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EXISTENCE AND UNIQUENESS OF PERIODIC SOLUTIONS

FOR A MODEL OF CONTAMINANT FLOW IN POROUS

MEDIUM

Abstract. This paper deals with the existence and uniqueness of the weak
periodic solution for a model of transport of a pollutant flow in a porous
medium. Our model is described by means of a nonlinear degenerate
parabolic problem. To prove the existence of periodic solutions, we use
as preliminary steps the Schauder fixed point theorem for the Poincaré
map of a nondegenerate initial–boundary value problem associated to ours
and the a–priori estimates deduced on these solutions. Our uniqueness
result follows from a more general result which shows the continuous de-
pendence of solutions with respect to the data. As another consequence of
this general result we prove a comparison principle for periodic solutions.

1. Introduction

In this paper we consider a nonlinear parabolic problem which arises from a model of
transport for a pollutant flow in a porous medium (see [3]).

(P)





ut = div(∇ϕ(u)− ψ(u)V(x, t)), in QT := �× (0, T )
(∇ϕ(u)− ψ(u)V(x, t)) · n = g(x, t), on ST := ∂�× (0, T )

u(x, t + ω) = u(x, t), in QT , T ≥ ω > 0





where� is a bounded domain in Rn with smooth boundary ∂�, n denotes the outward
unit normal vector on the boundary ∂�. The increased demand for water in various
parts of the word, makes very important the problem of the water quality for the devel-
opment and use of water resources.

Special attention should be devoted to the pollution of groundwater in acquifers and
surface water. The term pollutant shall be used to denote dissolved matter carried with
water. We deal with the transport of mass of certain solute that moves with the water
in the interstices of an inhomogeneous porous medium. At every point within a porous
medium, we have the product ψ(u)V(x, t) between the liquid velocity V(x, t) and a
nonlinear functionψ(u) of the concentration u of the pollutant. The term ψ(u)V(x, t),
represents the advective flux i.e. the flux carried by the water at the velocity V(x, t).
The fundamental balance equation for the transport of a pollutant concentration in a
porous medium, is given by the advenctive–dispersion equation u t = div(∇ϕ(u) −
ψ(u)V(x, t)).
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2. Preliminaries

We study the problem (P) under the assumptions:

Hϕ) ϕ ∈ C([0,∞)) ∩ C1((0,∞)), ϕ(0) = 0, ϕ′(s) > 0 for s 6= 0 ;

Hψ) ψ ∈ C([0,∞)) ∩ C1((0,∞)), ψ(0) = 0, ψ locally Lipschitz continuous;

HV ) V ∈
∏n

i=1 C(QT ) ∩ C1(QT ), V(x, .) is ω–periodic, divV(x, t) = 0 in QT and
V(x, t) · n < 0 on ST ;

Hg) g ∈ L∞(ST ), g > 0, g(x, .) is ω–periodic and admits an extension on all QT such
that gx ∈ L∞(QT ).

REMARK 1. The assumptions Hϕ) and Hψ) include both the case of degenerate
equations i.e. ϕ′(0) = 0 and ψ ′(0) = ±∞, while the assumptions Hg) allows to apply
the result of [5, thm. 6.2].

DEFINITION 1. A function u ∈ C([0, T ]; L2(�)) ∩ L∞(QT ), is a periodic weak
solution to (P), if u(x, t + ω) = u(x, t), ϕ(u) ∈ L2((0, T ); H 1(�)) and

(1)
∫ T

0

∫

�

(uζt + ϕ(u)1ζ + ψ(u)V(x, t) · ∇ζ )dxdt+

∫ T

0

∫

∂�

(g(x, t)ζ − ϕ(u)
∂ζ

∂n
)dSdt =

∫

�

(u(x, T )ζ(x, T )− u(x, 0)ζ(x, 0))dx

for any ζ such that ζ , ζt , 1ζ ∈ L2(QT ) and ∂ζ
∂n ∈ L2(ST ).

