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RESTRICTION OF HOLOMORPHIC DISCRETE SERIES TO
REAL FORMS

Abstract. Let G be a connected linear semisimple Lie group having a
Holomorphic Discrete Series representatiorLet H be a connected re-
ductive subgroupo6 so that the global symmetric space attachedito

is a real form of the Hermitian symmetric space associate@.t&ix a
maximal compact subgroup of G so thatH N K is a maximal compact
subgroup forH. Let r be the lowesK —type forz and letz, denote the
restriction of r to H N K. In this note we prove that the restrictionsofto

H is unitarily equivalent to the unitary representatiortbfnduced by, .

1. Introduction

For any Lie group, we denote its Lie algebra by the corresppgn@erman lower case
letter. In order to denote complexification of either a raaldroup or areal Lie algebra
we add the subindex Let G be a connected matrix semisimple Liegroup. Henceforth,
we assume that the homogeneous spagi is Hermitian symmetric. LeH be a
connected semisimple subgroup®fand fix a maximal compact subgrodp of G
such thaK; := H N K is a maximal compact subgroup Bf From now on we assume
thatH /K is a real form of the complex manifold/K. Let(x, V) be a Holomorphic
Discrete Series representation farLet (r, W)be the lowesK —type for (z, V). For

the definition and properties of lowekt—type of a Discrete Series representation we
refer to [7]. Let(z., W) denote the restriction af to K;. We then have:

THEOREM 1. The restriction of(r, V) to H is unitarily equivalent to the unitary
representation of H inducedlgy,, W).

Thus, after the work of Harish-Chandra and Camporesi [1] auehhat the restric-
tion of = to H is unitarily equivalent to

r

Z/ Indfi an(0j ® €Y ® Lydv.
j=1 vear

Here,M AN is a minimal parabolic subgroup &f so thatM c Ki, andoy, -, or
are the irreducible factors aof restricted toM. Whenever,r is a one dimensional
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representation, the sum is unitarily equivalent to

/ Ind \y(1®€" ® 1ydv
vear/W(H,A)

as it follows from the computation in [13], and, hence, owuteagrees with the one
obtained by Olafsson and Orsted in [13].

The symmetric pairéG, H) that satisfy the above hypothesis have been classified
by A. Jaffee in [4, 5], A very good source about the subjecyi©lafsson in [11], they
are:

(su(p, @), so(p, @)); (su(n, n), sl(n, C) + R));

(SU(2p, 29), SP(P. )); (SO"(2n), san, C)); (S0*(4n), SU*(2n) + R);

(so(2, p+0q),sa(p, 1) +sa(p, 1)); (sp(n, R), sl(n, R) + R)); (sp(2n, R), sp(n, C));
(€5(—14)> SP(2, 2)); (€5(~14), fa—20); (E7(—25), €5(—26) + R); (€7(—25), SU*(8));

(su(p, g) x su(p, g), sl(p + g, C)); (so*(2n) x so*(2n), so2n, C));

(so(2,n) x s0(2, n), so(n+ 2, C)); (sp(n, R) x sp(2n, R), sp(n, C));

(€6(—14) X €6(—14), €6); (€7(—25) X €7(—25), €7).

For classical groups we can compute specific examples ofdbendposition of re-
stricted toM by means of the results of Koike and other authors as stat@d.in

For an update of results on restriction of unitary irrediecilepresentations we refer to
the excellent announcement, survey of T. Kobayashi [8] aferences therein.

2. Proof of the Theorem

In order to prove the Theorem we need to recall some Theorewhgpeove a few
Lemmas. For this end, we fix compatible lwasawa decompositto= K AN, H =
K1A1N; with Ky = HN K, A; ¢ A, N1 C N. We denote by|X| = +/—B(X,0X)
the norm ofg determinated by the Killing fornB and the Cartan involutiof.

LEMMA 1. The restriction to H of any K-finite matrix coefficient ofz, V) is in
L2(H).

