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MINIMAL PROJECTIONS IN TENSOR PRODUCT SPACES

Abstract. It is the object of this paper to study the existence and the
form of minimal projections in some spaces of tensor products of Banach
spaces. We answer a question of Franchetti and Cheney for finitely co-
dimensional subspaces inC(K ) [1].

Introduction

The problem of the existence of minimal projections and the computation of the norm
of the minimal projection is an important one [1], [5], [6].

The object of this paper is to present new results on the existence of minimal pro-
jections in some tensor products of Banach spaces, and to give the form of the minimal
projection in certain Banach spaces. It should be remarked that not much is known on
the form of minimal projections.

For Banach spacesX and Y , X
∧
⊗ Y(X

∨
⊗ Y) denotes the completed projec-

tive(injective)tensor product ofX and Y [5]. For 1 ≤ p < ∞, we setL p(I , X)

denote the space of allp−Bochner integrable functions (classes) on the unit interval
I with values in the Banach spaceX. In caseX is the set of reals we writeL p(I ).
For f ∈ L2(I , X), ‖ f ‖p denotes the usualp−norm of f [5]. For p = ∞, L∞(I , X)

denotes the essentially bounded functions fromI to X, with the usual norm‖·‖∞ . The
spaces̀ 2(X), and`∞(X) are the corresponding sequence spaces. IfX is a Banach
space,X∗ denotes the dual ofX, andL(X, Y) the space of all bounded linear operators
from X to the Banach spaceY.

Throughout this paper,5(X, Y) denotes the set of all projections fromX into Y.

1. Existence of Minimal Projections

Let X be Banach space andY be a closed subspace ofX. If Y is finite dimensional
then, a minimal projection fromX onto Y exists [2]. The problem of existence of
minimal projections in tensor product spaces was discussedin [1], [2] and [4]. In this
section, we present some general facts on the existence of minimal projections which
are not stated explicitly in the literature. We include the proof for completeness.

PROPOSITION1. Let X be a dual space. Then for anyw∗−closed complemented
subspace Y of X there exists a minimal projection onto Y .
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Proof. Let K = {P ∈ L(X, X) : Px = x for x ∈ Y}. SinceX is a dual space, andY
is w∗- closed inX, it follows that K is w∗-closed. Consequently inf{‖P‖ : P ∈ K } is
attained at someP, and suchP is a projection. This ends the proof.

As a consequence we get

COROLLARY 1. Let G and H be finite dimensional subspaces of Lp(I ). Then there
exists a minimal projection from Lp(I × I ) onto Lp(I , H )+L p(I , G), for 1 < p < ∞.

Proof. From theory of tensor products, it is known [5], that

L p(I × I ) = L p(I ) ⊗
p

L p(I ), L p(I , H ) = L p(I ) ⊗
p

H

and
L p(I , G) = G ⊗

p
L p(I ),

whereX ⊗
p

Y is the p-nuclear tensor product ofX andY. SinceL p(I × I ) is a dual

separable space, andH is finite dimensional, it follows from Proposition 1 above and
Proposition 11.2 in [5] thatL p(I , H ) + L p(I , G) is a closed complemented subspace
of a reflexive space, and so it isw∗- closed. The result now follows.

COROLLARY 2. If G and H are finite dimensional subspaces of`1, then there is a

minimal projection of̀ 1
∧
⊗ `1 onto`1

∧
⊗ H + G

∧
⊗ `1.

Proof. The proof follows from the above proposition and the fact`1 ∧
⊗ H = `1(H ) =

c0(G), whereG∗ = H.

Another similar result is

PROPOSITION2. Let X be a Banach space with separable dual .Then for every
complemented weakly sequentially complete subspace W in X,there exists a minimal
projection from X onto W.

Proof. SinceW is complemented,in f {‖Q‖ : Q ∈ 5(X, W)} = r , is finite. So there
exists a sequencePn ∈ 5(X, W) such that‖Pn‖ −→ r . Thus(P∗

n ) is a bounded

sequence inL(X∗, X∗) = (X∗
∧
⊗ X∗)∗ ( whereT∗ is the adjoint of the operatorT).

