also have

(25)

$$\sum_{r,s\geq 1} \leq \sum_{r,s\geq 1} \frac{\tau(r)\tau(s)}{rs} \sum_{\delta\geq 1} |a(r\delta)| |a(s\delta)| \leq \sum_{r,s\geq 1} \frac{\tau(r)\tau(s)}{rs} (\sum_{\delta\geq 1} |a(r\delta)|^2)^{\frac{1}{2}} (\sum_{\delta\geq 1} |a(s\delta)|)^{\frac{1}{2}} = \sum_{r,s\geq 1} \frac{\tau(r)\sqrt{a*(r)}}{rs} (\sum_{\delta\geq 1} |a(r\delta)|^2)^{\frac{1}{2}} (\sum_{\delta\geq 1} |a(s\delta)|)^{\frac{1}{2}} = \sum_{r,s\geq 1} \frac{\tau(r)\sqrt{a*(r)}}{rs} (\sum_{\delta\geq 1} |a(s\delta)|^2)^{\frac{1}{2}} (\sum_{\delta\geq 1} |a(s\delta)|)^{\frac{1}{2}} = \sum_{r,s\geq 1} \frac{\tau(r)\sqrt{a*(r)}}{rs} (\sum_{\delta\geq 1} |a(s\delta)|^2)^{\frac{1}{2}} (\sum_{\delta\geq 1} |a(s\delta)|)^{\frac{1}{2}} = \sum_{r,s\geq 1} \frac{\tau(r)\sqrt{a*(r)}}{rs} (\sum_{\delta\geq 1} |a(s\delta)|^2)^{\frac{1}{2}} (\sum_{\delta\geq 1} |a(s\delta)|)^{\frac{1}{2}} = \sum_{r,s\geq 1} \frac{\tau(r)\sqrt{a*(r)}}{rs} (\sum_{\delta\geq 1} |a(s\delta)|^2)^{\frac{1}{2}} (\sum_{\delta\geq 1} |a(s\delta)|^2)^{$$

if condition (9) holds. From (24) and (25) follows that the series $\sum_{n\geq 1} \gamma^2(n)$ is convergent, but this implies that condition (22) is satisfied, since from (23) it follows obviously that

$$\sum_{n=N+1}^{\infty} |a_{N}^{'}(n)|^{2} \leq \sum_{n=N+1}^{\infty} \gamma^{2}(n) \to 0$$

when $N \to +\infty$. This proves (10) and concludes the proof of Theorem 2.

Proof of Theorem 3. We need the following two lemmas.

LEMMA 1. Let $p_1 < p_2 < ... < p_n$ be the prime numbers up to p_n , with $p_1 = 2$. If $M^+(k)$ denotes the greatest prime divisor of the integer k, with the convention $M^+(1) = 1$, set

$$\Psi(x, p_n) = \sum_{\substack{k \le x \\ M^+(k) \le p_n}} 1$$

Then we have

(26) $\Psi(x, p_n) - \Psi(\frac{x}{2}, p_n) = c(n) \ln^{n-1}(x) + O(\ln^{n-2}(x)) \quad when \ x \to +\infty$

where

$$c(n) = \begin{cases} 1 & \text{if } n = 1\\ \frac{1}{(n-1)!} \prod_{k=2}^{n} (\ln(p_k))^{-1} & \text{if } n \ge 2 \end{cases}$$

Proof. Formula (26) is obviously true if n = 1, because in this case we have

$$\Psi(x, p_1) - \Psi(\frac{x}{2}, p_1) = 1 \qquad \forall x \ge 2$$

Now we will prove that if (26) holds for the integer n then it holds also for n + 1 and the lemma will follow by induction. We have