Proof. We first consider the case that the real rankibfis equal to the real rank
of G. Let f be a K-—finite matrix coefficient of(sr, V). For X € a, we set
PH(X) = %trace(adH(X)|n1). For anad(a)—invariant subspace® of g,let ¥ (a, R)
denote the roots of in R. Let A§, A}, be the positive closed Weyl chambers for
W(a,n), W(a, ny) respectively. Themd§ C Aj. Let W1 := W(a,n),..., ¥s be the
positive root systems i (a, g) such that¥; > W(a, ny). Let AiJr denote the positive
closed Weyl chamber associateddp. Thus, Aj; = Al U... U Al. For each, let
oi(X) = %trace(ad(X)|Za€w_ g.)- FOrX e AiJr we have thap; (X) > pn (X). Indeed,
fora € ¥, ifa € ¥iN \IJ(aI, n1) = ¥(a, n1), then the multiplicity ofx as ag— root
is equal to or bigger than the multiplicity afas ah—root, if @ € ¥; — W (a, n1), then
aj(X) > 0. Thus,

i (X) > pn (X) for every X e A'.
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We now recall the& ando functions forG andH and the usual estimates f@r.
(cf. [7] page 188). Fo¥ € a, x € G putpc(Y) = trace(adn(Y), and

Ec(X) = / g reHxk g
K

Here, H (x) is uniquely defined by the equation= kexpH (x))n, (k € K, H(X) €

a,n € N). If x = kexpX), (k € K, X € 5,9 = £ & s, Cartan decomposition fay),

we putog(X) = || X]|. Since the grougd might be reductive we follow [3] page 106,
129 in order to definey. Now, all the norms in a finite dimensional vector space are
equivalent. Thus, have thag << oy << og. The estimates are:

Ec(expX)) < cee " (1+ og(exp(X)))'
withr > 0,0 <cg <00, X € Af,i=1-.-,sand
e M) < gy (exp(X)) < cpe PP (1 4 oy (expX))"

Therefore, forX € A’ we have that
Ec(expX) < cg(1+ ag(expX) e

< En(expXce(l+ oc(expX)’ern X =aX),

Since onAiJr we have the inequalitpy (X) — pi(X) < 0, andi is arbitrary from
1,.---,s, we obtain

Ec(kiaky) = Eg(@) < En(a)Ce(1+ o6 (@)
fora e exp(Af), ki, k2 € Ku.

Now, Trombi and Varadarajan [16], have proven that for &nyfinite matrix coeffi-
cient of a Discrete Series representation of the gi@upe following estimate holds,

1 ()] < ctBa” 0O+ o6 (X))
VX eG,withO<ci <oo,y >0,q=>0.

Hence, fora € ex p(Aﬁ), ki, ko € K1, we have:
| f (kiako)|? < CE (@)% (1 + o6 (a) 2@+ D)
< Ce(7272y)pH(Ioga)(1+ UG(a))Z(q+yr+r)(1+ oH (a))l’]_(l+y).

We setR = 2(q+yr +r)+2r1(1+y), sinceog (expY) = oy (expY). The integration
formula for the decompositiod = Kjex p(Aﬁ)Kl yields:

f|f(x)|2dx=f A(Y) | f (kiexp(Y)ko)|°dkydkodY
H A Kix K1

<c|. A(Y)e=272rnN (1 4 55 (expY)RdY
Aj
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SinceA(Y) < Cye?H) on Al (Ch < 00) andog(expY) is of polynomial growth
onY. We may conclude that the restrictionkbof f is square integrable iH, proving

Lemma 1 for the equal rank case.

For the nonequal rank case &f; be the closed Weyl chamber in corresponding
to Ni. Let Cq, - - - Cs be the closed Weyl chambersdnso thatinterior(Aﬁ) ncj /
@, j =1,---s. Thus,Af, = Uj (A, N Cj) and

f(expY)|2AY)dY < / f (expY)2A(Y)dY.
/AEI( PY)2A(Y) ‘,ZcmA;I( PY)2A(Y)

Let pj(Y) = 1trace(ad(Y)|Za: ). Then, as before, 08j N Aﬁ we have

a(Cj )>0 o
| f(ex pY)|2 << ez(ﬂH(Y)—Pj (Y))(1+ ||Y||2) Re—Zypj (Y).

If « € ®(a,n(Cj)), the restrictions of « to ay is either zero, or a restricted root
for (ay, n1), or a nonzero linear functional ary. In the last two cases we have that
B(CiN Aﬁ) > 0, and if 8 is a restricted root, the multiplicity ¢f is less or equal than
the multiplicity of «. Finally, we recall that any € W(an, n1) is the restriction of a
positive root forC;. Thus,e??HM=,iM) < 1 andpj(Y) > 0 for everyY e Aj,.
Hence,| f (exp(Y))|?A(Y) is dominated by an exponential whose integral is conver-
gent. This concludes the proof of Lemma 1.

O

REMARK 1. Under our hypothesis we have the inequality

Ec(kiaky) = Eg(a) < EH(a)ca(1+ oG (@)
fora € exp(Af), ki, ka2 € Ki.