SinceX∗ is separable,X is separable, and soX∗
∧
⊗X is separable. Hence, using Helly’s

selection theorem, we can assume that(P∗
n ) converges in the weak operator topology.

Define Q : X −→ W by < Qx, x∗ >= lim < x, P∗
n x∗ > . SinceY is weakly

sequentially complete thenQ is a projection onW, and‖Q‖ ≤ lim
∥

∥P∗
n

∥

∥ = r . So Q
is a minimal projections. This ends the proof.
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PROPOSITION3. Let X be a Banach space and W be a complemented subspace
of X. If there is a contractive projection from W∗∗onto W, then there is a minimal
projection from X onto W.

Proof. Let r = in f {‖P‖ : P ∈ 5(X, W)}. Let (Pt ) be a net of projections ontoW

such thatlim
t

‖Pt‖ = r . Now P∗
t ∈ 5(X∗, W∗), so P∗

t ∈ (X∗
∧
⊗ X)∗. So there is a

subnet that converges in the weak operator topology. We can assume thatP∗
t −→ U

in the operator topology. SoU is an element of5(X∗, W∗), and

< Ux* , x >= lim < P∗
t x∗, x >= lim < Pt x, x∗ >,

for all x ∈ X andx∗ ∈ X∗.

Now,U∗ ∈ 5(X∗∗, W∗∗), andU∗x = x for all x ∈ W. But U∗x need not be inW
for all x ∈ X. For this, we define

P : X −→ W Px= JU∗x,

for all x ∈ X, whereJ is the contractive projection fromW∗∗ to W. Then P is a
projection and

‖P‖ ≤ ‖J‖
∥

∥U∗
∥

∥ ≤
∥

∥U∗
∥

∥ ≤ lim
∥

∥P∗
t

∥

∥ = lim ‖Pt‖ = r.

HenceP is minimal. This ends the proof.

2. Existence of minimal projections in some function spaces

Let X andY be Banach spaces ,andG, H be subspaces ofX andY respectively. Let

W = X + Y, andV = X ⊗ H + G ⊗ Y. Both V andW are subspaces ofX
η

⊗ Y for
any uniform cross normη on X ⊗ Y . The existence of minimal projections onV and
W was discussed in [2] and [5] forX = L p(S, µ) = Y, whereµ is a finite( orσ -finite)
measure onS and 1 ≤ p < ∞, and for X = Y = C(D), the space of continuous
functions on the compact spaceD in [3]. In [1], it was asked if there exits a minimal
projection fromC(S×T) ontoC(S)⊗H +G⊗C(T), with G andH finite dimensional.
In this section we answer this question forG and H are finite co-dimensional. Some
other results are presented.

THEOREM 1. Let S and T be finite measure spaces and X be any Banach space.
Then there is a minimal projection J from Lp(S× T, X) onto Lp(S, X) + L p(T, X).
Further‖J‖ = 3.

Proof. From the theory of tensor product [5], we have:L p(M, X) = L p
n(p)

⊗ X, for any
measure space(M, µ), and any Banach spaceX, wheren(p) is the p−nuclear cross
product norm [5], on L p ⊗ X. Hence,

L p(S, X) + L p(T, X) = L p
n(p)

⊗ X + L p
n(p)

⊗ X = [L p(S, µ) + L p(T, ϑ)]
n(p)

⊗ X.
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Let P be a minimal projection fromL p(S× T) ontoL p(S, µ) + L p(T, ϑ) [5]. Define
the projection

J : L p(S× T, X) −→ [L p(S, µ) + L p(T, ϑ)]
n(p)

⊗ X,

with J = P ⊗ I . We claim J is minimal. Indeed, ifJ is not minimal then there
exists a projectionQ such that‖Q‖ < ‖J‖. Let z ∈ X and z∗ ∈ X∗ such that
< z, z∗ >= ‖z‖ = ‖z∗‖ = 1. Definez : L∗(S × T) −→ L∗(S, µ) + L∗(T, ϑ),

z( f ) =< Q( f ⊗ z), z∗ > . Thenz is a projection and‖z‖ ≤ ‖Q‖ < ‖J‖ =‖P‖.
This contradicts the minimality ofP. Thus J is minimal. As for the norm ofJ, we
‖J‖ =‖P‖. But ‖P‖ = 3, [3]. This ends the proof.