(27)
$$\Psi(y, p_{n+1}) = \sum_{\substack{p_1^{k_1} \dots p_n^{k_n} p_{n+1}^{k_{n+1}} \le y}} 1 = \sum_{\substack{k_{n+1}=0}}^{\lfloor \ln y / \ln p_{n+1} \rfloor} \Psi\left(\frac{y}{p_{n+1}^{k_{n+1}}}, p_n\right)$$

with $k_j \ge 0$ for j = 1, ..., n + 1. From (27) with y = x and $y = \frac{x}{2}$ we obtain

$$\Psi(x, p_{n+1}) - \Psi(\frac{x}{2}, p_{n+1}) = \sum_{k_{n+1}=0}^{\left[\ln\frac{x}{2}/\ln p_{n+1}\right]} \left(\Psi(\frac{x}{p_{n+1}^{k_{n+1}}}, p_n) - \Psi(\frac{x}{2p_{n+1}^{k_{n+1}}}, p_n)\right) + \\ (28) \qquad + \sum_{\left[\ln\frac{x}{2}/\ln p_{n+1}\right] < k_{n+1} \le \left[\ln x/\ln p_{n+1}\right]} \Psi(\frac{x}{p_{n+1}^{k_{n+1}}}, p_n) = \sum_{1}(x) + \sum_{2}(x),$$

where $\sum_{1} (x)$ is zero if the sum is empty. Consider now $\sum_{1} (x)$: by induction hypothesis we have

$$\sum_{1} (x) = c(n) \sum_{k_{n+1}=0}^{\left[\ln \frac{x}{2}/\ln p_{n+1}\right]} \ln^{n-1} \left(\frac{x}{p_{n+1}^{k_{n+1}}}\right) + O\left(\ln^{n-1} x\right) =$$

$$(29) = c(n) \sum_{h=0}^{n-1} (-1)^{h} \binom{n-1}{h} \ln^{n-1-h} x \cdot \ln^{h} p_{n+1} \left(\sum_{k_{n+1}=0}^{\left[\ln \frac{x}{2}/\ln p_{n+1}\right]} k_{n+1}^{h}\right) + O\left(\ln^{n-1} x\right)$$

where, if n = 1 the above expression must obviously be interpreted as

$$\sum_{1} (x) = \frac{c(1)}{\ln p_2} \ln x + O(1)$$

We now recall that

(30)
$$1^{h} + 2^{h} + \dots + (m-1)^{h} = \frac{1}{h+1} \left(m^{h+1} + (\frac{h+1}{1}) B_{1} m^{h} + (\frac{h+1}{2}) B_{2} m^{h-1} + \dots \right)$$

where the B_j are the Bernoulli numbers ([9], p. 65). If we use the expression (30) in (29) we obtain

$$\sum_{k_{n+1}=1}^{\left[\ln\left(\frac{x}{2}\right)/\ln p_{n+1}\right]} k_{n+1}^{h} = \frac{1}{h+1} \left(\frac{\ln x}{\ln p_{n+1}}\right)^{h+1} + O(\ln^{h} x) \quad when \ x \to +\infty$$

and if we substitute this in (29) we have

$$\sum_{1} (x) = \frac{c(n)}{\ln p_{n+1}} \left(\sum_{h=0}^{n-1} (-1)^{h} {\binom{n-1}{h}} \frac{1}{h+1} \right) \ln^{n} x + O(\ln^{n-1} x) =$$

$$(31) = \frac{c(n)}{n \ln p_{n+1}} \ln^{n} x + O(\ln^{n-1} x)$$

in view of the identity

$$\sum_{h=0}^{n-1} (-1)^h \binom{n-1}{h} \frac{1}{h+1} = \frac{1}{n} \sum_{h=0}^{n-1} (-1)^h \binom{n}{h+1} = \frac{1}{n}$$

which holds since

$$\sum_{h=0}^{n-1} (-1)^h (\frac{n}{h}) = (1-1)^n = 0$$

Let us now consider the sum $\sum_{2}(x)$ which appears in (28). Since $0 < \ln 2/\ln p_{n+1} < 1$, $\forall n \ge 1$ the sum, if it is not empty, contains at most one term, namely $k_{n+1} = [\ln x/\ln p_{n+1}]$: for this value of k_{n+1} we obviously have $(x/p_{n+1}^{k_{n+1}}) \le p_{n+1}$ which implies that

(32)
$$\sum_{2} (x) = \Psi\left(\frac{x}{p_{n+1}^{k_{n+1}}}, p_n\right) \le \Psi(p_{n+1}, p_n) = O(1)$$

uniformly in x. From (28), (31) and (32) it follows that

$$\Psi(x, p_{n+1}) - \Psi(\frac{x}{2}, p_{n+1}) = \frac{c(n)}{n \ln p_{n+1}} \ln^n x + O(\ln^{n-1} x)$$

which proves the lemma.