The existence of the positive weak periodic solutions for the problem (P) shall be
obtained as the limit of approximated periodic solutions whose existence is showed by
means of the Schauder fixed point theorem, applied to the Poincaré map of a nonde-
generate initial–boundary value problem associated to (P). In the light of what has
been said, we begin by proving the existence of the positive periodic solutions for the
approximated nondegenerate problem

(Pε)





uεt = div(∇ϕε(uε)− ψε(uε)V(x, t)), in QT

(∇ϕε(uε)− ψε(uε)V(x, t)) · n = gε(x, t), on ST

uε(x, t + ω) = uε(x, t), in QT





where

Hϕε) ϕε ∈ C1([0,∞)), ϕε(0) = 0, ϕ′
ε(s) ≥ ε, ϕε(s) = ϕ(s) if s ≥ ε/2

and ϕε → ϕ uniformly on compact sets of R+ as ε → 0+;

Hψε) ψε ∈ C1([0,∞)), ψε(0) = 0, with ψε(s) = ψ(s) if s ≥ ε/2

and ψε → ψ uniformly on compact sets of R+ as ε → 0+;

Hgε) gε ∈ C∞(QT ), gε > 0, gε(x, .) is ω–periodic and gε → g
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uniformly on compact sets of QT as ε → 0+.

The existence of the positive periodic solutions to (Pε) derives from the Schauder
fixed point theorem for the Poincaré map of the associated initial–boundary value prob-
lem

(P ′
ε)





uεt = div(∇ϕε(uε)− ψε(uε)V(x, t)), in QT

(∇ϕε(uε)− ψε(uε)V(x, t)) · n = gε(x, t), on ST

uε(x, 0) = u0ε, in �





where

H0ε) u0ε ∈ C2(�), u0ε ≥ 0 for all x ∈ � and satisfies the compatibility condition
(∇ϕε(u0ε(x))− ψε(u0ε(x))V(x, 0)) · n = gε(x, 0), on ∂�.

The uniqueness of the positive weak periodic solutions, follows from a more gen-
eral result which shows the continuous dependence of the solutions with respect to the
data. This result shall be established extending, to our periodic case, the method uti-
lized in [4], [6], [8] for the study of the Cauchy or the Cauchy–Dirichlet problems. As
a conclusive fact of this extention, we show a comparison principle for the periodic
solutions. According to the knowledges of the author, the topic considered here has not
been discussed previously, in the literature. Related papers to ours are [1] where the
blow–up in finite time is studied for a problem of reaction–diffusion and [2] where the
existence and uniqueness of the solution for a non periodic problem (P) is showed in
a unbounded domain�. See also [9].

3. Existence and uniqueness for the approximating problem

The classical theory of parabolic equations asserts that the problem (P ′
ε) has a unique

solution uε ∈ C2,1(QT ). Moreover, problem (P ′
ε) has ε as a lower–solution if we

assume that
−ψ(ε)V(x, t) · n ≤ gε(x, t), on ST .

If we suppose that there exists a constant M > 0 such that ψ(M) > 0 and

−ψ(M)V(x, t) · n ≥ gε(x, t), on ST ,

then, M is an upper–solution for (P ′
ε).

If u0ε verifies

(1) ε ≤ u0ε(x) ≤ M , for all x ∈ � ,

the comparison principle asserts that

(2) ε ≤ uε(x, t) ≤ M , in QT .

For ϕ(uε) holds this uniform estimate

PROPOSITION 1. There exists a constant C > 0, independent of ε, such that

(3)
∫ T

0
‖ϕ(uε)‖2

H1(�)
dt ≤ C .
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Proof. Multiply the equation in (P ′
ε) by ϕ(uε) and integrate by parts using Young’s

inequality, we have

(4)
d

dt

∫

�

8ε(uε)dx + 1

2

∫

�

|∇ϕ(uε)|2dx ≤

∫

∂�

gε(x, t)ϕ(M)dS + 1

2

∫

�

‖V(x, t)‖2
Rn |ψ(uε)|2dx ,

where 8ε(uε) :=
∫ uε
ε
ϕ(s)ds. Integrating (4) over (0, T ), one has

∫

�

8ε(uε(x, T ))dx −
∫

�

8ε(u0ε(x))dx + 1

2

∫ T

0

∫

�

|∇ϕ(uε)|2dxdt ≤ C1

and from
d

duε
|ϕ(uε)|2 = 2ϕ(uε)ϕ′(uε) ≤ 2C2ϕ(uε) ,

(C2 = sup{|ϕ′(ξ)|, ε < ξ < M}), one obtains

|ϕ(uε)|2 ≤ 2C28ε(uε)+ |ϕ(ε)|2 .

