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ON THE SOLVABILITY IN GEVREY CLASSES OF A LINEAR
OPERATOR IN TWO VARIABLES

Abstract. We show non solvability results in Gevrey spagédor a linear

partial differential operator with a single real charaistic of constant
multiplicity m, m > 3, provideds > m/(m—2) +§, wheres > 0 depends
on the order of the degeneracy of a suitable lower order terarticular,

8§ — 0 as the order of the degeneracy tends-to.

1. Introduction

The main aim of the present paper is to study in detail thel Ealaability of a model
linear partial differential operator in two variables. Vegall that although most of the
well known classical operators, appearing in the basicrthebPDEs and in Mathe-
matical Phisics, are solvable, non solvable operators,@dgproved first by Lewy [9],
and often of a very simple form. The example of Lewy was gdim@by Hormander
[6], who proved a necessary condition for the local solngbdf partial differential
operators, given by the following

THEOREM 1. Let the linear partial differential operator P with coeffigits in
C>(R2) be solvable i, in the sense that for every & C3°(2) we can find a so-
lutionu € D'(R2) of Pu= f. Then, for every compact set K €2 there exist a positive
constant C and an integer M 0 such that

1) \/f(X)w(X)dXIs >~ sup|D*f(x)| Y sup|D* 'Py(x)|

jaf=M XK jal=M X<
forall f, ¢ € C5°(K).

If an operatoiP is non locally solvable in the previous sense it is naturaltalyze
its behaviour in Gevrey spaces, being intermediate cldsg®seen the analytic and the
C® functions. More precisely, from now on we will refer to thdléeving functional
setting.
Let K be a compact subset & andC a positive fixed constant. Let us consider the
subspac€ (22, K, C), 1 < s < 400, of C§°(£2), given by all the functiong (x) with

*The author is thankful to Professor Luigi Rodino and Prafeg%etar Popivanov for useful discussions
and hints on the subject of this paper.
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support contained i such that, for som& > 0,

(2) sup|a® f (x)| < R C®l(a!)S.

xeK

QS(Q, K, C) is a Banach space endowed with the norm:

3) Ifllsk,ci= SUD(C_""(OI!)_S sup|o® f (X)I)

xeK

or equivalently

(4) Ifllsk.c =Y C™@)™59% flLr,

with p > 1 fixed. From now on we consider (4) wifh= 2.

DEFINITION 1. G5(R2) = Uk, c 95(R, K, C) where K and C run respectively
over the set of all the compact sets containefiand over the set of the positive real
numbers.

Therefore it is natural to endo@§($2) with the inductive limit topology:

; ; S
(5) ind KI&nQ Go(2, K, C).
C "+o0

Similarly we defineGS(2) as the projective limit topology of the spadgg¥ 2, K, C)
of all the functionsf € C°°(Q2) for which the norm (3) of the restriction t§ is finite.
The main result that we will handle in the following, condeqwith the solvability
in a Gevrey frame of partial differential operators with coefficients, is the Gevrey
version of Theorem 1 proved by Corli [2].

THEOREM 2. Let s be a fixed real numbel, < s < +oo. Let the linear partial
differential operator P be s-solvable i, i.e. for all f € G5(Q) there exists u in
Di(2), space of the s-ultradistributions if2, solution of Pu= f. Then for every
compact subset K a®, for everyn > ¢ > 0, there exists a positive constant C such
that:

2 t
) (21?(X|f(x)|) <CIfllg, 2 I'PFI 1

*n—e€ n—e
for every fe G5(, K, %).

The previous theorem will be used in the following manneroparatorP is not
s-locally solvable inxg if the associated transposed equatiBri = 0 admits a suitable
sequence of approximated solutions which make the righd Isate of (6) arbitrarily
small and let the left hand side bounded from below.
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Now let us analyze the problem we are interested in.
Let us consider the operator

@) P = DJ — A(x))DJ ™! — B(x1) DJy %Dy,

with m odd,m > 3; A(x1), B(x1) are analytic functions af;, defined in a neighbor-
hood ofx; = 0.