We should remark that the same result holds ifL p is replaced byC(K ), the space
of continuous functions on a compact spaceK . Now we prove

THEOREM 2. Let G be a finite dimensional subspace of X= C(T) (or L1(T)),
and P be a minimal projection onto G. Then I−P is a minimal projection onto ker(P).

Proof. Let H =ker(P), andr = in f {‖Q‖ : Q ∈ 5(X, H )}.Then there is a sequence
of projectionsQn in 5(X, H ), such that‖Qn‖ −→ r . So X = H ⊕ Gn. Put Pn =

I − Qn. HenceH ⊆ ker(Pn) for all n. DefineTn : X −→ X�H by Tn(x) = [ Pnx],
where[z] denotes the coset ofz in X�H . ThenTn is well defined. SinceX�H is
finite dimensional, it follows thatX�H ' (X�H )∗∗ ' (H ⊥)∗, whereH ⊥ denotes
the annihilator ofH . Hence from theory of tensor products of Banach spaces [5], we

get Tn ∈ (X
∧
⊗ H ⊥)∗. SinceX is separable andH ⊥ is finite dimensional, there is a

subsequence ofTn that converges in thew∗-topology. Assume thatTn itself converges
to T . Thus,< Tnx, x∗ >−→< T x, x∗ >, for all x in X and x∗ in H ⊥. But <

[ Pnx], x∗ >=< Pnx, x∗ > for all x in X and x∗ in H ⊥, since Pnx is not in H .
Since(ker(Qn))

∗is isomorphic toH ⊥, it follows that < Pnx, x∗ > converges in the
weak operator topology. LetP be the limit ofPn, so< Pnx, x∗ >−→< Px, x∗ > for
all x in X andx∗ in X∗. SincePn + Qn = I , it follows that Qn converges to someQ
in the weak operator topology. Further,P + Q = I . Since for eachx in H , Pnx = 0,
it follows that Qx = x for all x in H , andQ is a projection. Being the weak operator
limit of Qn , we have‖Q‖ ≤ lim ‖Qn‖ = r . From the definition ofr we get‖Q‖ = r ,
andQ is minimal. From the Daugavit property ofC(T) (and ofL1(T)), it follows that
P is minimal on ker(Q). This ends the proof.

REMARK 1. The existence of the minimal projectionQ in Theorem 2 is indepen-
dent ofC(T) andL1(T), since only separability of the spaceX was used.

Now we are ready to answer the question of Cheney and Franchetti ([1]) for finite
co- dimensional subspaces.
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THEOREM 3. If G and H are finite co-dimensional subspaces of C(K1) and
C(K2) respectively, then there exists a minimal projection from C(K1 × K2) onto

W = C(K1)
∨
⊗ H + G

∨
⊗ C(K2). Further, the minimal projection onto W is a Boolean

sum of two minimal projections.

Proof. It follows from the proof of Theorem 2 that there exists finitedimensional sup-
plementsG andH of G andH respectively and minimal projectionsP andQ onG and
H such thatI − P is minimal ontoG andI − Q is minimal ontoH . From Theorem 3.1
of [4], P⊗ Q is a minimal projection ontoG⊗ H . NowC(K1× K2) = (G⊗ H)⊕W.
FurtherW = ker(P ⊗ Q). Again, by Theorem 2.2I ⊗ I − P ⊗ Q is minimal. But
I ⊗ I − P ⊗ Q = I ⊗ (I − Q) + (I − P) ⊗ Q − P ⊗ Q. This ends the proof.

It should be remarked that Theorem 3 holds true ifC(K ) is replaced byL1(S, µ)

for some finite(or σ−finite) measure space(S, µ).

3. The form of minimal

Let X andY be Banach spaces, andG and H be subspaces ofX andY respectively.

Not much is known in general about the form of the minimal projection ofX
η

⊗ Y onto
any of the subspacesW1 = X ⊗ H , W2 = G ⊗Y andW1 + W2. In this section we will
discuss the form of minimal projections in certain classes of tensor product spaces.