By (1) follows that

∫ T

0

∫

�

|ϕ(uε)|2xdt + 1

2

∫ T

0

∫

�

|∇ϕ(uε)|2dxdt ≤ C .

Taking into account that u0ε ∈ C2(�), we can utilize the regularity result given in
[5], which establishes that the sequence of solutions uε is equicontinuous in QT .

PROPOSITION 2. ([5]). If u0ε is continuous on �, then the sequence {uε} of
solutions of (P ′

ε) is equicontinuous in QT in the sense that there exists ω0 : R+ → R+,
ω0(0) = 0 continuous and nondecreasing such that

(5) |uε(x1, t1)− uε(x2, t2)| ≤ ω0(|x1 − x2| + |t1 − t2|1/2) ,

for any (x1, t1), (x2, t2) ∈ QT .

In order to mobilize the Schauder fixed point theorem, we introduce the closed and
convex set

Kε := {w ∈ C(�) : ε ≤ w(x) ≤ M, ∀ x ∈ �}
and the Poincaré map associated to the problem (P ′

ε), defined as follows

F(u0ε(.)) = uε(., ω)

where uε is the unique solution of (P ′
ε).

From the formula (2) and the Proposition 2, we deduce that
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i) F(Kε) ⊂ Kε

ii) F(Kε) is relatively compact in C(�).

It remains to prove that

iii) F |Kε is continuous.

PROPOSITION 3. If un
0ε, u0ε ∈ Kε and un

0ε → u0ε uniformly on � as n → ∞,
then, if un

ε and uε are solutions of (P ′
ε) with initial data un

0ε and u0ε respectively, we
have that un

ε(., t) converges to uε(., t) uniformly as n → ∞ for any t ∈ [0, T ].

Proof. Multiplying the equation in (P ′
ε) by sgn(un

ε − uε) and integrating over Qt , we
get

d

dx

∫ t

0

∫

�

|un
ε (x, s)− uε(x, s)|dxds = 0

i.e. ∫

�

|un
ε(x, t)− uε(x, t)|dx =

∫

�

|un
0ε(x)− u0ε(x)|dx .

The uniform convergence of un
0ε(x) → u0ε(x) when n → ∞, implies that un

ε strongly
converges to uε in L1(�) as n goes to infinity. Consequently, for a subsequence,
un
ε (x, t) converges to uε(x, t) a.e. x ∈ �. Since ε ≤ un

ε (x, t) ≤ M , the Lebesgue
theorem allows to conclude that un

ε → uε in L p(�), for any 1 ≤ p ≤ ∞. The uni-
form convergence of un

ε(., t) to uε(., t) when n → ∞ is due to the fact that un
ε(., t),

uε(., t) ∈ C(�) for any t ∈ [0, T ].

Now, we can apply the Schauder fixed point theorem and conclude that the Poincaré
map has at least one point, which is a periodic solution of (P ′

ε). Closing this section,
we state our main result

THEOREM 1. If the assumptions Hϕ) − Hg) hold, there exist positive weak ω–
periodic solutions to the problem (P).

Proof. When ε → 0+, the above estimates and the compactness result yield

(6) uε → u uniformly on QT , by the Ascoli–Arzelà theorem

and

(7) uε → u strongly in L2(QT ), because of (6) and (2) .

From (4), one has

(8) ϕ(uε) → ϕ(u) in L2((0, T ); H 1(�)),

while (6) and the Lebesgue theorem imply that

(9) ϕ(uε) → ϕ(u) in L2(QT ) .
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Finally, assumption Hgε) gives

(10) gε(x, t) → g(x, t) uniformly on ∂�× [0, T ] .

This easily leads to conclude that u satisfies (1).