The operatoP is weakly hyperbolic inx; with a single characteristic of constant mul-
tiplicity m and therefore it is always locall§® solvable fors < -7 without any
restrictions onA(x1) andB(x1). This well known fact follows from th€* well posed-
ness of the Cauchy problem fBror from more general results about @esolvability
of linear PDEs with multiple characteristics (e.g., cf. @lary 5.1.3 in Mascarello-
Rodino [13], see also [1], [5], [17]). Next ik m(A(x1)) vanishes of odd order at
x1 = 0, changing its sign from - to +, the results of Corli [3] imphat P is not locally
solvable inG® for s > % We will investigate the case af m A(x1) vanishing of
even order ak; = O.

Let us suppose that for some integper O:

8) %fe A0) # 0,

(9) 3m Ax) = o +o(x2") for xg — 0, c#0,
Moreover for a fixed > 0:
(10) Sm B(xg) = dx; +o(x)) for x; — 0, d#0.

Popivanov [14] ( see also Popivanov-Popov [15]) proved Ehet not locally solvable,
in theC* sense, ih is sufficiently large with respect 1o

Moreover, if the conditions (8), (9), hold, as a particulase of Theorem 3.7 in [10] or
Theorem 3.2 in [4] we obtain that the operator (7) is s-sdbv&tr

m
m-—2

(11) S <

At this point a natural question arises: what can we say atheubehaviour o for

indexess > =52 We get thaP is nons-solvable for

(12) S >

+0h
2 ()s

with 6(h) — 0 forh — 0.
The proof of this result, developed in the next section, selbleon Theorem 2, applied
to a functionf, (x) of the following form:

m-1 m-2 1
FL(X) = v(x) - @ (HOOH T Y100+ M Y200+ 43 M Yim_1(9)

We will choose the phase functiotig(x) according to a standard proceeding (see [3]).
At this point, solving suitable transport equations, we aoke to find an amplitude
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functionv(x) such that the approximate solutidr{x) of the homogeneous equation
tPf, = 0 makes the right hand side of (6) arbitrarily small fosufficiently large and
s satisfying (12), but leaves the left hand side greater thraagaal to 1. We observe
that the previous estimates need also a suitable versiahifocase of the results of
Ivrii [8]. For more details we also address to [12].

2. The main result

THEOREM3. Let us suppose that A (respectively, B) satigBg9) (respectively,
(10)) and

(13) h>{2(2|+2) if m=3

2 +2 if m>b5.
Then P is non s-solvable at the origin for every s satisfyit®) where

m( + 1)

o(h) = (m—=2)[2m—4)h—- m—1) — 1].

Proof. We will reason ab absurdo.
First let us observe that
P = —(=)May — (=)™ A G T — (=)™ B(X)dg 2 9k, +

14
- — (=)™ 1B (xp) oy 2.

Let us define

m-1 m=2 1
(15) F(x) = @ (FPO00+HA M y100+3 M yo(X) A M Y1)

wherex = (X1, X2).

15t STEP:choice of the phase functiong(x).

The basic idea is to apply the operat® to f;(x) and choose the phase functions
Yo(X), ¥1(X), ¥2(x) in order to make equal to zero the higher powers.of

Following a standard approach for constructing formal gstyic solutions (e.g., cf.
[2], see also [5], Chapter IV) we choogg = x2 and obtain

tPf,(x) = (lm,l(x)xf“*1 4 o()\mfl)) f,(X), A — ~oo.

where the coefficient is given by

8 m
(16) In_1 1= —< WX)) — AX).

0X1

Lettinglym—1 = 0, we obtairm complex solutions and we choose

(17) Ya(x) = fo Rox) dxa,
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~ 1 1
where A(x1) = [A(x1)]m is determined in such a way tha(0)] m is real-valued.
Note that properties (8) and (9) keep valid #¢x1), for a new constarnt.

Then

C
(18) IMy1(x) = 2h—+1xfh+l 4+ 02,

Repeating the previous arguments with this choicgi) finally we find:
1[5 2

(19) Vo= — / B(x1) dxq + ix3

with B(x1) satisfying again (10) for a new constahtTherefore

(20) IMya(X) = %( 41 4 o(x'1+1)) +x2.