THEOREM4. Let G be a closed subspace of a Banach space X . The following are
equivalent:

(i) There is a unique minimal projection P from X onto G .

(ii) There is a unique minimal projection J from̀1(X) onto`1(G) and J = I ⊗ P.

Proof. (i ) ⇒ (i i ). Let P be a minimal projection fromX onto G, and assumeP is
unique. Consider the projectionJ : `1(X) −→ `1(G), defined byJ( f ⊗x) = f ⊗ Px,

noting that`1(X) = `1 ∧
⊗ X . Then‖J‖ = ‖P‖ . If J is not minimal then there

is a projectionL onto `1(G) and‖L‖ < ‖J‖ . Define Q : X −→ G defined by,
Qx = P1L(δ1⊗x), whereP1 is the first coordinate projection. Then,Q is a projection
X ontoG and‖Q‖ ≤ ‖L‖ < ‖J‖ = ‖P‖. This contradicts the minimality ofP. Hence
J is minimal. FurtherJ is unique, for otherwiseP1J will be minimal projections on
G, contradicting uniqueness ofP .

(i i ) ⇒ (i ). Let J be a unique minimal projection of̀1(X) onto `1(G). Define
P : X −→ G, by P(x) = < J(δ1⊗x), δ1 > . ThenP is a projection and‖P‖ ≤ ‖J‖ .

If P were not minimal, there is a projectionQ : X −→ G such that‖Q‖ < ‖P‖. But
thenL = I ⊗ Q is a projection of̀ 1(X) onto`1(G), with ‖L‖ ≤ ‖Q‖ < ‖P‖ ≤ ‖J‖,
which contradicts the minimality ofJ. ThusP is minimal. Now, sinceP is minimal,
the projectionL = I ⊗ P is minimal. SinceJ is unique, we getJ = L . This ends the
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proof.

We should remark that if uniqueness is not assumed, then we have

THEOREM 5. A projection J from L1(S, X) onto L1(S, G) is minimal if and only
if the projection P: X −→ G, Px = J( f ⊗x), f ∗ > is minimal, where f∈ L1(S, µ)

and f∗ ∈ L∞(S, µ) and< f, f ∗ >= 1, for anyσ−finite measure space(S, µ).

The proof follows the same line as that of Theorem 4 and will beomitted.

Now let X = `1
2 = {(x, y), ‖(x, y)‖ = |x| + |y| , x, y ∈ R.}, andG = [z], the

span ofz in `1
2. Then

THEOREM 6. Every minimal projection from̀1
2(X) onto`1

2(G) has the form J=
I ⊗ P for some minimal projection P from X onto G.

Proof. Let us writeV for `1
2(G) andW for `1

2(X). The spacè1
2 has a basis{δ1, δ2},

whereδ1 = (1, 0), andδ2 = (0, 1). ThenV has{δ1 ⊗ z, δ2 ⊗ z}. Hence any projection
from W ontoV has the formL = f ∗

1 ⊗ (δ1 ⊗ z) + f ∗
2 ⊗ (δ2 ⊗ z) where f ∗

i ∈ `∞
2 (X),

and

(1) < f ∗
i , δ j ⊗ z >=

{

1 if i = j
0 if i 6= j

Now, f ∗
i ∈ `∞

2 (`∞
2 ). So f ∗

i = δ1 ⊗ x∗
i + δ2 ⊗ y∗

i , wherex∗
i , and y∗

i are in`∞
2 . It

follows from (1) that

< x∗
1, z >=< y∗

2, z >= 1, and < y∗
1, z >=< x∗

2, z >= 0.

Thus

L = (δ1 ⊗ z∗
1 + δ2 ⊗ a∗

1) ⊗ (δ1 ⊗ z) + (δ1 ⊗ a∗
2 + δ2 ⊗ z∗

2) ⊗ (δ2 ⊗ z),

where< z∗
i , z >= 1, anda∗

i are in the annihilator ofG, and
∥

∥z∗
i

∥

∥ = 1. Now,‖L‖ =

sup{
∥

∥L(δi ⊗x)
∥

∥ : x ∈ X, ‖x‖ = 1, i = 1, 2}. If we calculate‖L(δ1 ⊗ x)‖ we find :

‖L(δ1 ⊗ x)‖ =
∥

∥(< z∗
1, x > δ1+ < a∗

2, x > δ2) ⊗ z
∥

∥

=
∣

∣< z∗
1, x >

∣

∣ +
∣

∣< a∗
2, x >

∣

∣ ,(2)

we are taking‖z‖ = 1.