4. Uniqueness and comparison principle

To obtain the uniqueness of the solutions, we need some preliminary inequalities. Let
uε and vε be any positive ω–periodic solutions of (Pε) with boundary data gε, g∗

ε

respectively, such that
ε ≤ max{uε(x, t), vε(x, t)}

then,

(11)
∫ T

0

∫

�

[(uε−vε)ζt +(ϕ(uε)−ϕ(vε))1ζ+(ψ(uε)−ψ(vε))V(x, t) ·∇ζ ]dxdt+

∫ T

0

∫

∂�

(gε(x, t)− g∗
ε (x, t))ζ(x, t)dSdt −

∫ T

0

∫

∂�

(ϕ(uε)− ϕ(vε))
∂ζ

∂n
)dSdt =

∫

�

(uε(x, T )− vε(x, T ))ζ(x, T )dx −
∫

�

(uε(x, 0)− vε(x, 0))ζ(x, 0)dx,

for any ζ such that ζ , ζt , 1ζ ∈ L2(QT ) and ∂ζ
∂n ∈ L2(ST ).

Define

Aε(x, t) := ϕ(uε)− ϕ(vε)

uε − vε
=
∫ 1

0
ϕ′(θuε(x, t)+ (1 − θ)vε(x, t))dθ

Bε(x, t) := ψ(uε)− ψ(vε)

uε − vε
=
∫ 1

0
ψ ′(θuε(x, t)+ (1 − θ)vε(x, t))dθ,

so that (11) becomes

(12)
∫ T

0

∫

�

(uε − vε)(ζt + Aε(x, t)1ζ + Bε(x, t)V(x, t) · ∇ζ )dxdt =

∫

�

(uε(x, T )− vε(x, T ))ζ(x, T )dx −
∫

�

(uε(x, 0)− vε(x, 0))ζ(x, 0)dx+

∫ T

0

∫

∂�

(g∗
ε (x, t)− gε(x, t))ζ(x, t)dSdt +

∫ T

0

∫

∂�

(ϕ(uε)− ϕ(vε))
∂ζ

∂n
)dSdt .

There exist some positive constants α and L depending only on ε and M , such that (see
[6])

ε ≤ Aε(x, t) ≤ α := sup{ϕ′(s), ε ≤ s ≤ M} , ∀ (x, t) ∈ QT
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|Bε(x, t)| ≤ L := sup{|ψ ′(s)|, ε ≤ s ≤ M} , ∀ (x, t) ∈ QT .

Let ζε,m be the solution of the backward linear parabolic problem with smooth coeffi-
cients

(Pζε,m )




ζε,mt + Aε,m(x, t)1ζε,m + Bε,m(x, t)V(x, t) · ∇ζε,m = f, in QT

ζε,m(x; T ) = 2(x), in �
∇ζε,m · n = 0, on ST





with Aε,m , Bε,m , f ∈ C∞(QT ), Aε,m → Aε, Bε,m → Bε uniformly on QT as m goes
to infinity and 2 ∈ C∞

0 (�), 0 ≤ 2(x) ≤ 1.

Also for Aε,m and Bε,m hold

ε ≤ Aε,m(x, t) ≤ α, ∀ (x, t) ∈ QT

|Bε,m(x, t)| ≤ L, ∀ (x, t) ∈ QT .

The existence, uniqueness and regularity of ζε,m(x, t) as solution of (Pζε,m ) follow from
the classical theory of linear parabolic equations with smooth coefficients (see [7]).

For the solution ζε,m the following estimates hold

LEMMA 1. Let ζε,m(x, t) be the solution of (Pζε,m ), then

(13) max
QT

|ζε,m(x, t)| ≤ k1 = k1(‖ f ‖∞,QT
) .

(14)
∫ T

0

∫

�

|∇ζε,m(x, t)|2dxdt ≤ k

(15)
∫ T

0

∫

�

|1ζε,m(x, t)|2dxdt ≤ k

where k := k(ε, L, ‖ f ‖2,QT ). Moreover, if f ≤ 0 one has

(16) 0 ≤ ζε,m(x, t) , ∀ (x, t) ∈ QT .