—X
l+171

The other phase functions are determined recursivelyrdicgpto a standard proceed-
ing, cf. [2]. We need not precise information on them, buythenish atx; = 0. We
then write

(21) fo(x) = €*™

where

mlf € onp1 2h41 m2f1/ d 4
IMm o =A e — A —| —
- sm ® (X) m {Zh n 1xl +O0(X{ )¢+ el 1x1 +

m=3
+ o(x'1+1)> + X22} A m oo(xXy).

2"d STEP:the action oft P on ux) = f;(x) v(X).
According to our choices we find:

'Pux) = fL () PLv(x)

setting
- m—-1 )
(23) Py = AT{Qo(x, D)+ Y 271 Qj(x, D)}
j=1
where:

- Qo(x, D) = (—1)m(Zi G (X)Dj + S(x)), wherec; (X) are polynomial irx and S(x)
is an analytic function;

- Qj(x, D) are differential operators of order less than or equahtavith analytic
coefficients.
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3'd STEP:minimum of3m & (x).

We follow here the arguments in Popivanov [14].
Obviously

(24) IM®(0, 0) = 0.

We are interested in the solutions of the following equation

oM ® (X m-1 m-21
IIMPO) _ 5 "5 (0x" + 002y + 4" = (@] + o))+
0X1 m
m-3
(25) +a m o(l) =0,
IIMdP(x) | m=2 m-3

(26) 2. m Xo4+ A m o(Xy) =0.

0Xo

The second equation is solved by

1
(27) X2 = 0(A” mXxy), for x; — 0.
Let us try to solve the first equation

m—1

on, 11 NS .
A (cx{ +Hd)” mx; 4+ 0(X{") + A" mo(x;) + A~ mo(1)) =0

Let us begin by considering the cdsedd,c > 0,d < 0, 2h > 2| + 2.
Taking larger, in this way we have to solve

oh 13 -2z
(28) cx{ + Ed)» mx; =0(A m), for A — 4o0.
Let us define

2h-I - 0if A > 0.

3=

(29) €:=A

1
From the previous definition it follows immediately thatm = 2! thus, replacing
this quantity in (28) we obtain the following equation:

1
(30) ox@ 4 ac|62h*' x| = 0(e2@ D) e 0.
Let us set:
1
d \ 2h—1
(31) X1 =1+ Yy (—m—c) €;

then (30) transforms into

A+ yD)' (L4 yD? — 1) = 022,
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Now let us consider the corresponding function

Clearly
—0, (29)00=2n- 99 0.0 —
9(0.0) =0, (ayl)(O, 0)=2h—1>0, <a€)(o, 0)=0.

Then, by the Implicit Function Theorem there exists a fuoretiy = y1(¢) € C?, such
thatg(y1, €) = 0,y1(0) = 0, y;(0) = 0. This implies that

y1(€) = 0o(e?) for € — 0.

Thus
d \ T d \ T
=1 2 (-— =|-— 3).
X1 = (1+o(e ))( mc) € < mc) € +0(e”)
Therefore, considering (29) and (27) we conclude that &atipoint is given by

1
d\2h—T _1_1 3
(33) X]_)\ = —R A m 2h—I + O()\, m(Zh_l)), A — +0o0
_ 2h—141
(34) Xz = 0(A” MDA\ — foo0.

Now, we may give a complete picture of the behavioukof®(x) varyingl and sign
of d:

1. | odd;
-d > 0: IMmP(x) assumes its minimum at the origin and we have
Im® (0, 0) = 0;
-d < 0: IM @ (x) assumes its minimum value {1y ;, X2,) and, setting,
1+1
d\2-T /d 2h —1 m-1__2h41
35) Corlti=(-—— — ) xm “m@&h-D
(35) 0 ( mc) <m)(l +D(2h+1)
we have
(36) IM® (X1, X21) = C(1) = Coalt + o(A%1).

where, being B > 21 4+ 2 andm > 3, we immediately get:

m-1 2h+1

7 = _
(37) Co<0, O0<é1 = m(2h—|)<

2. | even;

-d - c < 0: the expression of the critical poitty ;, X2,) and the behaviour of
Im ®(x) are the same described before;
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-d-c > 0:ifd, c > 03IMd(x) is an increasing function of;; otherwise
Im @ (x) is a decreasing function of.