Let (7, V) be a Holomorphic Discrete Series representationdand let(z, W)
denote the lowesK —type forx. Let E be the homogeneous vector bundle o@g¢K
attached t@r, W). G acts on the sections & by left translation. We fix & —invariant
inner product on sections &. The corresponding space of square integrable sections
is denoted byL2(E). Since(x, V) is a holomorphic representation we may choose a
G—invariant holomorphic structure 08/K such that the_2—kernel ofd is a real-
ization of (7, V). That is,V = Ker(d : L3(E) - C®(E ® T*(G/K)%Y). (cf. [7],
[10], [14]). SinceH c G andK; = H N K we have thatH /K1 ¢ G/K and the
H —homogeneous vector bundig, over H /K1, determined byt, is contained inE.
Thus, we may restrict smooth sectiongofo E,. From now on, we think ofr, V) as
the L2—kernel of thed operator.

LEMMA 2. Let f be a holomorphic square integrable section of E and ma&su
that f is left K—finite. Then the restriction of f to JKj is also square integrable.

Proof. Since thé operator is elliptic, thé.2—topology on its kerneV is stronger than
the topology of uniform convergence on compact subsets.reftie, the evaluation
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map at a point irG/K is a continuous map frond to W in the L2—topology onV.
We denote by, evaluation at the coset. Fix an orthonormal basis, . . ., vm for W.
Thusx = Y ; Aivi where the.; are in the topological dual tg. We claim that the,;
areK —finite. Infact: ifk € K, v e V, (Lkd)(f) = Y [(Lkki) (D] ®ui = f(k™1) =
tdfEe = X rHr®v = 3536 0A (Do = 351355 ¢jirj(H)] ® vi.
ThusLk(%;) belongs to the subspace spannedfy - - , Am. Now, f(X) = A(Lx ) =
Yidi(bx i = > < Lxf, A > vi. Herex, > denotes the€G—invariant inner
product onV and2; the vector inV that represents the linear functiorial Since
f and; are K—finite, Lemma 1 says that the functiors=— < Ly f, A; > are in
L2(E,).

O

Therefore the restriction map from to L2(E,) is well defined on the subspace of
K —finite vectors inV. Let D be the subspace of functions ¥nsuch that their restric-
tion to H is square integrable. Lemma 2 implies titais a dense subspace Vh\We
claim that the restriction map: D — L2(E,) is a closed linear transformation. In
fact, if f, is a sequence iDthat converges i to f € V and such that( f,) con-
verges tg € L2(E,), then, sincef, converges uniformly on compacts fog is equal
tor ( f)almost everywhere. That if, € D. Sincer is a closed linear transformation, it
is equal to the product

1) r=up

of a positive semidefinite linear operatéron V times a unitarylinear map from V
to L2(E,). Moreover, if X is the closure of theimage ofin L2(E,), then the image
of U is X. Besides, wheneveris injective,U is an isometry oV onto X ([2],13.9).
Sincer is H —equivariant we have th&l is H —equivariant ([2], 13.13). In order to
continue we need to recall the Borel embedding of a boundeuirstric domain and
to make more precise the realization of the holomorphic RiscSeriegz, V) as the
square integrable holomorphic sections of a holomorphitoreoundle. Sincés is a
linear Lie group,G is the identity connected component of the set of real paihts
complex connected semisimple Lie gro@p. The G—invariant holomorphic structure
on G/K determines an splitting = p_ @ ¢ & p so thatp_ becomes isomorphic to
the holomorphic tangentspace GfK at the identity coset. LeP_, K¢, P+ be the
associated complex analytic subgroupsGf Then, the mapP_ x K¢ x Py —
G. defined by multiplication is a diffeomorphism onto an openstesubset iG¢.
Hence, for eacly € G we may writeg = p_(g)k(9) p+(9) = p_k(g) p+ with p_ €
P_,k(g) € K¢, p+ € P+. Moreover, there exists a connected, open and bounded
domainD C p_ such thalG ¢ expD)K¢ P4+ and such that the map

(2 g — p— (k@ p+(9) — log(p-(9)) € p-

gives rise to a byholomorphism betweBiiK andD. The identity coset corresponds to
0. Now we consider the embeddingldfinto G. Our hypothesis ol implies that there
exists a real linear subspaggof p_ so thatdimgqo = dim¢gp_ andH - 0 = D N qo.