Proof. Inequalities (13) and (16) are a straightforward consequence of the maximum
principle. To prove (14), multiply the equation in (Pζε,m ) by 1ζε,m and integrate by
parts over�× [τ, T ]. This yields

−
∫ T

τ

∫

�

∇ζε,m(x, t)∇ζε,mt(x, t)dxdt +
∫ T

τ

∫

�

Aε,m(x, t)|1ζε,m(x, t)|2dxdt+

∫ T

τ

∫

�

Bε,m(x, t)1ζε,m(x, t)V(x, t)·∇ζε,m(x, t)dxdt =
∫ T

τ

∫

�

f (x, t)1ζε,m(x, t)dxdt .
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Applying Young’s inequality, we get

(17) −1

2

∫

�

|∇2(x)|2dx + 1

2

∫

�

|∇ζε,m(x, τ )|2dx+

ε

4

∫ T

τ

∫

�

|∇ζε,m(x, t)|2dxdt ≤

C3L2

ε

∫ T

τ

∫

�

|∇ζε,m(x, τ )|2dxdt + 1

2ε

∫ T

τ

∫

�

| f (x, t)|2dxdt ,

(C3 = sup{‖V(x, t)‖2
Rn , (x, t) ∈ QT }) from which

1

2

∫

�

|∇ζε,m(x, τ )|2dx ≤ 1

2

∫

�

|∇2(x)|2dx+

1

2ε

∫ T

τ

∫

�

| f (x, t)|2dxdt + C3L2

ε

∫ T

τ

∫

�

|∇ζε,m(x, τ )|2dxdt .

Gronwall’s inequality and integration with respect to τ gives (14) and therewith by
substitution in (17)), the (15).

PROPOSITION 4. For any f ∈ C∞(QT ) and any 2 ∈ C∞
0 (�), 0 ≤ 2(x) ≤ 1 we

have

(18)
∫

�

(uε(x, T )− vε(x, T ))2(x)dx −
∫ T

0

∫

�

(uε(x, t)− vε(x, t)) f (x, t)dxdt ≤

k1

(∫

�

|uε(x, 0)− vε(x, 0)|dx +
∫ T

0

∫

∂�

|gε(x, t)− g∗
ε (x, t)|dSdt

)
.

If f ≤ 0, then

(19)
∫

�

(uε(x, T )− vε(x, T ))2(x)dx −
∫ T

0

∫

�

(uε(x, t)− vε(x, t)) f (x, t)dxdt ≤

k1

(∫

�

(uε(x, 0)− vε(x, 0))+dx +
∫ T

0

∫

∂�

(gε(x, t)− g∗
ε (x, t))+dSdt

)
.

Proof. Substituting ζε,m in (12) we obtain

(20)
∫ T

0

∫

�

(uε − vε)[ f (x, t)+ (Aε(x, t)− Aε,m(x, t))1ζε,m(x, t)+

(Bε(x, t)− Bε,m(x, t))V(x, t) · ∇ζε,m]dxdt =
∫

�

(uε(x, T )− vε(x, T ))2(x)dx −
∫

�

(uε(x, 0)− vε(x, 0))ζε,m(x, 0)dx+
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∫ T

0

∫

∂�

(g∗
ε (x, t)− gε(x, t))ζε,m(x, t)dSdt .

By Lemma 1, one concludes that

(21)
∫

�

(uε(x, T )− vε(x, T ))2(x)dx−

∫ T

0

∫

�

(uε(x, t)− vε(x, t)) f (x, t)dxdt ≤ k1

(∫

ω

|uε(x, 0)− vε(x, 0)|dx+
∫ T

0

∫

∂�

|gε(x, t)− g∗
ε (x, t)|dSdt

)
+

(
max
QT

|uε(x, t)− vε(x, t)|
){

max
QT

|Aε(x, t)− Aε,m(x, t)|(kT |�|)1/2+

max
QT

|Bε(x, t)− Bε,m(x, t)|
√

k

(∫ T

0

∫

�

‖V(x, t)‖2
Rn dxdt

)1/2}
.

Passing to the limit in (19) as m → ∞, one obtains the desired result.

COROLLARY 1. Let u and v be any periodic solutions to (P) with boundary data
g, g∗, respectively. Then one has

(22)
∫

�

(u(x, T )− v(x, T ))+dx ≤ k1

(∫ T

0

∫

∂�

(g(x, t)− g∗(x, t))+dSdt+
∫

�

(u(x, 0)− v(x, 0))+dx

)

and the continuous dependence result

(23)
∫ T

0

∫

�

|u(x, t)− v(x, t)|2dxdt ≤ k1

(∫

�

|u(x, 0)− v(x, 0)|dx+

∫ T

0

∫

∂�

|g(x, t)− g∗(x, t)|dSdt

)
.