We may limit our attention to the cat®dd andd < O (the casé even,c > 0,d < 0
is treated in the same way. Note moreover that the changeiablex), = —x2 gives
a change of sign for the constatjt

We want to apply Taylor’s formula in order to analyze the hatiar of Sm & (x) near
the point(xs ,, X2,). To this aim let us observe that:

323m @ (X9, X m-2 m-3
%:2}\ M Xp4+A M 0(X1),
%5
923m ® (X1, X m-3
M:)\ m 0(1)’
dX20X1

923mM ® (X1, X2) m-1 _ 1 _
T=A m {2hod"t 4+ Ld x4 o)+
1

1 2
+2"mo(x" ) 4+ A" mo(2)}.

Therefore

~ o= / 2,8, 2, M=2
SMP(X) = C(A) + Cy(Xy — X13)A%2 + (X2 — X2) A M +

(38) 21 . m—1_2h+1-j m-1
+ Y a—xa)a ™ AT 4 o((xp — x2)HA ™
j=3
where
2h—1

d \ 2h—T
Cp :=2c(2h — I)<—m—c> >0

and
m-—1 2h—1

m  m2h-1) <1

0<é2:=
Now let us suppose that
X1 — X1,] < €11 with O<e1 <« 1.
Being:
2h+1 ) m_f]_72h+17j
Z (X1 — X))l m ~mEh-h)
j=3
1 2
< (Xl - Xl)\)Z)\’(Sz{EleA)\ m(zh-T) —+ (Glsz.)m)\’ m(2h—I) + ...

2h—-1
o (e1x1;) 2N IAmERD )
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we get
Colxa — X12)?2%2 + Y~ (xa —xq)la M "M =
(39) =3

= Cf(x1 — X12)?A2{1+ O(en)}.
Now let us define:

. o o
“0 9=y i acp-aatal
Let us suppose that:

- g1(x1) € G5(R);

-0 < g1(x1) <1, for everyxs in R.

By definition, it follows immediately that
- _ €1
goaxg) =1 if |xa—xul < - X1

and
supp Q(Xlxl_f) C{xte€R : |X1—X1:| < €1X1,}.
Moreover
SUPPs=g1(xaxg;) C {1 (L—enxan < Ixa— x| < (- $xaad

(X1 (A4 Pxax < Ixe = x1al < (14 en)xaal.

Then omuppg(xlxif), and for|xz — X2,| < €1 we have

~ 1 m-2
(41)  3IMP(x) = C() + Cor’2(x1 — x1,)?[1 + Olen)] + Pl X% m

In an analogous way osuppg% and for|xo — x2,| < €1 we get

(42) Ime(x) > C(h) + CHA%
with
d \ 2T
2h—
(43) Cl = efcg,<—m) >0

and O< 8; < 1, defined as before.
Moreover let us consider:

1 if [xof <
44 =
(44) 02(X2) :O x| =

(NN

satisfying the following conditions

109
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- g2(x2) € G5(R);
-0 < go(x1) < 1, for everyxy in R.
Let us suppose thab € supp @. Then
IX2 — X22] < + Ix22l.
Considering thak,, — 0 for A — 400, for A sufficiently large we have
IX2 — X2,| < e1.
Moreover, by definition we have

dg2(X:
supp®®2X2 c (4 < x| < $).

Then, onsu pp%, for |x1 — x1,] < e1xX1, and fora sufficiently large we obtain

~ 5, M=2
(45) IMPX) > E) + e m .
4th STEP:choice ofv(x).
Let us define
(46) X (X1, X2) := Gr(XaX 1) G2(%2).

Now let us observe that the Cauchy Kovalevsky Theorem assig¢he existence of
functi0n5v§k) defined by induction as solutions of the following transpatiations:

0
QO(Xs D)UX = 0 J
k —— K—i
- Qo(x, D)v§>=—JZA mQj(x, Dyvy ), k=1
v§0) =1 on X=X

v§k):o on X3 =xp; for k>1

where in the sunj runs from 1 to mik, m — 1}.
Let us consider:

N
N) . k
(48) Vi =3 "
k=0
Let us define
(49) U () = x () VNV (x) 00

5th STEP:the conclusion.
We want to apply the necessary condition of Corli [3ax). We recall that we want
to contradict the estimate (6) fdr= uy, A — +o0, i.e.