In fact, letJ denote complex multiplication on the tangent spac&¢K, thenqg is
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the subspacgX — iJ X} whereX runs over the tangent spaceléf K1 at the identity
coset. LetE be the holomorphic vector bundle ovey/K attached taz, W). As it
was pointed out we assume that V) is the space of square integrable holomorphic
sections forE. We consider the real analytic vector bun@goverH /K1 attached to
(T, W). Thusk, C E Therestriction map : C*°(E) — C*°(E,) maps theK —finite
vectorsVg of V into L2(E,). Because we are in the situatibly K1 =DnNqgo C D C

p_ andH /K1 is a real form ofG/K, r is one to one when restricted to the subspace
of holomorphic sections dE. Thus,r : V — C*°(E,) is one to one. HencéJ gives
rise to a unitary equivalence (&—module) fromV to a subrepresentation bf(E,).

We need to show that the m&j defined in (1), is onto, equivalently to show that the
image ofr is dense. To this end, we use the fact that the holomorphtovbandleE

is holomorphically trivial. We now follow [6]. We recall tha

C®(E) ={F : G — W, F(gk) = t(k)"1F(g) and smooth

O(E) ={F :G —> W, F(gk) = t(k)"1F(g) smoothan&y f = 0VY € p_}.

We also recall thatr, W) extends to a holomorphic representatiorkaf in W and
to K¢ P4 as the trivial representation d?,. We denote this extension by Let
C®(MD,W) = {f : D — W, fissmooth. Then, the following correspondence
defines a linear bijection frod>°(E) to C*°(D, W) :

C®E)sF < f eC®D,W)
(3) F(9) =t(k(@) ' f(g-0), f(2 =1(k(@)F(@),2=9-0
Here, k(g) is as in (2). Note that (k(gk)) = t(k(g))r (k). Moreover, the map (3)

takes holomorphic sections onto holomorphic functionse @btion ofG in E by left
translation, corresponds to the following

(4) g )@ =tk k@ x)tf@?t 2 forz=x.0

Thus, (k- f)(2 = (k) f(k™1-2),k € K. The G—invariant inner product orE
corresponds to the inner product &7t (D, W) whose norm is

(5) I F11% = /G Iz(k(g)"*f(g-0) |°dg

Actually, the integral is over th&—invariant measure of because the integrand is
invariant under the right action d€ on G. We denote byL?(r) the space of square
integrable functions fror® into W with respect to the inner product (5). Now, in [14]
it is proved that the< —finite holomorphic sections df are inL2(E). Hence, Lemma
2 implies that

(6) the K —finite holomorphic functions fror® into W are inL2(t).

Via the Killing from, p_, p are in duality. Thus, we identify the space of holomorphic
polynomial functions fronD into W with the spac&S(p4+) ® W. The action (4) oK
becomes the tensor product of the adjoint actiorS@p..) with the r action ofK in
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W. Thus, (6) implies thaS(p,) ® W are theK —finite vectors inL2(z) N O(D, W).
In particular, the constant functions frof to W are in L2(t). The sections of the
homogeneous vector bundig over H /K; are the functions fromd to W such that
f(hk) = t(k)~1f(h), k € Ky, h € H. We identify sections oE, with functions
form D N qo into W via the map (3). Thusl.?(E,) is identified with the space of
functions

L%(t,) i={f: D — W, / lz(k(hy)~2f(h-0)2dh < oo}
H

The action orlL?(z,) is as in (4). Now, the restriction map for functions frdminto

W to functions fromD N qp into W is equal to the map (3) followed by restriction
of sections fromD to D N qg followed by (3). Therefore, Lemma 2 together with (6)
imply that the restriction t@ N qo of a K —finite holomorphic function fronD to W

is and element of 2(z,). Sinceqq is a real form ofp_ when we restrict holomorphic
polynomials inp_ to qo we obtain all the polynomial functions iqy. Thus, all the
polynomial functions fromg into W are inL?(z,). In particular, we have that

(7) / Iz (k(h) tv|[?dh < 0o, Vv € W
H

Now, givene > 0 and a compactly supported continuous functidinom D Ngg to W,
the Stone-Weierstrass Theorem produces a polynomialitumptfrom g into W so
that|| f (X) — p(X)|| < €, X € DNqo. Formula (7) says thiff — PllL2¢,) < €. Hence,
the image by the restriction map ¥f= O(D, W) N L?(7) is a dense subset. Thus, the
linear transformatiotJ in (1) is a unitary equivalence frov to L?(t,). Therefore,
Theorem 1 is proved.

REMARK 2. For a holomorphic unitary irreducible representatiotéciv is not
necessarily square integrable, condition (7) is exacgydbndition used by Olafsson
in [12] to show an equivalent statement to Theorem 1.
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