LEMMA 2. Let

$$S(x) = \sum_{\substack{\frac{x}{2} < h, k < x\\(h,k) = 1}} \frac{1}{hk}.$$

Then we have

(33)

)
$$S(x) = \frac{6}{\pi^2} (\ln 2)^2 + o(1)$$

when $x \to +\infty$.

Proof. If we set

$$\sigma(x) = \sum_{\frac{x}{2} < h, k < x} \frac{1}{hk}$$

we can write

$$\sigma(x) = \sum_{n \le x} \frac{1}{n^2} S(\frac{x}{n})$$

and, by Möbius inversion formula, we have

$$S(x) = \sum_{n \le x} \frac{\mu(n)}{n^2} \sigma(\frac{x}{n})$$

Since it is

$$\sigma(x) = \left(\sum_{\frac{x}{2} < h < x} \frac{1}{h}\right)^2 = (\ln 2)^2 + O(\frac{1}{x})$$

we have

(34)
$$S(x) = \sum_{n \le \sqrt{x}} \frac{\mu(n)}{n^2} (\ln 2)^2 + o(1) = \left(\sum_{n \ge 1} \frac{\mu(n)}{n^2}\right) (\ln 2)^2 + o(1)$$

when $x \to +\infty$. From 34 follows (33) if we remember that

$$\sum_{n \ge 1} \frac{\mu(n)}{n^2} = \frac{6}{\pi^2}$$

We return to the proof of Theorem 3. It is based on the Banach-Steinhaus theorem: for $N \ge 1$ we consider the bounded linear transformation

$$\Lambda_N \left\{ \begin{array}{l} \ell^2 \to \ell^2 \\ a \to \Lambda_N(a) = a' \end{array} \right.$$

28

defined by

(35)
$$a'(n) = \begin{cases} 0 & \text{if } 1 \le n \le N \\ \frac{1}{n} \sum_{\substack{d \le N \\ d \le N}} da(d) \left(\sum_{\substack{k \mid (n/d) \\ k \le (N/d)}} \mu(k) \right) & \text{if } n > N \end{cases}$$

where we have set $a = (a(n)) \in \ell^2$ and a' = (a'(n)). The linearity of Λ_N is obvious: let us prove that is also bounded. We have

$$|a'(n)| \le \frac{N}{n} \sum_{\substack{d|n \\ d \le N}} |a(d)| \le \frac{N}{n} \left(\sum_{d \le N} |a(d)|^2 \right)^{\frac{1}{2}} \cdot N^{\frac{1}{2}} \le N^{\frac{3}{2}} \frac{\|a\|}{n}$$

from which the conclusion is immediatly obtained by squaring and summing over n. We will now prove that the family of linear transformation Λ_N is not uniformly bounded. Let $p_1 < p_2 < ... < p_n < ...$ be the sequence of prime numbers and let $M^+(n)$ the greatest prime divisor of the integer *n*. We define

(36)
$$a_N(n) = \begin{cases} 1 & \text{if } \frac{N}{2} < n \le N \text{ and } M^+(n) \le p_r \\ 0 & \text{otherwise} \end{cases}$$

for p_r and N fixed.