If z = (s, t) with s + t = 1, ands 6= 0, t 6= 0, then z is a smooth point of
B1(`

1(G)), and so there is only onez∗ in B1(`
∞(G∗)) such that< z∗, z >= 1. Thus

z1 = z2. Further, since< a∗
i , z >= 0, then one of the two coordinates ofa∗

i must be
positive, say the first coordinate, which we denote byαi1. Now choosex = δ1. Then
from (2) we get

‖L(δ1 ⊗ x)‖ ≥ 1 + αi1 >
∥

∥z∗
1

∥

∥ .
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So ‖L‖ >
∥

∥z∗
1

∥

∥. Similarly ‖L‖ >
∥

∥z∗
2

∥

∥. Define J : `1(X) −→ `1(G), as J =

(δ1 ⊗ δ1 + δ2 ⊗ δ2) ⊗ (z∗
1 ⊗ z∗

2) = I ⊗ P, whereP = z∗
1 ⊗ z . Then since‖z‖ = 1, it

follows that‖J‖ =
∥

∥z∗
1

∥

∥. Thus‖J‖ < ‖L‖. This contradicts the minimality ofL . So
minimal projections oǹ1(G) are of the formI ⊗ P. This ends the proof.

THEOREM 7. Let G be a (closed) complemented subspace in the Banach spaceY .

Let X be a Banach space such that X
∧
⊗ G is a closed subspace of X

∧
⊗ Y . Then if there

is a minimal projection L from X
∧
⊗ Y onto X

∧
⊗ G, then there is a minimal projection

of the form I⊗ P, for some minimal projection from Y onto G.

Proof. Let L be a minimal projection fromX
∧
⊗ Y onto X

∧
⊗ G. Let x ∈ X be a fixed

element inX. Chooseφ ∈ X∗ such thatϕ(x) = ‖ϕ‖ = 1. Define:

T : Y −→ X ⊗ Y, T(y) = x ⊗ y.

B : X ⊗ G −→ G, B(

n
∑

i=1

xi ⊗ gi ) =

n
∑

i=1

ϕ(xi )gi .

Using T and B we defineP : Y −→ G by P = BLT. Since‖T‖ = ‖B‖ = 1, it
follows that‖P‖ ≤ ‖L‖. Further, ifg ∈ G then P(g) = BLT(g) = BL(x ⊗ g) =

B(x ⊗ g) = g. ThusP is a projection. DefineJ : X ⊗ Y −→ X ⊗ G, by J = I ⊗ P.
Then‖J‖ = ‖P‖ ≤ ‖L‖. SinceL is minimal we have‖J‖ = ‖L‖, andJ is minimal.
That P is minimal is immediate. This ends the proof.

A consequence of Theorem 7 is

LEMMA 1. Let G be a finite dimensional subspace of C(T), with T a compact
metric space. If J is a minimal projection from C(T × T) onto C(T) ⊗ G, then
‖I − J‖ = 1 + ‖J‖ .

Proof. By Theorem 7, there is a minimal projectionL onto C(T) ⊗ G of the form
I ⊗ P, for some minimal projectionP onto G. Thus I − L = I ⊗ (I − P). Since
G is finite dimensional inC(T), it follows that‖I − P‖ = 1 + ‖P‖ .Thus I − L is
minimal. Hence,

(3) ‖I − J‖ ≥ ‖I − L‖ = 1 + ‖P‖ = 1 + ‖L‖ = 1 + ‖J‖

But 1+ ‖J‖ ≥ ‖I − J‖. It follows from (3) above that‖I − J‖ = 1+ ‖J‖. This ends
the proof.

It should be remarked that Lemma 1 holds true ifC(T × T) is replaced byL1(T ×

T).
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