2 t
(50) (max|u,. (1) sCIIUAIIS!K!n%gII PUA”S!KW’%
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whereK is a suitable small compact neighborhood of the origin.
In view of (46), we may limit our attention to

(51) K = {(X1,X2) : X1 — X1:| < €1X1s, |X2| < F}.

Let us start evaluating the left hand side.
Let us observe that

(52) |l.,|)h (Xl)” X2A)| — efsmdz’(xlxyxzx) — efC()»)’
therefore
(53) (mKaX|UA(X)|)2 > e—2C~Z()\).

t
Now let us analyzauAHS!K!n%gH PUAHS,K,,’%'
Let us reason as in lvrii [8]: there exist positive constaBindN such that, setting

A=4Be"N, L>1,
the following estimate holds:
v
(54) D) 1 < BeHHMNT 0,12,
loe|<m T
with v = ™= Therefore
v
YDV < 2BeMNT
lej<m C

Since our choice oﬁik) implies

m—-2m-2 h
t N - N—m+2+]j
PV =37 3 AT mQuyy
h=0 j=h
from (54) it follows that
v
(55) 1PV 1 < CertNTAMNT,
s,K,=
Now
(N) i d
lunl 1 =< lxl 1 IVl alle™ 1
S,K,r’T6 S,K,m S,K,E S,K,m
4
AMNM | jd
<cé€ e 1 -
K. e

Let us recall now a useful result about Gevrey norms ( Colli[R, Marcolongo [11],
Mascarello-Rodino [13], Gramchev-Popivanov [5]):
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PROPOSITIONL. LetW be an analytic function in a neighborhoétof the origin
of R". Let us fix s> 1. Then for every compact K 2 and for everyy > 0 we get:

11
s,K, = — ’

s

where C and d are positive constants ang=asupg (—Im ¥ (x)).

Applying the previous proposition we obtain that:

1 1 1
1€l 1 < CethSmteos+dimte st
S,K,n?
with a = —C(%). Thus
L 1 1 1
(57) | | < CEMNM—ColLidhS (n+e)S+d(r+e) ST
sK,—L =
Ko

Regardind Pu, we get

tp t (N) i d
u <C|'PV. €
IPullg 1 =CIPVTI 1€, 1

(58) m-1 .
= ayy(N) i D
+eim 3 1DV 1197

s.KNsuppyx. &
lee|<m K

SinceK Nsuppy x doesn’t contain a small neighborhoodef= 0, again by Propo-
sition 1, considering also (42), we obtain that:

11 1
f _C(N_C 8 S,S s—1
”eld)” 1 S Ce C(A.) CO)L 1+dksn5+dn .
s,Kﬂsuppvx,Z
Therefore
v 1 1 m—1
_c S s—1 _ 7= 1rsé

(59) ||tPU)L|| 1 S(:e4'\/|Nm C(A)+d(rn) S+dn {e LN +Ame CO)L 1}.

S’K’y]Tg
Summing up

11 1

v
t MNM—2C( —LN+dAS (nS E
il 1 I'Pull_, 1 <Cé (e NS 3 +0+0 %)

'n—e n—e
m—1 11 1
+ CZATe_CWl*d* S(S++e)S)y,

whereC; andC; are positive constants dependingainy, €. But, from the previous
arguments, ~
t —2C(n)
IIU,\IIS,K!LII PUA”S’K’L > e ,

n—e n—e
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therefore:

v 11 1
1< Cle—LN+8MN M+dr S (nS+(n+e)S)

m v s 11 1
—_— "
Cz)» m e8MN —COA 1+d)L5(r;5+(r;+e)5)’ VN.

Clearly the first addend of the right hand side tends to zerentth — +oo.
Regarding the second addend of the right hand side, in oodket it to zero when
N — +o00, we mustimpose

Y
1

Recalling that
m-—1 2h+1

m m(2h — 1)

we get that (60) is satisfied if the hypothesis (13) is valid §il) is equivalent to
requires > % + 6(h). This concludes the proof. O

01 =
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