From formula (35) follows that in this case $a'_N = \Lambda_N(a_N)$ is given by

$$a_{N}^{'}(n) = \begin{cases} 0 & \text{if } 1 \le n \le N \\ \frac{1}{n} \sum_{\frac{N}{2} < d \le N} d a_{N}(d) & \text{if } n > N \end{cases}$$

since the inner sum $\sum_{\substack{k \le (N/d) \\ k \le (N/d)}} \mu(k)$ reduces to $\mu(1) = 1$. Consider now

$$\|\Lambda_N(a_N)\|^2 = \sum_{n=N+1}^{\infty} |a'_N(n)|^2$$

we have

$$\|\Lambda_N(a_N)\|^2 = \sum_{\frac{N}{2} < d_1, d_2 \le N} a_N(d_1)a_N(d_2) \sum_{\{n \ge N+1, n \equiv 0 \ (d_1), n \equiv 0 \ (d_2)\}} \frac{1}{(n/d_1)} \frac{1}{(n/d_2)} =$$

$$=\sum_{\frac{N}{2} < d_1, d_2 \le N} \frac{a_N(d_1)a_N(d_2)}{d_1 d_2} (d_1, d_2)^2 \left(\sum_{m > \frac{N(d_1 d_2)}{d_1 d_2}} m^{-2}\right)$$

If $\frac{N}{2} < d_1 \le N$ and $\frac{N}{2} < d_2 \le N$ we have $\frac{N}{d_1 d_2}(d_1, d_2) < 4$ and it follows

(37)
$$\|\Lambda_N(a_N)\|^2 \ge \overline{c_1} \sum_{\frac{N}{2} < d_1, d_2 \le N} \frac{a_N(d_1)a_N(d_2)}{d_1 d_2} (d_1, d_2)^2$$

where $\overline{c_1} = \sum_{m \ge 4} m^{-2}$. From formula (33) of Lemma 2 we have

(38)
$$S(\frac{N}{d}) = \sum_{\substack{\frac{N}{2d} < h, k \le N \\ (h,k) = 1}} \frac{1}{hk} \ge \overline{c}_2 > 0$$

where \overline{c}_2 is an absolute constant, if $\frac{N}{d}$ is sufficiently large, say $\frac{N}{d} > m$. Let

$$f_r(n) = \begin{cases} 1 & \text{if } M^+(n) \le p_r \\ 0 & \text{otherwise} \end{cases}$$

so that

$$\Psi(x, p_r) = \sum_{\substack{n \le x \\ M^+(n) \le p_r}} 1 = \sum_{n \le x} f_r(n)$$

Consider now formula (37): collecting together the terms with the same greatest common divisor we obtain, taking $p_r > m$,

$$\|\Lambda_{N}(a_{N})\|^{2} \geq \overline{c}_{1} \sum_{d=1}^{N} \left(\sum_{\substack{\frac{N}{2d} < h, k \leq N \\ (h,k) = 1}} \frac{a_{N}(hd)a_{N}(kd)}{hk} \right) \geq 2$$

$$(39) \geq \overline{c}_{1} \sum_{\frac{N}{p_{r}} \leq d \leq \frac{N}{m}} f_{r}(d)S(\frac{N}{d}) \geq \overline{c}_{1}\overline{c}_{2} \sum_{\frac{N}{p_{r}} \leq d \leq \frac{N}{m}} f_{r}(d)$$

if we remember definition (36) and formula (38). From formula (26) of Lemma 1 follows

$$\sum_{\frac{N}{p_{r}} \le d \le \frac{N}{m}} f_{r}(d) \ge \sum_{k=[\ln m/\ln 2]+1}^{[\ln p_{r}/\ln 2]-1} \left(\sum_{\frac{N}{2^{k+1}} < d \le \frac{N}{2^{k}}} f_{r}(d)\right) = \\ = \sum_{k=[\ln m/\ln 2]+1}^{[\ln p_{r}/\ln 2]-1} \left(\Psi(\frac{N}{2^{k}}, p_{r}) - \Psi(\frac{N}{2^{k+1}}, p_{r})\right) = \\ (40) \qquad = \sum_{k=[\ln m/\ln 2]+1}^{[\ln p_{r}/\ln 2]-1} \left(c(r)\ln^{r-1}(\frac{N}{2^{k}}) + O(\ln^{r-2}(\frac{N}{2^{k}}))\right) = \\ (41) \qquad = c(r)\ln^{r-1} N \left(\left[\frac{\ln p_{r}}{\ln 2}\right] - \left[\frac{\ln m}{\ln 2}\right] - 1\right) + O(\ln^{r-2} N)$$

for $N \to +\infty$, where c(r) is the constant specified in (26) of Lemma 1. From (39) and (40) follows