Proof. Choosing f (x, t) ≡ 0 and 2 = 2 j ∈ C∞
0 (�), with 2 j → sgn+(uε(x, T ) −

vε(x, T )) in L1(�) as j → ∞, inequality (17) gives

(24)
∫

�

(uε(x, T )− vε(x, T ))+dx ≤ k1

(∫

�

(uε(x, 0)− vε(x, 0))+dx+

∫ T

0

∫

∂�

(gε(x, t)− g∗
ε (x, t))+dSdt

)
.

Taking the limit as ε → 0+ in (24), we have (22). The (23) is deduced by 2 ≡ 0,
f = f j ∈ C∞(QT ), f j → −(uε − vε) in L2(QT ) as j → ∞ and letting ε → 0+.
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Our main result of this section is

THEOREM 2. Problem (P) has a unique positive ω–periodic weak solution.

Proof. Choosing T = nω in (23), the periodicity of u and v gives us

n
∫ ω

0

∫

�

|u(x, t)− v(x, t)|2dxdt ≤ k1

(∫

�

|u(x, 0)− v(x, 0)|dx ≤ k2

for any n ∈ N , hence u = v.

Finally, we can to show a comparison result for the positive ω–periodic weak solu-
tions

COROLLARY 2. Let u and v be positive ω–periodic weak solutions to (P) with
boundary data g, g∗. If g ≤ g∗, then u ≤ v in Qω.

Proof. Under the above assumptions, formula (17), with 2 ≡ 0, f j ∈ L∞(QT ),
f j → sgn+(u(x, t)− v(x, t)) in L∞(QT ), says in the limit ε → 0+

∫ T

0

∫

�

(u(x, t)− v(x, t))+dxdt ≤ k1

(∫

�

(u(x, 0)− v(x, 0))+dx+

∫ T

0

∫

∂�

(g(x, t)− g∗(x, t))+dSdt

)
.

Taking T = nω, one has

n
∫ ω

0

∫

�

(u(x, t)− v(x, t))+dxdt ≤ 2k1N |�| ,

where N ≥ max{‖u‖∞,QT , ‖v‖∞,QT }, which implies u(x, t) ≤ v(x, t) in Qω .

Acknowledgment. The author is very grateful to the referee.
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F. Messina

LOCAL SOLVABILITY FOR SEMILINEAR PARTIAL

DIFFERENTIAL EQUATIONS OF CONSTANT STRENGTH

Abstract. The main goal of the present paper is to study the local solv-
ability of semilnear partial differential operators of the form

F(u) = P(D)u + f (x, Q1(D)u, ......, QM (D)u),

where P(D), Q1(D), ..., QM (D) are linear partial differntial operators of
constant coefficients and f (x, v) is a C∞ function with respect to x and
an entire function with respect to v.
Under suitable assumptions on the nonlinear function f and on
P, Q1, ..., QM , we will solve locally near every point x 0 ∈ Rn the next
equation

F(u) = g, g ∈ Bp,k,

where Bp,k is a wieghted Sobolev space as in Hörmander [13].

1. Introduction

During the last years the attention in the literature has been mainly addressed to the
semilinear case:

(1) P(x, D)u + f (x, Dαu)|α|≤m−1 = g(x)

where the nonlinear function f (x, v), x ∈ Rn , v ∈ CM , is in C∞(Rn,H(CM)) with
H(CM) the set of the holomorphic functions in CM and where the local solvability of
the linear term P(x, D) is assumed to be already known.
See Gramchev-Popivanov[10] and Dehman[4] where, exploiting the fact that the non-
linear part of the equation (1) involves derivatives of order ≤ m − 1, one is reduced
to applications of the classical contraction principle and Brower’s fixed point Theo-
rem, provided the linear part is invertible in some sense. The general case of P(x, D)
satisfying the (P) condition of Nirenberg and Trèves [21] has been settled in Hounie-
Santiago[12], by combining the contraction principle with compactness arguments.
Corcerning the case of linear part with multiple characteristics, we mention the
recent results of Gramchev-Rodino[11], Garello[6], Garello[5], Garello-Gramchev-
Popivanov-Rodino[7], Garello-Rodino[8], Garello-Rodino[9], De Donno-Oliaro[3],
Marcolongo[17], Marcolongo-Oliaro[18], Oliaro[22].
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