(42)
$$\frac{\|\Lambda_N(a_N)\|^2}{\|(a_N)\|^2} \ge \overline{c_1}\overline{c_2}\frac{c(r)\ln^{r-1}N\left(\left[\frac{\ln p_r}{\ln 2}\right] - \left[\frac{\ln m}{\ln 2}\right] - 1\right) + O(\ln^{r-2}N)}{c(r)\ln^{r-1}N + O(\ln^{r-2}N)}$$

since, by the definition (36) of $a_N(n)$ and by lemma 1 we have

$$|(a_N)||^2 = c(r) \ln^{r-1} N + O(\ln^{r-2} N)$$

From (42) we obtain

(43)
$$\liminf_{N \to +\infty} \frac{\|\Lambda_N(a_N)\|^2}{\|(a_N)\|^2} \ge \overline{c}_1 \overline{c}_2 \left(\left[\frac{\ln p_r}{\ln 2}\right] - \left[\frac{\ln m}{\ln 2}\right] - 1 \right) = L(r)$$

where \overline{c}_1 , \overline{c}_2 and *m* are absolute constants. Since $\sup_r L(r) = +\infty$ formula (43) proves that the linear transformation Λ_N are not uniformly bounded and this implies, by the Banach-Steinhaus theorem, the existence of a sequence $a = (a(n)) \in \ell^2$ such that

(44)
$$\sup_{N} \| \Lambda_{N}(a) \| = +\infty$$

If $f(x) \sim \sum_{n \ge 1} a(n) \sin(2\pi nx)$ and $R_N(x) = \sum_{n=1}^N \alpha(n) P(nx) - f(x)$, where the coefficients $\alpha(n)$ are given by (7) of Theorem 2, it is easy to see that

(45)
$$\| \Lambda_N(a) \|^2 \le 4 \| R_N \|^2 + 2 \left(\sum_{n=N+1}^{\infty} |a(n)|^2 \right)$$

since

$$|| R_N ||^2 = \frac{1}{2} \sum_{n=N+1}^{\infty} |-a'(n) + a(n)|^2$$

and

$$\|\Lambda_N(a)\|^2 = \sum_{n=N+1}^{\infty} |a'(n)|^2$$

if we remember (20), (22) and (35). From (44) and (45) follows (10). This concludes the proof of Theorem 3.

References

- [1] BARY N.K., A treatise on trigonometric series, vol. I, Pergamon Press, London 1964.
- [2] BATEMAN P.T. AND CHOWLA S., Some special trigonometric series related to the distribution of prime numbers, J.London Math Soc. **38** (1963), 372–374.
- [3] BESICOVITCH A.S., Problem on continuity, J.London Math Soc. 36 (1961), 388– 392.
- [4] CODECA' P., DVORNICICH R. AND ZANNIER U., *Two problems related to the non-vanishing of L*(1, χ), J. de théorie des nombres de Bordeaux 1 (1998), 49–64.

- [5] DAVENPORT H., On some infinite series involving arithmetical functions, Q.J.Math. 8 (1937), 8–13.
- [6] DAVENPORT H., On some infinite series involving arithmetical functions, Q.J.Math. 8 (1937), 313–320.
- [7] HARDY G.H. AND WRIGHT E.M., *An introduction to the theory of numbers*, Oxford University Press, Oxford 1971.
- [8] NAGY BELA SZ., *Introduction to real functions and orthogonal expansions*, Oxford University Press, New York 1965.
- [9] RADEMACHER H., *Topics in analytic number theory*, Springer-Verlag, New York 1973.
- [10] RUDIN W., Real and complex analysis, McGraw-Hill, New York 1966.

AMS Subject Classification: 42C15, 41A58.

Paolo CODECA and Nicola TADDIA Dipartimento di Matematica via Machiavelli, 35 44100 Ferrara, ITALY e-mail: cod@dns.unife.it e-mail: tad@dns.unife.it

Lavoro pervenuto in redazione il 10.07.1999 e in forma definitiva il 30.03.2000.